In Vitro Combined Effect of Annona Senegalensis and Piliostigma Thonningii Leaf Extracts on Alpha Amylase Activity

Adam M. Nyanda¹, Madalitso Mlozen¹, Elias Bonya¹, Exton Siyano¹, Patrick Chagwa¹, Chikondi Kamwendo¹, Jonathan Majamanda¹, Wilfred Taika¹, Linly Linje¹, Martin Kalumbi¹, Robert Chinyama¹, Zefaniah Katuah¹ & Blessings Katiniche¹

¹Malawi Adventist University, Department of Biomedical Sciences, P.O. Box 55, Makwasa, Malawi

Abstract

Background: Diabetes mellitus (DM), a group of metabolic disorders characterised by hyperglycaemia, has been attributed to increased activity of α-amylase, one of the key enzymes in carbohydrate metabolism. Alpha amylase inhibition can potentially control postprandial hyperglycaemia, hence significant in the management of diabetes mellitus, especially type 2. Acarbose, the proven α-amylase inhibitor, has been associated with several side effects. Plants used in traditional medicine represent a valuable source in the search for an alternative. The study aimed at determining the combined effect of Piliostigma thonningii and Annona senegalensis leaf extracts on alpha amylase activity.

Methodology: Mortar and pestle were used to crush the leaves into powder. The fine powder was dispensed in distilled water. Percolation was used to filter the crude extract, evaporated in a water bath at 65°C to concentrate the extract then reconstituted. Spectrophotometric assay method was used for alpha amylase activity at 540 nm.

Results: The results of the study showed that A. senegalensis inhibited α-amylase by 27%, 32% and 34% at 15, 30 and 45 minutes respectively. P. thonningii exhibited inhibitory effects on α-amylase by 25%, 27% and 37% at 15, 30 and 45 minutes respectively. The combined inhibitory effects of A. senegalensis and P. thonningii on α-amylase were 28%, 37% and 62% at 15, 30 and 45 minutes respectively which are significantly different (p < 0.05) from that of the positive control, acarbose (71% at 45 minutes).

Conclusion: This study revealed the increased strength to inhibit alpha amylase enzyme by a combination of A. senegalensis and P. thonningii and a proportional increase in the inhibitory effect with increase in incubation time than their individual potential to inhibit alpha amylase.

Keywords: Type 2 Diabetes Mellitus (T2DM), Carbohydrate Metabolism, Hyperglycaemia, Acarbose, α-Amylase Inhibitor, Extraction, Traditional Medicine, Anti-Diabetics.

Introduction

According to Adjakpa, et al., 80% of the whole world’s population and 90% in the developing world use medicinal plants for primary health care. Common advantages of herbal drugs are effectiveness, safety, low costs and acceptability. Modern medicine fails to cure some diseases such that they are traditionally treated, making herbal medicine an inescapable science [1, 2].

Diabetes mellitus (DM) is a group of metabolic disorders characterised by increased blood glucose levels resulting from either the pancreatic failure to produce enough insulin or the abnormal response of the body’s cells to insulin [3, 4]. It is one of the worldwide rapidly growing health problems and one of the leading causes of mortality. About 422 million DM cases were reported in 2014 and 1.5 million deaths per year [5, 6], accounting for 76% of diabetes deaths in the African continent, more especially under the age of 60 years as of 2013 data [7].

Two main types of DM include type 1 (T1DM) and type 2 (T2DM) diabetes mellitus. The former is caused by absence of insulin pro-
duction resulting from auto-immune mediated destruction of the beta cells of Langerhans in the pancreas while the latter is caused by the deficiency in the action of insulin (8, 9). DM reduces life expectancy, and is associated with diabetic ketoacidosis and other nonketotic syndromes [8, 5]. The mechanisms of anti-diabetics include: reducing carbohydrate absorption, α-glucosidase, α-amylase, and aldose reductase activity; increasing glucose uptake in muscle and adipose tissues & insulin sensitivity; stimulating β-cell insulin secretion; and inhibiting hepatic gluconeogenesis or glycogenolysis [10-12].

Postprandial hyperglycaemia is known to increase the risk of development of several health disorders [13]. Inhibition of the enzymes responsible for carbohydrate degradation, α-glucosidase and α-amylase, can therefore treat T2DM. This delays carbohydrate digestion and prolong overall carbohydrate digestion time, hence reducing glucose absorption rate and consequently slowing the postprandial plasma glucose rise [10, 2].

