We are in the process of upgrading our site. Please kindly cooperate with us.
inner-banner-bg

Bioinformatics-open-access-articles

A number of factors contribute to the confusion between the terms, including the fact that one of the top journals in computational biology is entitled “Bioinformatics” and that in German for example, computer science is referred to as “informatik” and computational biology is referred to as “bioinformatik.”  Some also feel that bioinformatics emphasizes the information flow in biology.  In any case, the two fields are closely linked, since “bioinformatics” systems typically are needed to provide data to “computational biology” systems that create models, and the results of those models are often returned for storage in “bioinformatics” databases.

 

Computational biology is a very broad discipline, in that it seeks to build models for diverse types of experimental data (e.g., concentrations, sequences, images, etc.) and biological systems (e.g., molecules, cells, tissues, organs, etc.), and that it uses methods from a wide range of mathematical and computational fields (e.g., complexity theory, algorithmics, machine learning, robotics, etc.).

Computational biology, which includes many aspects of bioinformatics, is the science of using biological data to develop algorithms or models in order to understand biological systems and relationships. Until recently, biologists did not have access to very large amounts of data. This data has now become commonplace, particularly in molecular biology and genomics. Researchers were able to develop analytical methods for interpreting biological information, but were unable to share them quickly among colleagues. Bioinformatics began to develop in the early 1970s. It was considered the science of analyzing informatics processes of various biological  systems. At this time, research in artificial intelligence was using network models of the human brain in order to generate new algorithms. This use of biological data to develop other fields pushed biological researchers to revisit the idea of using computers to evaluate and compare large data sets. By 1982, information was being shared among researchers through the use of punch cards. The amount of data being shared began to grow exponentially by the end of the 1980s. This required the development of new computational methods in order to quickly analyse and interpret relevant information. Since the late 1990s, computational biology has become an important part of developing emerging technologies for the field of biology. The terms computational biology and evolutionary computation have a similar name, but are not to be confused. Unlike computational biology, evolutionary computation is not concerned with modeling and analyzing biological data. It instead creates algorithms based on the ideas of evolution across species. Sometimes referred to as genetic algorithms, the research of this field can be applied to computational biology. While evolutionary computation is not inherently a part of computational biology, computational evolutionary biology is a subfield of it. Computational biology has been used to help sequence the human genome, create accurate models of the human brain, and assist in modeling biological systems.

Computational biology is the science that answers the question “How can we learn and use models of biological systems constructed from experimental measurements?”  These models may describe what biological tasks are carried out by particular nucleic acid or peptide sequences, which gene (or genes) when expressed produce a particular phenotype or behavior, what sequence of changes in gene or protein expression or localization lead to a particular disease, and how changes in cell organization influence cell behavior.   This field is sometimes referred to as bioinformatics, but many scientists use the latter term to describe the field that answers the question “How can I efficiently store, annotate, search and compare information from biological measurements and observations?”  (This subject has been discussed previously by an early NIH task force report and by Raul Isea.)

Last Updated on: Nov 26, 2024

Related Scientific Words in General Science