Establishing Pertinence between Sorting Algorithms Prevailing in $n \log(n)$ time

Manan Roy Choudhury, Anurag Dutta

Undergraduate, Computer Science and Engineering, Government College of Engineering and Textile Technology, Serampore-712201, India

*Corresponding author
Anurag Dutta, Undergraduate, Computer Science and Engineering, Government College of Engineering and Textile Technology, Serampore-712201, India

Submitted: 28 Jul 2022; Accepted: 02 Aug 2022; Published: 16 Aug 2022

Abstract

Data is the new fuel. With the expansion of global technology, the increasing living standards, and modernization, data values have caught great height. Nowadays, nearly all top MNCs feed on data. Now, storing all this data is a prime concern for all of them, which is relieved by the Data Structures, the systematic way of storing data. Now, once these data are stored and charged in secure vaults, it’s time to utilize them most efficiently. Now, many operations need to be performed on these massive chunks of data, like searching, sorting, inserting, deleting, merging, and so more. In this paper, we would be comparing all the major sorting algorithms, that have prevailed to date. Further, work has been done and inequality in the dimension of time between the three Sorting algorithms, operational in $n \log(n)$ time, Merge, Quick, and Heap, that have been discussed in the paper have been proposed.

Keywords: Sorting, Heap Sort, Merge Sort, Quick Sort, Array, Asymptotic Notation, Time Complexity.

Introduction

Sorting is one of the most important but basic operations that may be enacted on any data structure. It involves arranging the data in monotonic order of its magnitude [1]. Sorting algorithms have got a lot to flaunt, it’s the well-balanced and cunning nature with spikes of intelligence, its efficiency, and not only that, even some searching algorithms like binary search, interpolation search need sorting algorithms to drop them in action. The orders most often used are numerical order and lexicographic order, and either upward or downward [2,3,4].

Any sorting algorithm’s output must meet two formal requirements:

• The output is in either increasing or decreasing order (each element is the same size as the one before it, in the order specified).
• The output is a monotonic arrangement of the initial array (a reordering of the input while keeping all of the original elements).
• The input data is stored in a data structure that allows random access rather than sequential access for maximum efficiency.

The sorting challenge have garnered a large deal of research since the dawn of computing, probably due to the difficulty of addressing it effectively despite its basic, common expression. Betty Holberton, who collaborated on Enigma machine and UNIVAC, was one of the early creators of sorting algorithms about 1951 [5]. Bubble sort has been studied since 1956. Asymptotically optimum algorithms have been recognized since the mid-twentieth century; new algorithms are continually being developed, with the extensively used Timsort dated from 2002 and the library sort from 2006.

The necessity of $\Omega(n \log n)$ comparisons in comparison sorting algorithms is fundamental [6]. Algorithms that aren’t focused on comparisons, such as counting sort, often perform better. The abundance of methodologies for the conundrum offers a comprehensive guide to a diverse array of fundamental heuristic notions, such as big O notation, divide and conquer algorithms, data structures such as heaps and binary trees, randomized algorithms, best, worst, and average-case analysis, time-space tradeoffs, and upper and lower bounds [7,8].

Sorting algorithms are classed as follows:

• Complexity of computation: In the perspective of list size, the best, worst, and average case scenarios exist. The good behavior of typical serial sorting algorithms is $O(n \log n)$, while the bad behaviour is $O(n^2)$. The ideal behaviour for a serial sort is $O(n)$, although in most cases, this is not attainable. The best parallel sorting algorithm is $O(\log n)$.
• Memory consumption: Some sorting algorithms, in particular, are “in-place.” Beyond the entries being sorted, an in-place sort requires only $O(1)$ memory; nonetheless, $O(\log n)$...
n) supplementary cognition is frequently considered “in-place” [9].

• Recursive in nature: Some algorithms are recursive or non-recursive, where recursion means that the function will call itself indefinitely such that to attain its final value.

• Cohesion: stable sorting algorithms maintain records with equal attributes in just the same order. Whether they are a comparison category or not. A comparison sort compares two components with a comparison operator to analyze the data.

