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Abstract
Autism spectrum disorder (ASD) is characterized by diverse patterns of social interaction, communication, and behav-
ior. This study explores the application of clustering and stochastic migration models to visualize and understand the 
social and neural connectivity patterns associated with autism. The clustering model, with its strong internal connec-
tions and limited external connections, mirrors the tight-knit social groups and communication barriers often observed 
in individuals with autism. In contrast, the stochastic model, characterized by more dispersed connections and greater 
adaptability, represents the variability and flexibility seen in social interactions across  typical individuals. By com-
paring these models, we can gain deeper insights into the unique challenges and strengths of individuals with autism, 
highlighting the importance of personalized interventions. Additionally, these models provide a visual framework for 
understanding the differences in brain connectivity patterns observed in autism, with implications for both behavioral 
and neural correlates. This study underscores the value of computational models in advancing our understanding of 
autism and guiding effective support strategies.
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1. Introduction 
Autism spectrum disorder (ASD) is a complex neurodevelop-
mental condition characterized by a wide range of symptoms 
including difficulties in social interaction, communication chal-
lenges, and repetitive behaviors. The heterogeneity of autism 
makes it imperative to explore diverse models that can encap-
sulate the various behavioral and neural patterns associated with 
the disorder. Computational models provide a powerful tool to 
visualize and analyze these patterns, offering insights that can 
inform both scientific understanding and practical interventions 
[1,2].

In this study, we employ two distinct computational models 
to represent and understand the connectivity patterns in 
individuals with autism: the clustering migration model and the 
stochastic migration model. The clustering migration model is 
designed to mimic the formation of tight-knit social groups, a 
phenomenon frequently observed in individuals with autism 
[3]. This model features strong internal connections within 
clusters and weak connections between clusters, reflecting the 
tendency of individuals with autism to form strong bonds with 
specific people while experiencing challenges in establishing 
connections outside their immediate social circle [4]. This model 

also incorporates reverberating signals within clusters with 
limited exits, symbolizing the repetitive behaviors and restricted 
interest’s characteristic of autism [5]. 

Conversely, the stochastic migration model represents a more 
dispersed and variable pattern of connections. This model, 
characterized by medium-strength connections and multiple 
exits, encapsulates the variability in social interactions observed 
across the typical individual [6]. Some individuals with autism, 
though, exhibit greater adaptability and have a wider range of 
social connections, which this model effectively captures. The 
stochastic model’s representation of multiple exits suggests 
a higher degree of flexibility in communication and social 
behavior, contrasting with the more rigid patterns depicted in the 
clustering model [7].

Recent advancements in understanding synaptic variability 
and quantum effects have furthered our knowledge of neural 
dynamics in ASD. For example, the use of perovskite quantum 
dots in optoelectronic synaptic devices illustrates the impact 
of quantum effects on synaptic function and variability, 
highlighting the importance of integrating quantum mechanics 
into our understanding of neural processes [8,9]. 
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 By comparing these two models, we aim to highlight the diverse 
social and neural connectivity patterns present in individuals 
with autism. The clustering model can be seen as a representation 
of overconnectivity within certain neural networks, while 
the stochastic model may reflect a more balanced or varied 
connectivity pattern [10]. These differences in connectivity have 
significant implications for understanding the neural basis of 
autism and for developing tailored interventions [11].
 
Understanding these patterns is crucial for designing effective 
interventions and support systems. For individuals exhibiting 
behaviors similar to those in the clustering model, interventions 
might focus on gradually increasing exposure to new social 
situations and strengthening weak connections, enhancing 
communication skills and providing support to navigate varied 
social interactions could be also beneficial [12,13].

This study underscores the value of computational models in 
visualizing and understanding the complex patterns of social 
and neural connectivity in autism. By providing a visual and 
conceptual framework, these models can guide more effective 
and personalized strategies for supporting individuals with 
autism, ultimately contributing to better outcomes and quality 
of life. 

Methodology 
This study utilizes computational models to explore the social 
and neural connectivity patterns associated with autism spectrum 
disorder (ASD). The methodology involves the implementation 
of three distinct models, each representing different aspects 
of connectivity and migration behavior in a simulated neural 
network. The models include clustering migration, stochastic 
migration, and detailed simulations of reverberating signals 
within neural circuits. These models are described by a series of 
mathematical equations and visualized using Python libraries. 
Below, we detail the methodological steps and equations used 
for each model. 
 
3.1. Models 
Model 1. Clustering Migration (Graph 1.) 
The clustering migration model simulates the formation of tight-
knit social groups with strong internal connections and weak 
connections between clusters. 

