The Behavior of Basic Fields
Abstract
JAJ. van Leunen
A basic field is defined in the realm of a mathematical modeling platform that is based on a collection of floating platforms and an embedding platform. Each floating platform is represented by a quaternionic separable Hilbert space. The embedding platform is a non-separable Hilbert space. A basic field is a continuum eigenspace of an operator that resides in the non-separable embedding Hilbert space. The continuum can be described by a quaternionic function, and its behavior is described by quaternionic differential calculus. The separable Hilbert spaces contain the point-like artifacts that trigger the basic field. The floating platforms possess symmetry, which in combination with the background platform generates the sources of symmetry related fields.