Long Term Effects of Neonatal Hypoglycemia on Muscarinic Receptor Function in the Cerebellum
Abstract
Anju TR and Joy KP
Neonatal stress conditions like hypoglycemia cause brain damage by affecting various signaling pathways thereby causing long term effects on brain functions. A proper understanding of the signaling pathways affected by this stress will help to devise better neonatal care. The focus of the current study was to evaluate the effect of neonatal hypoglycemic insult on cerebellar metabotropic cholinergic receptor function in one month old rats. The receptor analysis of cholinergic muscarinic receptors were done by radioreceptor assays and gene expression was analysed using Real Time PCR. Neonatal hypoglycemia significantly reduced (p<0.001) the cerebellar muscarinic receptor density with a down regulation (p<0.001) of muscarinic M3 receptor subtype gene expression in one month old rats. Both muscarinic M1 and M2 receptor subtype expression were not significantly altered. The catabolic enzyme in acetyl choline metabolism- acetylcholine esterase – showed a significant (p<0.001) up regulation with no siginificant change in the anabolic enzyme – choline acetyl transferase, signifying a change in the turnover ratio. Targeting these pathways at different levels can be exploited to devise better treatment for neonatal stress management and also for diseases with impaired insulin secretion such as diabetes.