Switching Towards a Proactive Grid Based Data Management Approach
Abstract
Shahzad Ashraf
Over time, an exorbitant data quantity is generating which indeed requires a shrewd technique for handling such a big database to smoothen the data storage and disseminating process. Storing and exploiting such big data quantities require enough capable systems with a proactive mechanism to meet the technological challenges too. The available traditional Distributed File System (DFS) becomes inevitable while handling the dynamic variations and requires undefined settling time. Therefore, to address such huge data handling challenges, a proactive grid base data management approach is proposed which arranges the huge data into various tiny chunks called grids and makes the placement according to the currently available slots. The data durability and computation speed have been aligned by designing data disseminating and data eligibility replacement algorithms. This approach scrumptiously enhances the durability of data accessing and writing speed. The performance has been tested through numerous grid datasets and therefore, chunks have been analysed through various iterations by fixing the initial chunks statistics, then making a predefined chunk suggestion and then relocating the chunks after the substantial iterations and found that chunks are in an optimal node from the first iteration of replacement which is more than 21% of working clusters as compared to the traditional approach.