Bone Cells
Bone consists of four types of cells: osteoblasts, osteoclasts, osteocytes, and osteoprogenitor (or osteogenic) cells. Each cell type has a unique function and is found in different locations in bones. The osteoblast, the bone cell responsible for forming new bone, is found in the growing portions of bone, including the periosteum and endosteum. Osteoblasts, which do not divide, synthesize and secrete the collagen matrix and calcium salts. As the secreted matrix surrounding the osteoblast calcifies, the osteoblast becomes trapped within it. As a result, it changes in structure, becoming an osteocyte, the primary cell of mature bone and the most common type of bone cell. Each osteocyte is located in a space (lacuna) surrounded by bone tissue. Osteocytes maintain the mineral concentration of the matrix via the secretion of enzymes. As is the case with osteoblasts, osteocytes lack mitotic activity. They are able to communicate with each other and receive nutrients via long cytoplasmic processes that extend through canaliculi (singular = canaliculus), channels within the bone matrix. Immature osteogenic cells are found in the deep layers of the periosteum and the marrow. When they differentiate, they develop into osteoblasts. The dynamic nature of bone means that new tissue is constantly formed, while old, injured, or unnecessary bone is dissolved for repair or for calcium release. The cell responsible for bone resorption, or breakdown, is the osteoclast, which is found on bone surfaces, is multinucleated, and originates from monocytes and macrophages (two types of white blood cells) rather than from osteogenic cells. Osteoclasts continually break down old bone while osteoblasts continually form new bone. The ongoing balance between osteoblasts and osteoclasts is responsible for the constant, but subtle, reshaping of bone.
Last Updated on: Nov 28, 2024