1. Initial Positions: Cells are uniformly distributed along the 
𝑥-axis: 

2. Migration to Semicircle: Cells migrate to form a semicircle of 
radius 8 , with clustering effects introduced by adding Gaussian 
noise:

3. Connectivity: Strong connections are established within 
clusters and weak connections between clusters:

Model 2. Stochastic Migration 
The stochastic migration model represents more variable 
connectivity patterns, highlighting the diversity within the 
autism spectrum.

1. Initial Positions: Similar to Model 1, cells are uniformly 
distributed along the 𝑥-axis. 
2. Stochastic Migration: Cells migrate to a semicircle of radius 
8, with stochastic variations in their angles: 

3.Connectivity Patterns: Various geometric patterns are defined 
(triangles, squares, hexagons, etc.), with connections established 
accordingly:

4. Medium Strength Random Connections: Additional 
connections are added with medium strength: 
𝑤𝑖,𝑗 = Uniform (0.5,1.5)  for  𝑖 ≠ 𝑗  and  (𝑖, 𝑗) ∉ existing edges  

Model 3. Detailed Simulations of Reverberating Signals 
The detailed simulations involve modeling reverberating 
signals within neural circuits, highlighting the differences in 
connectivity and signal propagation.

1. Circle Graph with Exits: A circle graph with 20 nodes is 
created, with nodes connected in a circular manner and specific 
exit nodes: 

The detailed simulations involve modeling reverberating 
signals within neural circuits, highlighting the differences in 
connectivity and signal propagation.

2. Reverberating Signals: Signals propagate with added noise, 
representing the dynamic nature of neural communication: 

interventions might focus on gradually increasing exposure to new social situations and 
strengthening weak connections (Lord et al., 2001), enhancing communication skills 
and providing support to navigate varied social interactions could be also beneficial 
(Landa, 2007). 

This study underscores the value of computational models in visualizing and 
understanding the complex patterns of social and neural connectivity in autism. By 
providing a visual and conceptual framework, these models can guide more effective 
and personalized strategies for supporting individuals with autism, ultimately 
contributing to better outcomes and quality of life. 
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This study utilizes computational models to explore the social and neural connectivity 
patterns associated with autism spectrum disorder (ASD). The methodology involves 
the implementation of three distinct models, each representing different aspects of 
connectivity and migration behavior in a simulated neural network. The models include 
clustering migration, stochastic migration, and detailed simulations of reverberating 
signals within neural circuits. These models are described by a series of mathematical 
equations and visualized using Python libraries. Below, we detail the methodological 
steps and equations used for each model. 

 

 

Section 3.1 Models 

Model 1: Clustering Migration (Graph 1.) 

The clustering migration model simulates the formation of tight-knit social groups with 
strong internal connections and weak connections between clusters. 

1. Initial Positions: Cells are uniformly distributed along the x-axis: 

1. Initial Positions: Cells are uniformly distributed along the 𝑥𝑥-axis: 

𝑥𝑥𝑖𝑖 = −200 + 400𝑖𝑖
𝑁𝑁 − 1   for  𝑖𝑖 = 0,1,2, … , 𝑁𝑁 − 1 

2. Migration to Semicircle: Cells migrate to form a semicircle of radius 8 , with 
clustering effects introduced by adding Gaussian noise: 

1)𝜃𝜃1𝑖𝑖 = 𝑖𝑖𝑖𝑖
𝑁𝑁 − 1   for  𝑖𝑖 = 0,1,2, … , 𝑁𝑁 − 1

2)𝑥𝑥1𝑖𝑖
′ = 𝑟𝑟cos (𝜃𝜃1𝑖𝑖) + 𝒩𝒩(0, 𝜎𝜎2)  where  𝒩𝒩(0, 𝜎𝜎2) ∼ 𝒩𝒩(0, 0.22)

3)𝑦𝑦1𝑖𝑖
′ = 𝑟𝑟sin (𝜃𝜃1𝑖𝑖)
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The stochastic migration model represents more variable connectivity patterns, 
highlighting the diversity within the autism spectrum. 