Excess activity of alpha-amylase is one of the leading factors to development of chronic postprandial hyperglycaemia. Ishnava & Motisariya, indicated that there is a positive correlation between human pancreatic α-amylase activity and the increase in postprandial glucose levels, demonstrating the relevance of suppressing postprandial hyperglycaemia in the T2DM through reduction or inhibition of pancreatic α-amylase activity (10). Taha, et al., considers alpha-amylase inhibitors as the most important tool to control T2DM (14). By inhibiting this enzyme, the rate of absorption of sugars will be slowed down, thereby maintaining homeostatic blood glucose levels due to the inhibited starch digestion [15].

Acarbose has been proven to be an α-amylase inhibitor. However, it has been associated with several side effects, of which bloating, abdominal discomfort, diarrhoea and flatulence have been reported as the specific adverse effects experienced by the patients using the α-amylase inhibitors [8, 16, 17]. Hence a need to look for alternatives, and plants used in traditional medicine as new medicinal compounds [18].

Many plants use alpha amylase inhibitors (AAIs) as a protective mechanism from insects by altering the digestive action of alpha amylases and proteinases in their gut and inhibit their normal feeding behaviour. Thus, AAIs have potential roles in controlling blood sugar levels, and plants are their good source [19, 20]. The phytochemicals found in different plants provide health benefits to mankind. They have antioxidant, anti-inflammatory, anti-cancer and anti-bacterial properties, anti-diarrheal, analgesic, and wound healing activity [21, 22].

Piliostigma thonningii is a leguminous plant belonging to the sub-family of Caesalpiniaeae in the legume family, **Leguminosae/Fabaceae**. It is also known as “Camel’s foot”, “Monkey bread”, “wild bauhinia”. Commonly known as “Chitimbe” in Malawi, the tree is perennial in nature and its petals are white to pinkish coloured, produced between November and April. It grows to a height of 8 metres with branches. It has large bi-lobed simple leaves without thorns or spikes [23, 24]. Its edible and chewable leaves are believed to relieve thirst. It is used for the treatment of typhoid fever, ulcers, wounds, heart pain, arthritis, malaria, pyrexia, leprosy, sore throat, diarrhoea, toothache, gingivitis, cough, and bronchitis. Its roots and twigs are used in the treatment of dysentery, fever, wound infections, cough, and skin diseases. *P. thonningii* has also been reported to possess antilipidemic, antibacterial, antihelminthic, analgesic, antipyretic, antioxidant, anti-inflammatory, and antidiabetic activities, and being an anti-snake [23, 24].

Annona senegalensis is commonly known as African custard-apple, wild custard apple, and wild soursop, and in Malawi, commonly known as “Mpoza”. A species of flowering plant in the custard apple family, **Annonaceae**, its specific epithet, senegalensis, translates to mean “of Senegal,” where it was collected. At an early stage, *A. senegalensis* fruits look dark green, and yellow when ripe and finally turn orange during the later stage of life. The edible white pulp of the ripe fruit has a pleasant, pineapple-like aroma with the flavour of apricots. Its leaves, roots and root barks have been used on different ailments [1, 25, 26]. It is used as food, medicine, and a range of commodities for the local people. The shrub is widely found in semi-arid to sub-humid all over the parts of Africa, growing up to 7 metres, but it is not resilient in nature. It is cultivated for its leaves, fruits, flowers, bark, and stem for medicinal purposes. The species occurs along riverbanks, fallow land, and swamp forests, and at coasts. It commonly grows as a single plant among the savannah woodlands. It has a curved inner whorl around the stamens and ovary and with several stamens [25, 27]. *P. thonningii* and *A. senegalensis* have individually been locally used as potential anti-diabetic agents [23, 25]. Little is known however about their mechanism, and their combined potential effects on the activity of alpha amylase have not been researched.

Methods

Materials and reagents

In the current study, all reagents were of analytical grade procured from Sigma Aldrich (Germany).