• Generalized Approach: Insertion, exchange, selection, merging, and other general methods Bubble sort and quick-sort are examples of exchange sorts. Cycle sort and heap sort are two types of selection sorts. The algorithm’s serial or parallel nature. Our paper primarily focuses almost entirely on serial algorithms and assumes that they are used in serial mode.

• Adaptive Nature: Whether the array is pre-sorted, still the source has an impact on the run time. Adaptive algorithms are those that incorporate everything into consideration.

• Continuous: An interactive algorithm, such as Insertion Sort, can semblance a continuous transmission of bits [10].

Merge sort is a broad sense, resemblance sorting algorithm developed in computer science. The plurality of implementations build a sustainable sort, essentially implies that perhaps the order of identical bits in the source and load is the same. John von Neumann devised merge sort in 1945 as a divide-and-conquer algorithm. Goldstine and von Neumann published a study in 1948 that included a comprehensive description and assessment of underside merge sort [11,12].

Heapsort is a resemblance sorting method in computer science. Heapsort is similar to selection sort in that it separates its input into sorted and an unsorted region, then progressively decreases the unsorted part by taking the pivot element from it and putting it into the sorted portion. Unlike selection sort, heap sort does not waste time scanning the unsorted region in linear time; instead, heap sort keeps the unsorted region in a heap data structure to identify the largest element in each step more rapidly.

Quick sort is a sorting algorithm that works in-place. It was developed by British computer scientist Tony Hoare in 1959 and publicized in 1961, but it is still a prominent sorting algorithm. It can be marginally quicker than merge sort and 2 to 3 times quicker than heap sort when properly implemented. Quick Sort follows divide and conquer technique. It works by selecting a ‘pivot’ component from the arrays and partitioning the remainder into two sub-arrays based on whether they are below than or larger than the pivot. As a consequence, it’s also known as partition-exchange sort [13]. The sub-arrays are then recursively sorted. This could be done in place, with only a small proportion of total RAM required for categorizing.

Although this is slightly slower in practice on most processors than a well-implemented quick sort, it has a better worst-case O(n log n) latency.

The merit of the paper covers the proposition of a new inequation relating to the time elapsed by Sorting algorithms operational in n log(n) time - Merge, Quick, and Heap Sort. To enact more on our inequation, both the Average and the Worst-Case Scenario have been considered.

Merge Sort
Merge sort is a very good sorting technique as it follows the divide and conquer algorithm [14]. Let we have been given a set of unsorted elements in a list (data structure with language independence), such that

\[L(n) = \{a_0, a_1, a_2, ..., a_n\} \]

Under this algorithm the list is divided into equally sized sub-parts and merged step by step in a recursive manner to bring it to a sorted format [8]. It is often referred to as the best sorting technique when we are required to sort a linked list.

The Pseudocode for this algorithm will be

```plaintext
function merge_sort (list_of_elements, low_index, mid_index, high_index)
    size_vault1 = mid_index - low_index + 1
    size_vault2 = high_index - (mid_index + 1) + 1
    vault1[size_vault1] = list_of_elements[low_index + i]
    vault2[size_vault2] = list_of_elements[mid_index + 1 + i]
    for i = 0 to i = size_vault1 - 1
        vault1[i] = list_of_elements[low_index + i]
    end for
    for i = 0 to i = size_vault2 - 1
        vault2[i] = list_of_elements[mid_index + 1 + i];
    end for
    for i, j = 0, 0
        k ← low_index
        while i < size_vault1 and j < size_vault2
            if vault1[i] > vault2[j]
                list_of_elements[k] = vault2[j]
                increment j, k
            else
                list_of_elements[k] = vault1[i];
                increment i, k
            end if
            while j < size_vault2
                list_of_elements[k] = vault2[j];
                increment j, k
            end while
            while i < size_vault1
                list_of_elements[k] = vault1[i];
                increment i, k
            end while
        end function
```