1. Initial Positions: Similar to Model 1, cells are uniformly distributed along the 𝑥𝑥-
axis. 

2. Stochastic Migration: Cells migrate to a semicircle of radius 8 , with stochastic 
variations in their angles: 

𝜃𝜃2𝑖𝑖 = clip ( 𝑖𝑖𝑖𝑖
𝑁𝑁 − 1 + 𝒩𝒩(0, 𝜏𝜏2), 0, 𝜋𝜋)   where  𝒩𝒩(0, 𝜏𝜏2) ∼ 𝒩𝒩(0, 0.32)

𝑥𝑥2𝑖𝑖
′  = 𝑟𝑟cos (𝜃𝜃2𝑖𝑖)

𝑦𝑦2𝑖𝑖
′  = 𝑟𝑟sin (𝜃𝜃2𝑖𝑖)

 

3. Connectivity Patterns: Various geometric patterns are defined (triangles, 
squares, hexagons, etc.), with connections established accordingly: 
Triangle: 𝑤𝑤𝑖𝑖,(𝑖𝑖+1)mod3 = 𝑤𝑤𝑖𝑖,(𝑖𝑖+2)mod3 = 1  for 𝑖𝑖 ∈ {0,1,2} 
Square: 𝑤𝑤𝑖𝑖,(𝑖𝑖+1)mod4 = 𝑤𝑤𝑖𝑖,(𝑖𝑖+2)mod4 = 1  for even 𝑖𝑖 ∈ {3,4,5,6} 
Hexagon: 𝑤𝑤𝑖𝑖,(𝑖𝑖+1)mod6 = 𝑤𝑤𝑖𝑖,(𝑖𝑖+2)mod6 = 1  for 𝑖𝑖 ∈ {7,8,9,10,11,12}(12) 
Pentagon: 𝑤𝑤𝑖𝑖,(𝑖𝑖+1)mod5 = 1  for ⬚𝑖𝑖 ∈ {13,14,15,16,17} 
Heptagon: 𝑤𝑤𝑖𝑖,(𝑖𝑖+1)mod7 = 1  for ⬚𝑖𝑖 ∈ {18,19,20,21,22,23,24} 

4. Medium Strength Random Connections: Additional connections are added with 
medium strength: 

𝑤𝑤𝑖𝑖,𝑗𝑗 = Uniform (0.5,1.5)  for  𝑖𝑖 ≠ 𝑗𝑗  and  (𝑖𝑖, 𝑗𝑗) ∉  existing edges  

Model 3. Detailed Simulations of Reverberating Signals 
The detailed simulations involve modeling reverberating signals within neural circuits, 
highlighting the differences in connectivity and signal propagation. 

1. Circle Graph with Exits: A circle graph with 20 nodes is created, with nodes 
connected in a circular manner and specific exit nodes: 

𝑥𝑥𝑖𝑖 = cos (2𝜋𝜋𝜋𝜋
𝑁𝑁 )   for  𝑖𝑖 = 0,1,2, … , 𝑁𝑁 − 1

𝑦𝑦𝑖𝑖 = sin (2𝜋𝜋𝜋𝜋
𝑁𝑁 )   for  𝑖𝑖 = 0,1,2, … , 𝑁𝑁 − 1

 

The detailed simulations involve modeling reverberating signals within neural circuits, 
highlighting the differences in connectivity and signal propagation. 

1. Circle Graph with Exits: A circle graph with 20 nodes is created, with nodes 
connected in a circular manner and specific exit nodes: 

𝑥𝑥𝑖𝑖 = cos (2𝜋𝜋𝜋𝜋
𝑁𝑁 )   for  𝑖𝑖 = 0,1,2, … , 𝑁𝑁 − 1

𝑦𝑦𝑖𝑖 = sin (2𝜋𝜋𝜋𝜋
𝑁𝑁 )   for  𝑖𝑖 = 0,1,2, … , 𝑁𝑁 − 1

 

2. Reverberating Signals: Signals propagate with added noise, representing the 
dynamic nature of neural communication: 

𝑥𝑥𝑖𝑖
′ = 𝑥𝑥𝑖𝑖 + 𝒩𝒩(0, 𝜎𝜎2)

𝑦𝑦𝑖𝑖
′ = 𝑦𝑦𝑖𝑖 + 𝒩𝒩(0, 𝜎𝜎2) 

3. Escape Probability: The escape probability at exits is defined by a Bernoulli 
trial: 

𝑃𝑃escape = {1  if the signal escapes through the exit 
0  otherwise 

 

4. Number of Reverberations: The number of reverberations is controlled by the 
number of iterations: 

 Reverberations = 𝑅𝑅 

 

Section 3.2 Visualization 

The models are visualized using Python's Matplotlib library. For each model, the initial 
and migrated positions of the cells are plotted, with connections indicated by lines. The 
clustering and stochastic models are shown side-by-side for comparison, highlighting 
the differences in connectivity patterns. 

By applying these models, we aim to capture and analyze the diverse connectivity 
patterns observed in individuals with autism, providing insights into the social and 
neural dynamics that characterize the autism spectrum. 

 

Section 4. Results 

 
In this section, we present and interpret the results of the three computational models 
used to visualize the social and neural connectivity patterns in individuals with autism 
spectrum disorder (ASD). The models include the clustering migration model, the 
stochastic migration model, and the detailed simulations of reverberating signals 
within neural circuits. 

