We are in the process of upgrading our site. Please kindly cooperate with us.
inner-banner-bg

Mathematical-modelling-high-impact-factor-journals

Bayesian statistics is a system for describing epistemological uncertainty using the mathematical language of probability. In the 'Bayesian paradigm,' degrees of belief in states of nature are specified; these are non-negative, and the total belief in all states of nature is fixed to be one. Bayesian statistics is a theory in the field of statistics based on the Bayesian interpretation of probability where probability expresses a degree of belief in an event. The degree of belief may be based on prior knowledge about the event, such as the results of previous experiments, or on personal beliefs about the event. This differs from a number of other interpretations of probability, such as the frequentist interpretation that views probability as the limit of the relative frequency of an event after many trials. Bayesian statistical methods use Bayes' theorem to compute and update probabilities after obtaining new data. Bayes' theorem describes the conditional probability of an event based on data as well as prior information or beliefs about the event or conditions related to the event For example, in Bayesian inference, Bayes' theorem can be used to estimate the parameters of a probability distribution or statistical model. Since Bayesian statistics treats probability as a degree of belief, Bayes' theorem can directly assign a probability distribution that quantifies the belief to the parameter or set of parameters. Bayesian statistics was named after Thomas Bayes, who formulated a specific case of Bayes' theorem in his paper published in 1763. In several papers spanning from the late 1700s to the early 1800s, Pierre-Simon Laplace developed the Bayesian interpretation of probability. Laplace used methods that would now be considered as Bayesian methods to solve a number of statistical problems. Many Bayesian methods were developed by later authors, but the term was not commonly used to describe such methods until the 1950s. During much of the 20th century, Bayesian methods were viewed unfavorably by many statisticians due to philosophical and practical considerations. Many Bayesian methods required much computation to complete, and most methods that were widely used during the century were based on the frequentist interpretation. However, with the advent of powerful computers and new algorithms like Markov chain Monte Carlo, Bayesian methods have seen increasing use within statistics in the 21st century. Bayesian Statistics continues to remain incomprehensible in the ignited minds of many analysts. Being amazed by the incredible power of machine learning, a lot of us have become unfaithful to statistics. Our focus has narrowed down to exploring machine learning. Isn’t it true? We fail to understand that machine learning is not the only way to solve real world problems. In several situations, it does not help us solve business problems, even though there is data involved in these problems. To say the least, knowledge of statistics will allow you to work on complex analytical problems, irrespective of the size of data.In 1770s, Thomas Bayes introduced ‘Bayes Theorem’. Even after centuries later, the importance of ‘Bayesian Statistics’ hasn’t faded away. In fact, today this topic is being taught in great depths in some of the world’s leading universities. With this idea, I’ve created this beginner’s guide on Bayesian Statistics. I’ve tried to explain the concepts in a simplistic manner with examples. Prior knowledge of basic probability & statistics is desirable. You should check out this course to get a comprehensive low down on statistics and probability. By the end of this article, you will have a concrete understanding of Bayesian Statistics and its associated concepts.

Last Updated on: Nov 26, 2024

Related Scientific Words in General Science