The Proof of the Fermar's Last Theorem, Mersenne's Prime Conjecture and Poincare Conjecture in Euclidean Geometry
Abstract
Liao Teng
In order to strictly prove from the point of view of pure mathematics Goldbach's 1742 Goldbach conjecture and Hilbert's twinned prime conjecture in question 8 of his report to the International Congress of Mathematicians in 1900, and the French scholar Alfond de Polignac's 1849 Polignac conjecture, By using Euclid's principle of infinite primes, equivalent transformation principle, and the idea of normalization of set element operation, this paper proves that Goldbach's conjecture, twin primes conjecture and Polignac conjecture are completely correct. In order to strictly prove a conjecture about the solution of positive integers of indefinite equations proposed by French scholar Ferma around 1637 (usually called Ferma's last theorem) from the perspective of pure mathematics, this paper uses the general solution principle of functional equations and the idea of symmetric substitution, as well as the inverse method. It proves that Fermar's last theorem is completely correct.