inner-banner-bg

Journal of Textile Engineering and Fashion Technology(JTEFT)

ISSN: 2771-4357 | DOI: 10.33140/JTEFT

Application of Warp Knit Spacer Fabrics in Tissue Engineering

Abstract

N Gokarneshan, Neeti Kishore, PG Anandhakrishnan, S Sumitha, R Sasirekha, Obulam Vidya Sagar, Subhani Sharma, Navya Sudheer, R Haritha and Andrea Samuels

Mesenchymal stem cells (MSCs) possess huge potential for regenerative medicine. For tissue engineering approaches, sca_olds and hydrogels are routinely used as extracellular matrix (ECM) carriers. The present study investigated the feasibility of using textile-reinforced hydrogels with adjustable porosity and elasticity as a versatile platform for soft tissue engineering. A warp-knitted poly (ethylene terephthalate) (PET) sca_old was developed and characterized with respect to morphology, porosity, and mechanics. The textile carrier was infiltrated with hydrogels and cells resulting in a fiber-reinforced matrix with adjustable biological as well as mechanical cues. Finally, the potential of this platform technology for regenerative medicine was tested on the example of fat tissue engineering. MSCs were seeded on the construct and exposed to adipogenic differentiation medium. Cell invasion was detected by two-photon microscopy, proliferation was measured by the PrestoBlue assay. Successful adipogenesis was demonstrated using Oil Red O staining as well as measurement of secreted adipokines. In conclusion, the given microenvironment featured optimal mechanical as well as biological properties for proliferation and di_erentiation of MSCs. Besides fat tissue, the textile-reinforced hydrogel system with adjustable mechanics could be a promising platform for future fabrication of versatile soft tissues, such as cartilage, tendon, or muscle.

PDF