Plant Collection and Extracts Preparation

In this study, the plants were obtained from Malamulo community, Thyolo district, Malawi, and the voucher specimens were taxonomically identified and authenticated by a botanist at the National Herbarium and Botanical Gardens of Malawi in Zomba. Fresh plant parts were thoroughly cleaned under running water to remove any contaminants and soil debris, rinsed three times under distilled water, and air-dried in the shade for three weeks to conserve light sensitive phytochemicals [28]. The leaves were then coarsely crushed into powder using a mortar and pestle, and using a kitchen sieve, fine powder was obtained, which was stored in separate, labelled airtight containers. For extraction and assay, 30 g of each plants’ powder was suspended in 300 ml of distilled water and left for 24 hours with three-hour interval shaking or swirling. The extract was then filtered using a clean cloth, followed by percolation with slight modification [21].
Phytochemical Screening

The plant extracts were qualitatively screened for the presence of Flavonoids, Saponins, Tannins, Terpenoids, Phenolics, Alkaloids, and Quinones using the crude and reconstituted extracts according to standard methods described by Chelladurai & Chinnachamy, and Kazeem, et al., with slight modifications [29, 30].

Flavonoids were screened by adding 3 to 5 drops of 20% sodium hydroxide (NaOH) to 1 ml of crude aqueous extract. The formation of intense yellow colour was observed. Disappearance of the yellow colour after adding a few drops of 32% hydrochloric acid (HCl) to the mixture, indicated the presence of flavonoids.

Saponins were screened by dispensing 0.5 g of each plant powder in 10 ml of distilled water and boiled in a water bath for 5 minutes, and then filtered. 5 ml of the filtrate was then added with 2.5 ml of distilled water and shaken vigorously. For the reconstituted extracts, 5 ml extract was mixed with 2.5 ml of distilled water and shaken vigorously. Formation of persistent froth was observed in both. Terpenoids were screened by adding 1 ml of aqueous extract into 2 ml of chloroform, followed by gradual addition of 3 ml of 1% sulphuric acid. Red-brown colour was formed. However, the reconstituted extracts showed no red colour.

Phenolics were screened by adding 1 ml of the plant extract into 2 ml of distilled water followed by few drops of 20% NaOH. Blue-green colour was formed. Alkaloids were screened by addition of 5 ml of 32% HCl to 1 ml of the plant extract. The mixture was then warmed in a water bath for 5 minutes. A red precipitate was formed.

Tannins were screened by dispensing 0.25 g of the powder into 10 ml of distilled water and boiled in a water bath for 5 minutes and filtered. A few drops of acetic acid were added to the filtrate. For the reconstituted extracts, 5 ml extract was boiled in a water bath for 5 minutes followed by the addition of a few drops of acetic acid. No red precipitate was formed.

Quinones were screened by addition of 1 ml of aqueous extract gradually to 1 ml of concentrated sulphuric acid. Red colour was formed to indicate their presence.

Alpha amylase activity assay

Alpha-amylase activity was determined following the standard procedure proposed by Simão, et al., with slight modifications [31]. The tube containing 100 μl substrate solution (1% starch, buffered in 10 mM phosphate buffer containing 2.7 mM potassium chloride and 13.7 mM sodium chloride) was pre-incubated in a water bath for 20 minutes at 37°C. Then, 500 μl of 2.0 U/ml α-amylase enzyme was added to the substrate, followed by 600 μl of 10 mM phosphate buffer. The mixture was incubated for 15 minutes. Addition of 200 μl of 3.5 M Dinitrosalicylic acid (DNSA) stopped the reaction. Blanking was done by using the mixture of 200 μl of 1% starch, 500 μl phosphate buffer & 200 μl DNSA.

The product of the reaction was measured spectrophotometrically at 540 nm. The equation used to calculate the enzyme activity is outlined below:

\[
\text{Enzyme activity} = \frac{(\Delta \text{Abs} \times V')}{(\epsilon \times t \times V)}
\]

Where: \(\Delta \text{Abs}\) is the mean change in absorbance; \(V'\) is the total volume of the generated solution (1,400 μl); \(\epsilon\) is molar extinction coefficient of starch (20.416); \(t\) is the time taken to read absorbance which is 1 sec; and \(V\) is the volume of enzyme used in the procedure (500 μl).

