AI Uncertainty Based on Rademacher Complexity and Shannon Entropy
Abstract
Mingyong Zhou, Tongjun L
In this paper from communication channel coding perspective we are able to present both a theoretical and practical discussion of AI’s uncertainty, capacity and evolution for pattern classification based on the classical Rademacher complexity and Shannon entropy. First AI capacity is defined as in communication channels. It is shown qualitatively that the classical Rademacher complexity and Shannon rate in communication theory is closely related by their definitions. Secondly based on the Shannon mathematical theory on communication coding, we derive several sufficient and necessary conditions for an AI’s error rate approaching zero in classifications problems. A 1/2 criteria on Shannon entropy is derived in this paper so that error rate can approach zero or is zero for AI pattern classification problems. Last but not least, we show our analysis and theory by providing examples of AI pattern classifications with error rate approaching zero or being zero.
Impact Statement: Error rate control of AI pattern classification is crucial in many lives related AI applications. AI uncertainty, capacity and evolution are investigated in this paper. Sufficient/necessary conditions for AI’s error rate approaching zero are derived based on Shannon’s communication coding theory. Zero error rate and zero error rate approaching AI design methodology for pattern classifications are illustrated using Shannon’s coding theory. Our method shows how to control the error rate of AI, how to measure the capacity of AI and how to evolve AI into higher levels.