Graph 1: Clustering Migration Model 

 
The first graph depicts the clustering migration model, where cells initially distributed 
along the 𝑥𝑥 axis migrate to form a semicircle with a radius of 8 . This model 
incorporates a clustering effect by adding Gaussian noise to the positions of the cells. 

𝜃𝜃1𝑖𝑖 = 𝑖𝑖𝑖𝑖
𝑁𝑁 − 1   for  𝑖𝑖 = 0,1,2, … , 𝑁𝑁 − 1

𝑥𝑥1𝑖𝑖
′  = 𝑟𝑟cos (𝜃𝜃1𝑖𝑖) + 𝒩𝒩(0, 𝜎𝜎2)  where  𝒩𝒩(0, 𝜎𝜎2) ∼ 𝒩𝒩(0, 0.22)

𝑦𝑦1𝑖𝑖
′  = 𝑟𝑟sin (𝜃𝜃1𝑖𝑖)

 

Observations: 
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3. Escape Probability: The escape probability at exits is defined 
by a Bernoulli trial:

4.Number of Reverberations: The number of reverberations is 
controlled by the number of iterations: 
 
Reverberations = 𝑅 
 
3.2. Visualization 
The models are visualized using Python's Matplotlib library. 
For each model, the initial and migrated positions of the cells 
are plotted, with connections indicated by lines. The clustering 
and stochastic models are shown side-by-side for comparison, 
highlighting the differences in connectivity patterns. 

By applying these models, we aim to capture and analyze the 
diverse connectivity patterns observed in individuals with 
autism, providing insights into the social and neural dynamics 
that characterize the autism spectrum. 
 
4. Results 
In this section, we present and interpret the results of the three 
computational models used to visualize the social and neural 
connectivity patterns in individuals with autism spectrum 
disorder (ASD). The models include the clustering migration 
model, the stochastic migration model, and the detailed 
simulations of reverberating signals within neural circuits. 

Graph 1: Clustering Migration Model 
The first graph depicts the clustering migration model, where cells 
initially distributed along the 𝑥 axis migrate to form a semicircle 
with a radius of 8 . This model incorporates a clustering effect by 
adding Gaussian noise to the positions of the cells. 

Observations: 
• Cells form distinct clusters with strong internal connections. 
• Weak connections are observed between clusters, representing 
limited interaction outside immediate social groups. 
• The clustering effect introduces slight positional perturbations, 
emphasizing the tendency of individuals with autism to form 
tight-knit social groups and experience challenges in connecting 
outside these groups. 

This graph effectively models the social dynamics in autism, 
where strong bonds are formed within specific groups, but 
communication with external groups is limited  [3,4]. 

Graph 2: Stochastic Migration Model 
The second graph illustrates the stochastic migration model, 
where cells migrate to form a parabola with height of 8, 

incorporating stochastic variations in their angles. 

This model represents more variable and dispersed connectivity 
patterns. 

Observations: 
• Cells are more evenly dispersed along the semicircle, reflecting 
greater variability in social interactions. 
• The presence of medium-strength random connections between 
nodes suggests flexibility and adaptability in communication. 

This model captures the diversity within the autism spectrum, 
highlighting individuals who exhibit a wider range of social 
connections and greater adaptability [7,6]. 

Graph 3: Reverberating Signals in Neural Circuits 
The third graph simulates reverberating signals within neural 
circuits, highlighting differences in connectivity and signal 
propagation. Two scenarios are modeled: one with 2 exits and 
another with 5 exits.

Scenario 1: Circle graph with 20 nodes and 2 exits. 

Observations: 
• Signals reverberate 20 times within the circle before exiting, 
representing difficulty in breaking out of behavior loops. 
• Limited exits symbolize challenges in transitioning between 
tasks or environments, akin to the repetitive behaviors seen in 
autism. 

Scenario 2: Circle graph with 20 nodes and 5 exits. 

Observations: 
• Signals reverberate 5 times within the circle before exiting, 
indicating greater ease in transitioning between states. 
• Multiple exits represent higher flexibility and adaptability in 
neural communication, akin to individuals with more fluid social 
interactions. 

