Lipoprotein-lipase-high-impact-factor-journals.php
LPL plays a pivotal role in lipids and the metabolism of lipoprotein. Major functions of LPL include the hydrolysis of TG-rich lipoproteins and release of non-esterified fatty acid (NEFA), which are taken up and used for metabolic energy in peripheral tissue such as muscle, or are re-esterified into TG and stored in adipose tissue. The balance between these competing effects could determine whether increased LPL activity will lead to a reduced rate of weight gain or to increased adiposity through increased rates of adipose tissue storage of TG. An imbalance of LPL activity may alter the partitions of plasma TG between muscle and adipose tissue, and thus influence insulin resistance and obesity High-impact journals are those considered to be highly influential in their respective fields.
The objective of this study was to establish a new lipoprotein lipase (LPL) and hepatic lipase (HL) activity assay method. Seventy normal volunteers were recruited. Lipase activities were assayed by measuring the increase in absorbance at 546 nm due to the quinoneine dye. Reaction mixture-1 (R-1) contained dioleoylglycerol solubilized with lauryldimethylaminobetaine, monoacylglycerol-specific lipase, glycerolkinase, glycerol-3-phosphate oxidase, peroxidase, ascorbic acid oxidase, and apolipoprotein C-II (apoC-II). R-2 contained Tris-HCl (pH 8.7) and 4-aminoantipyrine. Automated assay of lipase activities was performed with an automatic clinical analyzer. In the assay for HL + LPL activity, 160 μl R-1 was incubated at 37°C with 2 μl of sample for 5 min, and 80 μl R-2 was added. HL activities were measured under the same conditions without apoC-II. HL and LPL activities were also measured by the conventional isotope method and for HL mass by ELISA. Lipase activity detected in a 1.6 M NaCl-eluted fraction from a heparin-Sepharose column was enhanced by adding purified apoC-II in a dose-dependent manner, whereas that eluted by 0.8 M NaCl was not. Postheparin plasma-LPL and HL activities measured in the present automated method had high correlations with those measured by conventional activity and mass methods.
Last Updated on: Nov 30, 2024