inner-banner-bg

Advances in Machine Learning & Artificial Intelligence(AMLAI)

ISSN: 2769-545X | DOI: 10.33140/AMLAI

Impact Factor: 1.3

Classification of Diabetic Retinopathy using Pre-Trained Deep Learning Models

Abstract

Inas Al-Kamachy, Dr. Reza Hassanpour and Roya Choupani

Diabetic Retinopathy (DR) stands as the leading cause of blindness globally, particularly affecting individuals between the ages of 20 and 70. This paper presents a Computer- Aided Diagnosis (CAD) system designed for the automatic classification of retinal images into five distinct classes: Normal, Mild, Moderate, Severe, and Proliferative Diabetic Retinopathy (PDR). The proposed system leverages Convolutional Neural Networks (CNNs) employing pre-trained deep learning models. Through the application of fine-tuning techniques, our model is trained on fundus images of diabetic retinopathy with resolutions of 350x350x3 and 224x224x3. Experimental results obtained on the Kaggle platform, utilizing resources comprising 4 CPUs, 17 GB RAM, and 1 GB Disk, demonstrate the efficacy of our approach. The achieved Area Under the Curve (AUC) values for CNN, MobileNet, VGG-16, InceptionV3, and InceptionResNetV2 models are 0.50, 0.70, 0.53, 0.63, and 0.69, respectively.

PDF