Volume 3 | Issue 2 | 221
mid_index ← low_index + (high_index - low_index)
merge_sort(list_of_elements, low_index, mid_index)
merge_sort(list_of_elements, mid_index + 1, high_index)
merge (list_of_elements, low_index, mid_index, high_index) end if
end

The Complexity in the dimensions of time for this Sorting Algorithm for worst cases will be \(O(n \log n) \).
The Complexity in the dimensions of time for this Sorting Algorithm for average cases will be \(O(n \log n) \).
The Complexity in the dimensions of time for this Sorting Algorithm for best cases will be \(O(n \log n) \).

where \(\phi(.) \) is the appropriate Asymptotic Notation.

Quick Sort

Quicksort is a very good sorting technique as it follows the divide and conquer algorithm [15].

Let we have been given a set of unsorted elements in a list (data structure with language independence), such that

\[
L(n) = \{a_0, a_1, a_2, \ldots, a_{n-1}\}
\]

Under this algorithm, we choose an element as a pivot and we create a partition of array revolving around that pivot. By repeating this technique for each partition, we get our array sorted depending on the position of the pivot we can apply quick sort in different ways

- Taking the first or last element as a pivot
- Taking median element as pivot.

The pseudocode for this algorithm will be

```plaintext
function partition (left, right, pivot)
leftPointer ← left
rightPointer ← right - 1
while True do
    while list_of_elements[++leftPointer] < pivot do
        end while
    while rightPointer > 0 and list_of_elements[--rightPointer] > pivot do
        end while
    if leftPointer ≥ rightPointer
        break
    else
        swap(leftPointer, rightPointer)
        end if
    end while
    swap(leftPointer, right)
    return leftPointer
end
function quicksort(left, right)
if right ≤ left
    return
else
    pivot ← list_of_elements [right]
    part ← partition(left, right, pivot)
quicksort(left, part - 1)
quicksort(part + 1, right)
end if
end
```

The Complexity in the dimensions of time for this Sorting Algorithm for worst cases will be \(O(n^2) \).
The Complexity in the dimensions of time for this Sorting Algorithm for average cases will be \(O(n \log n) \).
The Complexity in the dimensions of time for this Sorting Algorithm for best cases will be \(O(n \log n) \).

where \(\phi(.) \) is the appropriate Asymptotic Notation.

Heap Sort

Heap sort is a comparison-based sorting technique based on Binary Heap data structure.

Let we have been given a set of unsorted elements in a list (data structure with language independence), such that

\[
L(n) = \{a_0, a_1, a_2, \ldots, a_{n-1}\}
\]

Heapsort can be thought of as an improved selection sort [16]. Like selection sort, Heapsort divides its input into a sorted and an unsorted region, and it iteratively shrinks the unsorted region by extracting the largest element from it and inserting it into the sorted region.

