We are in the process of upgrading our site. Please kindly cooperate with us.
inner-banner-bg

Gene Flow Scholarly Peer-review Journal

In population genetics, gene flow (also known as gene migration or allele flow) is the transfer of genetic variation from one population to another. If the rate of gene flow is high enough, then two populations are considered to have equivalent allele frequencies and therefore effectively be a single population. It has been shown that it takes only "One migrant per generation" to prevent populations from diverging due to drift.Gene flow is an important mechanism for transferring genetic diversity among populations. Migrants change the distribution of genetic diversity within the populations, by modifying the allele frequencies (the proportion of members carrying a particular variant of a gene). High rates of gene flow can reduce the genetic differentiation between the two groups, increasing homogeneity. For this reason, gene flow has been thought to constrain speciation by combining the gene pools of the groups, thus preventing the development of differences in genetic variation that would have led to full speciation.] In some cases migration may also result in the addition of novel genetic variants to the gene pool of a species or population.There are a number of factors that affect the rate of gene flow between different populations. Gene flow is expected to be lower in species that have low dispersal or mobility, that occur in fragmented habitats, where there is long distances between populations, and when there are small population sizes.[ Mobility plays an important role in the migration rate, as highly mobile individuals tend to have greater migratory prospects. Although animals are thought to be more mobile than plants, pollen and seeds may be carried great distances by animals or wind. When gene flow is impeded, there can be an increase in inbreeding, measured by the inbreeding coefficient (F) within a population. For example, many island populations have low rates of gene flow due to geographic isolation and small population sizes. The Black Footed Rock Wallaby has several inbred populations that live on various islands off the coast of Australia. The population is so strongly isolated that lack of gene flow has led to high rates of inbreeding.

Last Updated on: Jul 03, 2024

Related Scientific Words in Medical Sciences