Reverberating Signals: 

Escape Probability:

2. Reverberating Signals: Signals propagate with added noise, representing the 
dynamic nature of neural communication: 

𝑥𝑥𝑖𝑖
′ = 𝑥𝑥𝑖𝑖 + 𝒩𝒩(0, 𝜎𝜎2)

𝑦𝑦𝑖𝑖
′ = 𝑦𝑦𝑖𝑖 + 𝒩𝒩(0, 𝜎𝜎2) 

3. Escape Probability: The escape probability at exits is defined by a Bernoulli 
trial: 

𝑃𝑃escape = {1  if the signal escapes through the exit 
0  otherwise 

 

4. Number of Reverberations: The number of reverberations is controlled by the 
number of iterations: 

 Reverberations = 𝑅𝑅 

 

Section 3.2 Visualization 

The models are visualized using Python's Matplotlib library. For each model, the initial 
and migrated positions of the cells are plotted, with connections indicated by lines. The 
clustering and stochastic models are shown side-by-side for comparison, highlighting 
the differences in connectivity patterns. 

By applying these models, we aim to capture and analyze the diverse connectivity 
patterns observed in individuals with autism, providing insights into the social and 
neural dynamics that characterize the autism spectrum. 

 

Section 4. Results 

 
In this section, we present and interpret the results of the three computational models 
used to visualize the social and neural connectivity patterns in individuals with autism 
spectrum disorder (ASD). The models include the clustering migration model, the 
stochastic migration model, and the detailed simulations of reverberating signals 
within neural circuits. 

Graph 1: Clustering Migration Model 

 
The first graph depicts the clustering migration model, where cells initially distributed 
along the 𝑥𝑥 axis migrate to form a semicircle with a radius of 8 . This model 
incorporates a clustering effect by adding Gaussian noise to the positions of the cells. 

𝜃𝜃1𝑖𝑖 = 𝑖𝑖𝑖𝑖
𝑁𝑁 − 1   for  𝑖𝑖 = 0,1,2, … , 𝑁𝑁 − 1

𝑥𝑥1𝑖𝑖
′  = 𝑟𝑟cos (𝜃𝜃1𝑖𝑖) + 𝒩𝒩(0, 𝜎𝜎2)  where  𝒩𝒩(0, 𝜎𝜎2) ∼ 𝒩𝒩(0, 0.22)

𝑦𝑦1𝑖𝑖
′  = 𝑟𝑟sin (𝜃𝜃1𝑖𝑖)

 

Observations: 

2. Reverberating Signals: Signals propagate with added noise, representing the 
dynamic nature of neural communication: 

𝑥𝑥𝑖𝑖
′ = 𝑥𝑥𝑖𝑖 + 𝒩𝒩(0, 𝜎𝜎2)

𝑦𝑦𝑖𝑖
′ = 𝑦𝑦𝑖𝑖 + 𝒩𝒩(0, 𝜎𝜎2) 

3. Escape Probability: The escape probability at exits is defined by a Bernoulli 
trial: 

𝑃𝑃escape = {1  if the signal escapes through the exit 
0  otherwise 

 

4. Number of Reverberations: The number of reverberations is controlled by the 
number of iterations: 

 Reverberations = 𝑅𝑅 

 

Section 3.2 Visualization 

The models are visualized using Python's Matplotlib library. For each model, the initial 
and migrated positions of the cells are plotted, with connections indicated by lines. The 
clustering and stochastic models are shown side-by-side for comparison, highlighting 
the differences in connectivity patterns. 

By applying these models, we aim to capture and analyze the diverse connectivity 
patterns observed in individuals with autism, providing insights into the social and 
neural dynamics that characterize the autism spectrum. 

 

Section 4. Results 

 
In this section, we present and interpret the results of the three computational models 
used to visualize the social and neural connectivity patterns in individuals with autism 
spectrum disorder (ASD). The models include the clustering migration model, the 
stochastic migration model, and the detailed simulations of reverberating signals 
within neural circuits. 

Graph 1: Clustering Migration Model 

 
The first graph depicts the clustering migration model, where cells initially distributed 
along the 𝑥𝑥 axis migrate to form a semicircle with a radius of 8 . This model 
incorporates a clustering effect by adding Gaussian noise to the positions of the cells. 

𝜃𝜃1𝑖𝑖 = 𝑖𝑖𝑖𝑖
𝑁𝑁 − 1   for  𝑖𝑖 = 0,1,2, … , 𝑁𝑁 − 1

𝑥𝑥1𝑖𝑖
′  = 𝑟𝑟cos (𝜃𝜃1𝑖𝑖) + 𝒩𝒩(0, 𝜎𝜎2)  where  𝒩𝒩(0, 𝜎𝜎2) ∼ 𝒩𝒩(0, 0.22)

𝑦𝑦1𝑖𝑖
′  = 𝑟𝑟sin (𝜃𝜃1𝑖𝑖)

 

Observations: 

• Cells form distinct clusters with strong internal connections. 

• Weak connections are observed between clusters, representing limited 
interaction outside immediate social groups. 

