Monoclonal Antibody Peer Review Journals
Monoclonal antibody drugs are cancer treatments that enlist natural immune system functions to fight cancer. These drugs may be used in combination with other cancer treatments. If you and your doctor are considering using a monoclonal antibody drug as part of your cancer treatment, find out what to expect from this therapy. Together you and your doctor can decide whether a monoclonal antibody treatment may be right for you. The immune system is composed of a complex team of players that detect and destroy disease-causing agents, such as bacteria and viruses. Similarly, this system may eliminate damaged or abnormal cells, such as cancer cells. One factor in the immune system is the work of antibodies. An antibody attaches itself to a specific molecule (antigen) on the surface of a problematic cell. When an antibody binds to the antigen, it serves as a flag to attract disease-fighting molecules or as a trigger that promotes cell destruction by other immune system processes. Cancer cells may outpace the immune system, avoid detection, or block immune system activity.
Monoclonal antibodies are laboratory-produced molecules engineered to serve as substitute antibodies that can restore, enhance or mimic the immune system's attack on cancer cells. They are designed to bind to antigens that are generally more numerous on the surface of cancer cells than healthy cells. Because of a monoclonal antibody's ability to connect with a cancer cell, the antibody can be engineered as a delivery vehicle for other treatments. When a monoclonal antibody is attached to a small radioactive particle, it transports the radiation treatment directly to cancer cells and may minimize the effect of radiation on healthy cells. This variation of standard radiation therapy for cancer is called radioimmunotherapy. The information can be published in our peer reviewed journal with impact factors and are calculated using citations not only from research articles but also review articles (which tend to receive more citations), editorials, letters, meeting abstracts, short communications, and case reports. The inclusion of these publications provides the opportunity for editors and publishers to manipulate the ratio used to calculate the impact factor and try to increase their number rapidly. Impact factor plays a major role for the particular journal. Journal with higher impact factor is considered to be more important than other ones. Monoclonal antibody drugs are cancer treatments that enlist natural immune system functions to fight cancer. These drugs may be used in combination with other cancer treatments. If you and your doctor are considering using a monoclonal antibody drug as part of your cancer treatment, find out what to expect from this therapy. Together you and your doctor can decide whether a monoclonal antibody treatment may be right for you. The immune system is composed of a complex team of players that detect and destroy disease-causing agents, such as bacteria and viruses. Similarly, this system may eliminate damaged or abnormal cells, such as cancer cells. One factor in the immune system is the work of antibodies. An antibody attaches itself to a specific molecule (antigen) on the surface of a problematic cell. When an antibody binds to the antigen, it serves as a flag to attract disease-fighting molecules or as a trigger that promotes cell destruction by other immune system processes. Cancer cells may outpace the immune system, avoid detection, or block immune system activity.
Monoclonal antibodies are laboratory-produced molecules engineered to serve as substitute antibodies that can restore, enhance or mimic the immune system's attack on cancer cells. They are designed to bind to antigens that are generally more numerous on the surface of cancer cells than healthy cells. Because of a monoclonal antibody's ability to connect with a cancer cell, the antibody can be engineered as a delivery vehicle for other treatments. When a monoclonal antibody is attached to a small radioactive particle, it transports the radiation treatment directly to cancer cells and may minimize the effect of radiation on healthy cells. This variation of standard radiation therapy for cancer is called radioimmunotherapy. The information can be published in our peer reviewed journal with impact factors and are calculated using citations not only from research articles but also review articles (which tend to receive more citations), editorials, letters, meeting abstracts, short communications, and case reports. The inclusion of these publications provides the opportunity for editors and publishers to manipulate the ratio used to calculate the impact factor and try to increase their number rapidly. Impact factor plays a major role for the particular journal. Journal with higher impact factor is considered to be more important than other ones.
Last Updated on: Nov 29, 2024