Quality Control

\(A. \text{senegalesis}\) and \(P. \text{thonningii}\) were identified and authenticated by the National Herbarium and Botanical Gardens of Malawi. All assays were carried out in triplicates, an average absorbance was calculated and used for all enzyme activities and inhibition studies. Control assays were included, an assay blank and inhibition assay blank were used. A well-known alpha amylase inhibitor...
(100 μg/ml acarbose) was used as a standard for the alpha amylase inhibitory studies. Negative control (blank: 0% AAI activity) was prepared containing only the assay mixture without extract. The inhibitory activities were compared to the positive control, acarbose, using Stata statistical software which showed a significant difference at 95% confidence interval.

Results

Phytochemical Screening

The qualitative phytochemical screening tests showed the presence and absence of different compounds as shown by colour change as per the procedures. Tables 1 and 2 below show the phytochemicals found before and after evaporation procedures respectively.

Table 1: Phytochemical composition before evaporation

<table>
<thead>
<tr>
<th>Plant</th>
<th>Flavonoids</th>
<th>Saponins</th>
<th>Terpenoids</th>
<th>Phenolics</th>
<th>Alkaloids</th>
<th>Tannins</th>
<th>Quinones</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. senegalensis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>P. thonningii</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

KEY: (+) means presence and (-) means absence

Table 2: Phytochemical composition after evaporation

<table>
<thead>
<tr>
<th>Plant</th>
<th>Flavonoids</th>
<th>Saponins</th>
<th>Terpenoids</th>
<th>Phenolics</th>
<th>Alkaloids</th>
<th>Tannins</th>
<th>Quinones</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. senegalensis</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>P. thonningii</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

KEY: (+) means presence and (-) means absence

Yield extraction

The extracts yielded from 30 g leaf powder after evaporating the liquid from the aqueous extract were weighed and their yield were determined to be as follows:

Percentage yield = (Mass of the extract / Mass of the plant used for extraction) x 100

Extract percentage yield for

A. senegalensis = (1.3 g / 30 g) x 100% = 4.33%

Extract percentage yield for

P. thonningii = (1.8 g / 30 g) x 100% = 6%

Interaction studies

The potential of *A. senegalensis* and *P. thonningii* to inhibit alpha amylase enzymes were calculated from their respective mean absorbance. Table 3 below shows that *A. senegalensis* inhibitory activity on alpha amylase increased with increase in incubation time as follows: 32%, 34% and 40% at 15, 30 and 45 minutes respectively as compared to *P. thonningii* which inhibited at 25%, 27% and 37% at 15, 30 and 45 minutes respectively. The combined inhibitory activity of *A. senegalensis* and *P. thonningii* on alpha amylase showed to be 28%, 37% and 62% at 15, 30 and 45 minutes respectively. A summary is presented in table 3 with graphical presentation in figures 1 and 2 respectively.

The mean differences of absorbance and the inhibitory activity as compared to the positive control are generally significant, at an average time, as shown by the calculated p-values which were less than 0.05 at 95% confidence interval as summarised in table 4 of statistical analysis.
Table 3: Inhibitory activity of 10 mg/ml plant extract on alpha amylase activity

<table>
<thead>
<tr>
<th>Plant</th>
<th>Incubation Time (Minutes)</th>
<th>Mean Absorbance</th>
<th>Enzyme Activity (U/ml)</th>
<th>Inhibitory Activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzyme without inhibitor</td>
<td>15</td>
<td>0.679</td>
<td>0.053</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.696</td>
<td>0.055</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>0.750</td>
<td>0.059</td>
<td>0</td>
</tr>
<tr>
<td>100 µg/ml Acarbose (Pos control)</td>
<td>15</td>
<td>0.266</td>
<td>0.021</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.211</td>
<td>0.017</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>0.200</td>
<td>0.016</td>
<td>71</td>
</tr>
<tr>
<td>A. senegalensis</td>
<td>15</td>
<td>0.461</td>
<td>0.036</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.449</td>
<td>0.035</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>0.407</td>
<td>0.032</td>
<td>40</td>
</tr>
<tr>
<td>P. thonningii</td>
<td>15</td>
<td>0.508</td>
<td>0.040</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.495</td>
<td>0.039</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>0.431</td>
<td>0.034</td>
<td>37</td>
</tr>
<tr>
<td>Combined (Annona & Piliostigma)</td>
<td>15</td>
<td>0.488</td>
<td>0.038</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.425</td>
<td>0.033</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>0.261</td>
<td>0.020</td>
<td>62</td>
</tr>
</tbody>
</table>