• The clustering effect introduces slight positional perturbations, emphasizing the 
tendency of individuals with autism to form tight-knit social groups and 
experience challenges in connecting outside these groups. 

This graph effectively models the social dynamics in autism, where strong bonds are 
formed within specific groups, but communication with external groups is limited 
(Bauminger & Kasari, 2000; Bölte et al., 2011). 

Graph 2: Stochastic Migration Model 

 
The second graph illustrates the stochastic migration model, where cells migrate to 
form a parabola with height of 8 , incorporating stochastic variations in their angles. 
This model represents more variable and dispersed connectivity patterns. 

𝜃𝜃2𝑖𝑖 = clip ( 𝑖𝑖𝑖𝑖
𝑁𝑁 − 1 + 𝒩𝒩(0, 𝜏𝜏2), 0, 𝜋𝜋)   where  𝒩𝒩(0, 𝜏𝜏2) ∼ 𝒩𝒩(0, 0.32)

𝑥𝑥2𝑖𝑖
′  = 𝑟𝑟cos (𝜃𝜃2𝑖𝑖)

𝑦𝑦2𝑖𝑖
′  = 𝑟𝑟sin (𝜃𝜃2𝑖𝑖)

 

Observations: 

• Cells are more evenly dispersed along the semicircle, reflecting greater 
variability in social interactions. 

• The presence of medium-strength random connections between nodes suggests 
flexibility and adaptability in communication. 

This model captures the diversity within the autism spectrum, highlighting individuals 
who exhibit a wider range of social connections and greater adaptability (Constantino & 
Todd, 2003; Geschwind, 2009). 

Graph 3: Reverberating Signals in Neural Circuits 

 
The third graph simulates reverberating signals within neural circuits, highlighting 
differences in connectivity and signal propagation. Two scenarios are modeled: one 
with 2 exits and another with 5 exits. 

1. Scenario 1: Circle graph with 20 nodes and 2 exits. 

𝑥𝑥𝑖𝑖 = cos (2𝜋𝜋𝜋𝜋
𝑁𝑁 ) ,  𝑦𝑦𝑖𝑖 = sin (2𝜋𝜋𝜋𝜋

𝑁𝑁 ) 

Observations: 

• Signals reverberate 20 times within the circle before exiting, representing 
difficulty in breaking out of behavior loops. 

• Limited exits symbolize challenges in transitioning between tasks or 
environments, akin to the repetitive behaviors seen in autism. 

2. Scenario 2: Circle graph with 20 nodes and 5 exits. 

• Cells form distinct clusters with strong internal connections. 

• Weak connections are observed between clusters, representing limited 
interaction outside immediate social groups. 

• The clustering effect introduces slight positional perturbations, emphasizing the 
tendency of individuals with autism to form tight-knit social groups and 
experience challenges in connecting outside these groups. 

This graph effectively models the social dynamics in autism, where strong bonds are 
formed within specific groups, but communication with external groups is limited 
(Bauminger & Kasari, 2000; Bölte et al., 2011). 

Graph 2: Stochastic Migration Model 

 
The second graph illustrates the stochastic migration model, where cells migrate to 
form a parabola with height of 8 , incorporating stochastic variations in their angles. 
This model represents more variable and dispersed connectivity patterns. 

𝜃𝜃2𝑖𝑖 = clip ( 𝑖𝑖𝑖𝑖
𝑁𝑁 − 1 + 𝒩𝒩(0, 𝜏𝜏2), 0, 𝜋𝜋)   where  𝒩𝒩(0, 𝜏𝜏2) ∼ 𝒩𝒩(0, 0.32)

𝑥𝑥2𝑖𝑖
′  = 𝑟𝑟cos (𝜃𝜃2𝑖𝑖)

𝑦𝑦2𝑖𝑖
′  = 𝑟𝑟sin (𝜃𝜃2𝑖𝑖)

 

Observations: 

• Cells are more evenly dispersed along the semicircle, reflecting greater 
variability in social interactions. 

• The presence of medium-strength random connections between nodes suggests 
flexibility and adaptability in communication. 

This model captures the diversity within the autism spectrum, highlighting individuals 
who exhibit a wider range of social connections and greater adaptability (Constantino & 
Todd, 2003; Geschwind, 2009). 

Graph 3: Reverberating Signals in Neural Circuits 

 
The third graph simulates reverberating signals within neural circuits, highlighting 
differences in connectivity and signal propagation. Two scenarios are modeled: one 
with 2 exits and another with 5 exits. 

