Threshold and Upper Bound for The Controller’s Designed Parameter of Fokker Planck Kolmogorov Probability Density Function with Applications to Cryptocurrency
Abstract
Ismail A Mageed
This work is the first in literature to tackle the difficult open problem of determining the upper bound and threshold theorem for the TDCDP (time-dependent controller parameter) of the (Fokker Planck Kolmogorov) probability density function. This revolutionary exposition will put control theory and other related inter-disciplinary fields to a higher level towards contemporary control theory. Notably, based on the influential role of control theory in both engineering and industry, this paper will be of great value to all engineering and industry professionals who seek to know more about advanced trends within control theory settings. On the other remit of the spectrum, Fokker Planck Kolmogorov(FPK) equations are of high importance to physicists as well as mathematicians, based on their multiple applicability to information theory, graph theory, data science, finance, economics, and beyond. So, this by default adds more taste and credibility to this study. This leads by nature to introducing a different flavor to this ground-breaking research by highlighting the impact of Fokker Planck Kolmogorov(FPK) to revolutionize crypocurrency,which have received its name because it uses encryption to verify transactions, a new debatable digital payment system that doesn't rely on banks to verify transactions. It’s a peer-to-peer system that can enable anyone anywhere to send and receive payments. The paper ends with closing remarks combined with some challenging open problems and the next phase of research.