Table 4: The differences in mean absorbance between the positive control and the test sample, and the inhibitory activity between the positive control and the test samples and their t-values and p-values at 95% confidence interval

<table>
<thead>
<tr>
<th>Test Sample</th>
<th>In relation to mean ABS</th>
<th>In relation to mean 1%</th>
<th>Mean Inhibition difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t-value</td>
<td>p-value</td>
<td>t-value</td>
</tr>
<tr>
<td>A. senegalensis</td>
<td>-8.2310</td>
<td>0.0006</td>
<td>8.1460</td>
</tr>
<tr>
<td>P. thonningii</td>
<td>-8.0968</td>
<td>0.0006</td>
<td>7.7655</td>
</tr>
<tr>
<td>Combined</td>
<td>-2.3402</td>
<td>0.0397</td>
<td>2.3228</td>
</tr>
</tbody>
</table>

Figure 1: A linear graph of A. senegalensis, P. thonningii and the combined extracts’ inhibitory activity on alpha amylase enzyme with reference to the positive control, acarbose against incubation time.
Discussion
The presence of phytochemicals in *Annona senegalensis* and *Piliostigma thonningii* leaf extracts is thought to be responsible for the inhibitory activity of their extracts on alpha amylase enzyme, and also for their potency in the management of diabetes mellitus. The absence of terpenoids in the extracts after reconstitution of the yielded extracts, may be due to heat exposure, as some phytochemicals are heat sensitive [28].

The extract-yield showed to be higher in *P. thonningii* than *A. senegalensis*. Pharmaceutical industries consider the yield of extraction as a guide in drug manufacturing. Plants of higher yield are preferred than those of lower yield, however, lower yield plants are known to be richly potent [10]. *A. senegalensis*, therefore, may be considered to be more potent than *P. thonningii*, an observation occurring in the differences in effects on alpha amylase enzyme activity.

This study showed a significant inhibitory activity of *A. senegalensis* and *P. thonningii* on alpha amylase, individually, and is in agreement with Ibrahim, et al. and Aba & Asuzu, respectively [33, 34]. Such studies showed that *A. senegalensis* leaf extracts and *P. thonningii* bark extracts inhibited α-amylase due to the presence of their associated phytochemicals. The inhibitory activity of the combined *A. senegalensis* and *P. thonningii* leaf extracts drew close to that of positive control acarbose.

Conclusions and recommendations
This study has revealed the increased strength to inhibit alpha amylase enzymes by a combination of *A. senegalensis* and *P. thonningii* than their individual potential effect in slowing down carbohydrate metabolism, thereby reduction and prevention of postprandial hyperglycaemia. This therefore, makes it scientifically evident of these two plants’ robust combined effect in the management of diabetes mellitus. We therefore recommend for a need to determine the concentration of the plants capable of inhibiting the enzyme by half (IC50).

List of abbreviations
AAIs Alpha amylase inhibitors
DM Diabetes Mellitus
DNSA Dinitrosalicylic acid
HCl Hydrochloric acid
IC50 Concentration capable of inhibiting 50% enzyme activity
NaOH Sodium hydroxide
NHSRC National Health Sciences Research Committee
T1DM Type 1 Diabetes Mellitus
T2DM Type 2 Diabetes Mellitus
WHO World Health Organisation

Declarations

Ethics approval and consent to conduct the study
This research was approved by the National Health Sciences Research Committee (NHSRC) and Malawi Adventist University Research Committee. *A. senegalensis* and *P. thonningii* were identified and authenticated by a Botanist at the National Herbarium and Botanical Gardens of Malawi. All procedures were conducted in accordance to the national guidelines. The deposition numbers were not assigned.

Consent for publication
Not applicable.
Availability of data and materials
All data generated or analysed during this study are included in this published article.

Competing interests
The authors declare no conflict of interest.

Funding
The authors received no funding from any other body, instead the project was self-funded.

Authors’ contributions
AMN, MM, ES and EB: data analysis, write up and discussion of results
CK and PC: literature review and write up
JM and WT: data curation, editing and discussion of results
RC, MK, BK, JK and LL: proofreading and editing

Acknowledgements
The authors would like to acknowledge the NHSRC for authorising the conduction of the project and the National Herbarium and Botanical Gardens of Malawi for the identification and authentication of the plants.

References