inner-banner-bg

Journal of Applied Material Science & Engineering Research(AMSE)

ISSN: 2689-1204 | DOI: 10.33140/AMSE

Impact Factor: 0.98

Structure and Correlation Between the Fraction of Structural Units and Bond Angle Distribution in Liquid B2 O3 Under Compression

Abstract

Mai Thi Lan and Nguyen Van Hong

Structure of network-forming liquid B2 O3 is investigated by Molecular dynamics simulation (MDS) at 2000K and in the 0-40 GPa pressure range (corresponding to the 1.71-3.04 g/cm3 density range). Results indicate that network structure of liquid B2 O3 comprises of basic structural units BO3 and BO4 . The topology and size of BO3 and BO4 units at different densities are identical. The O-B-O and B-O-B partial bond angle distributions (BADs) can be determined through the fraction of BO3 and BO4 units. Furthermore, the total BADs are directly related to the partial BADs and the fraction of structural units. It means the fraction of units BOX (X = 3,4) and units OBy (y = 2,3) can be determined from the experimental BADs. The spatial distribution of BO3 and BO4 units is not uniform but forming clusters of BO3 and BO4 . This leads to the polyamorphism in liquid B2 O3 . It also shows that the dynamical heterogeneity in liquid B2 O3 due to the lifetimes of BO3 and BO4 units are very different. The structural heterogeneity is origin of spatially heterogeneous dynamics in liquids B2 O3 .

PDF