The pseudocode for this algorithm will be

```plaintext
function heapify
max ← i
left_child ← 2i + 1
right_child ← 2i + 2
if leftchild ≤ n and A[i] < A[leftchild]
    max ← leftchild
else
    max ← i
end if
if right_child ≤ n and list_of_elements[-max] > list_of_elements[right_child]
    max ← right_child
end if
if max not equal i
    swap(list_of_elements[i], list_of_elements[max])
    heapify(list_of_elements, n, max)
end if
end
function Heapsort
n ← length(list_of_elements)
for i from n/2 to 1
    Heapsify(list_of_elements, n, i)
end for
for i from n to 2
    exchange list_of_elements [1] with list_of_elements [i]
end for
```

```
list_of_elements.heapsize = list_of_elements.heapsize - 1
Heapify(list_of_elements, i, 0)
end

The Complexity in the dimensions of time for this Sorting Algorithm for worst cases will be $\varphi(n \log_2 n)$.
The Complexity in the dimensions of time for this Sorting Algorithm for average cases will be $\varphi(n \log_2 n)$.
The Complexity in the dimensions of time for this Sorting Algorithm for best cases will be $\varphi(n \log_2 n)$.

where $\varphi(.)$ is the appropriate Asymptotic Notation.

**Worst Case Scenario**
Every program, perhaps once in it’s run time, faces the difficulty to go the hurdles and difficulties which stick to their maximum at that point of time, such a case is termed as Worst Case. We have plotted pie chart for 10 sets of data, with 10 trials for each set, involving 3 types of Merge, Quick, and Heap Sort taking the time taken in terms of $10^9$ seconds or nanoseconds by them as a whole of 100%, and the result was quite promising. The data set used was arranged in descending order in terms of it’s magnitude for the case for Merge and Heap Sort, and in ascending order for Quick Sort, and the algorithms we designed arranged them in ascending order of their magnitude.

**Table 1: Time taken in nano - seconds (averaged for 10 tests) for MQH Sort.**

<table>
<thead>
<tr>
<th>Number of Elements</th>
<th>Merge Sort</th>
<th>Quick Sort</th>
<th>Heap Sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>98400</td>
<td>784100</td>
<td>395400</td>
</tr>
<tr>
<td>10000</td>
<td>199800</td>
<td>3063000</td>
<td>2367000</td>
</tr>
<tr>
<td>100000</td>
<td>272000</td>
<td>10454300</td>
<td>299100</td>
</tr>
<tr>
<td>1000000</td>
<td>0</td>
<td>18120400</td>
<td>544000</td>
</tr>
<tr>
<td>10000000</td>
<td>401800</td>
<td>28290500</td>
<td>796700</td>
</tr>
<tr>
<td>100000000</td>
<td>598900</td>
<td>35658800</td>
<td>808400</td>
</tr>
<tr>
<td>1000000000</td>
<td>296800</td>
<td>50567100</td>
<td>799400</td>
</tr>
<tr>
<td>10000000000</td>
<td>799000</td>
<td>70179400</td>
<td>1162000</td>
</tr>
<tr>
<td>100000000000</td>
<td>598800</td>
<td>88498900</td>
<td>1196100</td>
</tr>
<tr>
<td>1000000000000</td>
<td>697100</td>
<td>108973400</td>
<td>878700</td>
</tr>
</tbody>
</table>

**Figure 1:** For a Data set of 1000 entries

**Figure 2:** For a Data set of 10000 entries

**Figure 3:** For a Data set of 100000 entries

**Figure 4:** For a Data set of 1000000 entries
Now, we will undertake a detailed statistical assay on the exact execution time of the three sorting algorithms i.e., Merge Sort, Heap Sort and Quick Sort. Taking into consideration the execution time of these three sorting algorithms, the computer architecture on which we ran these algorithms becomes one of the main factors to consider. To be precise we have used Harvard architecture to carry out our tests runs of these algorithms. The precise details of the architecture we used is given below:

- **Device Specifications**
  - Processor: Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz, 1.50 GHz Installed
  - RAM: 16.0 GB (15.8 GB usable)
  - System type: 64-bit operating system, x64-based processor

- **Windows Specification**
  - Version: 21H2
  - OS build: 22000.613
  - Experience: Windows Feature Experience Pack 1000.22000.613.0
  - The System is having a Harvard Architecture.

Now, we will analyse the execution time of Quick sort:

When one of the sublists returned by the partitioning procedure is of size n-1, the partition is the most imbalanced. This could happen if the pivot is the least or largest element in the list, or if all the items are equal in some implementations.