1. Scenario 1: Circle graph with 20 nodes and 2 exits. 

𝑥𝑥𝑖𝑖 = cos (2𝜋𝜋𝜋𝜋
𝑁𝑁 ) ,  𝑦𝑦𝑖𝑖 = sin (2𝜋𝜋𝜋𝜋

𝑁𝑁 ) 

Observations: 

• Signals reverberate 20 times within the circle before exiting, representing 
difficulty in breaking out of behavior loops. 

• Limited exits symbolize challenges in transitioning between tasks or 
environments, akin to the repetitive behaviors seen in autism. 

2. Scenario 2: Circle graph with 20 nodes and 5 exits. 

𝑥𝑥𝑖𝑖 = cos (2𝜋𝜋𝜋𝜋
𝑁𝑁 ) ,  𝑦𝑦𝑖𝑖 = sin (2𝜋𝜋𝜋𝜋

𝑁𝑁 ) 

Observations: 

• Signals reverberate 5 times within the circle before exiting, indicating greater 
ease in transitioning between states. 

• Multiple exits represent higher flexibility and adaptability in neural 
communication, akin to individuals with more fluid social interactions. 

Reverberating Signals: 

𝑥𝑥𝑖𝑖
′ = 𝑥𝑥𝑖𝑖 + 𝒩𝒩(0, 𝜎𝜎2)

𝑦𝑦𝑖𝑖
′ = 𝑦𝑦𝑖𝑖 + 𝒩𝒩(0, 𝜎𝜎2) 

Escape Probability: 

𝑃𝑃escape = {1  if the signal escapes through the exit 
0  otherwise 

 

These simulations provide insights into the neural dynamics underlying autism. The 
difficulty in breaking out of behavior loops (as seen in the first scenario) parallels the 
repetitive behaviors and restricted interests in autism. The preference for continuous 
movements, such as watching wheels rolling, can be attributed to the brain's need for 
predictability and order (Kanner, 1943; Turner, 1999). 

Conclusion 
The results of these computational models highlight the complex social and neural 
connectivity patterns in individuals with autism. By visualizing these patterns, we can 
better understand the unique challenges and strengths of individuals on the autism 
spectrum, ultimately guiding more effective and personalized intervention strategies. 

 

 

𝑥𝑥𝑖𝑖 = cos (2𝜋𝜋𝜋𝜋
𝑁𝑁 ) ,  𝑦𝑦𝑖𝑖 = sin (2𝜋𝜋𝜋𝜋

𝑁𝑁 ) 

Observations: 

• Signals reverberate 5 times within the circle before exiting, indicating greater 
ease in transitioning between states. 

• Multiple exits represent higher flexibility and adaptability in neural 
communication, akin to individuals with more fluid social interactions. 

Reverberating Signals: 

𝑥𝑥𝑖𝑖
′ = 𝑥𝑥𝑖𝑖 + 𝒩𝒩(0, 𝜎𝜎2)

𝑦𝑦𝑖𝑖
′ = 𝑦𝑦𝑖𝑖 + 𝒩𝒩(0, 𝜎𝜎2) 

Escape Probability: 

𝑃𝑃escape = {1  if the signal escapes through the exit 
0  otherwise 

 

These simulations provide insights into the neural dynamics underlying autism. The 
difficulty in breaking out of behavior loops (as seen in the first scenario) parallels the 
repetitive behaviors and restricted interests in autism. The preference for continuous 
movements, such as watching wheels rolling, can be attributed to the brain's need for 
predictability and order (Kanner, 1943; Turner, 1999). 

Conclusion 
The results of these computational models highlight the complex social and neural 
connectivity patterns in individuals with autism. By visualizing these patterns, we can 
better understand the unique challenges and strengths of individuals on the autism 
spectrum, ultimately guiding more effective and personalized intervention strategies. 
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These simulations provide insights into the neural dynamics 
underlying autism. The difficulty in breaking out of behavior 
loops (as seen in the first scenario) parallels the repetitive 
behaviors and restricted interests in autism. The preference for 
continuous movements, such as watching wheels rolling, can be 
attributed to the brain's need for predictability and order [14]. 

Conclusion 
The results of these computational models highlight the complex 
social and neural connectivity patterns in individuals with 
autism. By visualizing these patterns, we can better understand 
the unique challenges and strengths of individuals on the autism 
spectrum, ultimately guiding more effective and personalized 
intervention strategies. 

𝑥𝑥𝑖𝑖 = cos (2𝜋𝜋𝜋𝜋
𝑁𝑁 ) ,  𝑦𝑦𝑖𝑖 = sin (2𝜋𝜋𝜋𝜋

𝑁𝑁 ) 

Observations: 

• Signals reverberate 5 times within the circle before exiting, indicating greater 
ease in transitioning between states. 

• Multiple exits represent higher flexibility and adaptability in neural 
communication, akin to individuals with more fluid social interactions. 

