inner-banner-bg

Journal of Applied Material Science & Engineering Research(AMSE)

ISSN: 2689-1204 | DOI: 10.33140/AMSE

Impact Factor: 0.98

Predicted Fasting Plasma Glucose Values during the COVID Period, using the preCOVID data as Baseline, Applying the Higher Order Equations of Interpolation Perturbation Theory from Quantum Mechanics and Weight as the Perturbation Factor based on GH-Method: Math-Physical Medicine (No. 463)

Abstract

Gerald C Hsu

In this research note, the author applies the methodology of higher-order interpolation perturbation theory from quantum mechanics on his medical research work. This perturbation theory application includes the first-order, second-order, and third-order, to generate three predicted postprandial plasma glucose (PPG) waveforms with different prediction accuracies. He then collects two separate measured fasting plasma glucose (FPG) data and their synthesized waveforms generated for two periods, pre-COVID (5/5/2018 - 1/18/2020) and COVID (1/19/2020 - 6/7/2021), as his two baselines for comparison between 3 predicted FPG data and waveforms (using pre-COVID as the baseline) and the measured COVID FPG data and waveform. There are two final yardsticks to check in this study. The first target is to verify the prediction accuracies of these three perturbed FPG values. The second target is to examine the waveform similarity via calculated correlation coefficients between the measured FPG dataset or waveform and the three perturbed FPG datasets or waveforms. The main purpose is to examine the prediction accuracy and waveform similarities of his current or future period’s glucoses by using three different orders of perturbation equations based on the glucose data from the previous period as the prediction baseline.

PDF