If this applies throughout every partition, subsequent recursive operation would process a listing that really is unit size smaller than the prior list. As a result, before we reach a list of size 1, we can make n-1 nested calls. The call tree is therefore a linear sequence of n-1 nested calls. So, the execution time turns out to be

$$\sum_{i=0}^{n} (n-i) + O(1) = \frac{n(n+1)}{2} + O(1).$$

For Merge sort, to find the middle of any subarray, we use a single-step using an one-step operation.

An $O(n)$ execution time of $O(n)$ will be required to integrate the subarrays created by partitioning the initial array of $n$ elements. As a result, the overall time for the Merge sort function will be $O(n \log n + 1)$

Binary heaps are predicated on recursive binary trees; the bottom level will have $n/2$ nodes, the second category will always have $n/4$ nodes, and so on. We cut the number of nodes in half whenever we advance a threshold.

When we add everything up, we get:

$$\sum_{i=0}^{n} (n-i) + O(1) = \frac{n(n+1)}{2} + O(1).$$

This can also be expressed as a summarization $\sum_{i \in \mathbb{N}} I \times \frac{n}{2^{i+1}}$

This summation turns out to be $1 - \left(\frac{1}{2}\right)^{\text{floor}(\log_{2} n)+1}$.

Now, our aim is to evacuate the element $a_{i}$ to its original location. To get back to its original location, we’ll have to look in as many areas as possible. Now, once it has been dumped in its original location, we will go on to the next element of and in order to evacuate it to its proper location, we must search at least n-1 locations, with the number of locations to be searched varying from $n-3, n-4, n-5, n-6,..., 1$ [17].

So, total time

$$T(n) = \log_{2} n + \log_{2} (n-1) + \log_{2} (n-2) + \cdots + \log_{2} 1$$

$$T(n) = \sum_{i=0}^{n-1} \log_{2} (n-1)$$

$$= \log_{2} \left(\prod_{i=0}^{n-1} (n-i)\right) = \log_{2} (n!)$$

If we consider the Stirling’s Approximation,

$$T(n)|_{min} = \log_{2} \left(\sqrt{2\pi n} \left(\frac{n}{e}\right)^{n} e^{\left(\frac{1}{12n+1}\right)}\right)$$

$$\Rightarrow T(n)|_{min} = \log_{2} \left(\sqrt{2\pi n} \left(n^{\frac{1}{2}}\right)\right) + \log_{2} \left(e^{\left(\frac{1}{12n+1}\right)}\right)$$

$$\Rightarrow T(n)|_{min} \approx \left(n + \frac{1}{2}\right) \log_{2} (n) + n \approx n \log_{2} (n)$$

Thus, the total execution time of Heap sort is

$$n \log_{2} (n) \left(1 - \left(\frac{1}{2}\right)^{\text{floor} \log_{2} n+1}\right).$$

**Figure 11:** Graphical representation of comparative analysis of run time of Merge, Quick and Heap sort.

Here, the blue curve represents the run time of Merge sort, the red curve represents the run time of Quick sort and the black curve represents the run time of Heap sort respectively.

**Conclusion**

From the study, we have conducted in this paper, we can conclude that, in each of trials, irrespective of Architecture and Specification of the computational device. It is clear from the figure 10 that the worst case run time taken by Heap sort to sort certain elements in a given array is less than the worst case run time taken by both Quick sort and Merge sort.

$$T(Q) \geq T(M) + T(H) \& T(M) < T(H)$$

$$\exists Q = \text{Quick Sort, } M = \text{Merge Sort, } H = \text{Heap Sort}$$

where,

$T(\xi)$ is the time taken in terms of nanoseconds by that specific sorting algorithm $\forall \xi \in \text{Comparison Sorting Techniques}$ and $90\% \leq \left(\frac{\delta E}{E}\right) \times 100 \leq 5\%$, $\epsilon$, being the tolerance limit.

This error / tolerance limit is due to the variation in processing speed and time due to various architectural aspects and physical aspects. Some of the aspects that may result in increasing the tolerance limit are:

- System Temperature ($\theta_t$): If $0 > \theta_t$ over heating of computation system occurs, that results in decrease of processing speed, and hence claims more time.

$$\frac{\delta E}{E} \propto \theta_t - \theta_0$$

where, $\theta_0$=Threshold Temperature

- **Network Stability:** This issue is more taken in account if the computation is done online. The instability in network may induce more time being claimed.

- **Power Stability:** If the machine is undergoing a sudden surge or...
A decline in power, the performance may be hindered, resulting in claim of more time.

The data sets that we have obtained in this study are generated by system working on Harvard Architecture, though the inequation developed is irrespective of the architecture.

References