Reverberating Signals: 

𝑥𝑥𝑖𝑖
′ = 𝑥𝑥𝑖𝑖 + 𝒩𝒩(0, 𝜎𝜎2)

𝑦𝑦𝑖𝑖
′ = 𝑦𝑦𝑖𝑖 + 𝒩𝒩(0, 𝜎𝜎2) 

Escape Probability: 

𝑃𝑃escape = {1  if the signal escapes through the exit 
0  otherwise 

 

These simulations provide insights into the neural dynamics underlying autism. The 
difficulty in breaking out of behavior loops (as seen in the first scenario) parallels the 
repetitive behaviors and restricted interests in autism. The preference for continuous 
movements, such as watching wheels rolling, can be attributed to the brain's need for 
predictability and order (Kanner, 1943; Turner, 1999). 

Conclusion 
The results of these computational models highlight the complex social and neural 
connectivity patterns in individuals with autism. By visualizing these patterns, we can 
better understand the unique challenges and strengths of individuals on the autism 
spectrum, ultimately guiding more effective and personalized intervention strategies. 

 

 

𝑥𝑥𝑖𝑖 = cos (2𝜋𝜋𝜋𝜋
𝑁𝑁 ) ,  𝑦𝑦𝑖𝑖 = sin (2𝜋𝜋𝜋𝜋

𝑁𝑁 ) 

Observations: 

• Signals reverberate 5 times within the circle before exiting, indicating greater 
ease in transitioning between states. 

• Multiple exits represent higher flexibility and adaptability in neural 
communication, akin to individuals with more fluid social interactions. 

Reverberating Signals: 

𝑥𝑥𝑖𝑖
′ = 𝑥𝑥𝑖𝑖 + 𝒩𝒩(0, 𝜎𝜎2)

𝑦𝑦𝑖𝑖
′ = 𝑦𝑦𝑖𝑖 + 𝒩𝒩(0, 𝜎𝜎2) 

Escape Probability: 

𝑃𝑃escape = {1  if the signal escapes through the exit 
0  otherwise 
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5. Discussion 
The computational models employed in this study provide a 
visual and conceptual framework to understand the diverse 
social and neural connectivity patterns observed in individuals 
with autism spectrum disorder (ASD). By comparing the 
clustering and stochastic migration models, we gain insights 
into the characteristic behaviors and neural dynamics associated 
with autism, which have significant implications for intervention 
and support strategies.
 
5.1. Clustering Migration Model 
The clustering migration model highlights the tendency of 
individuals with autism to form tight-knit social groups with 
strong internal connections and weak connections between 
clusters. This pattern can be interpreted as a reflection of the 
social dynamics often observed in individuals with autism, 
who may form strong bonds with specific individuals or groups 
while experiencing challenges in establishing and maintaining 
connections outside their immediate social circle [3,4]. The 
reverberating signals within clusters, with limited exits, 
symbolize the repetitive behaviors and restricted interest’s 
characteristic of autism [5].

One of the key challenges faced by individuals with autism 
is difficulty in breaking out of behavior loops. The clustering 
model's limited exits represent the challenges in transitioning 
between tasks or environments, which is a common characteristic 
in autism. Repetitive behaviors and restricted interests, often 
described as "stimming," provide a sense of predictability and 
comfort to individuals with autism. These behaviors can be seen 
as a coping mechanism to deal with overwhelming sensory input 
or to self-regulate emotions [15]. The model underscores the 
importance of interventions that gradually introduce new social 
situations and strengthen weak connections, thereby facilitating 

greater social flexibility and adaptability [12].

5.2. Stochastic Migration Model 
The stochastic migration model, characterized by more variable 
and dispersed connections, represents the variability in social 
interactions observed across the autism spectrum [6]. The model 
captures the diversity within the autism spectrum, highlighting 
individuals who exhibit a wider range of social connections and 
greater adaptability. Interventions for these individuals might 
focus on enhancing communication skills and providing support 
to navigate varied social interactions [13]. 

Recent research on synaptic loss and cognitive deficits in 
neurological conditions further emphasizes the importance 
of understanding synaptic variability and its impact on neural 
connectivity and behavior [16]. Additionally, advancements in 
quantum biology highlight the potential influence of quantum 
effects on synaptic function, which could provide new insights 
into the neural mechanisms underlying ASD [17].

The stochastic migration model, characterized by more variable 
and dispersed connections, represents the variability in social 
interactions observed across the autism spectrum and typical 
individual [6]. Some individuals with autism exhibit greater 
adaptability and have a wider range of social connections. 
The stochastic model's multiple exits suggest a higher degree 
of flexibility in communication and social behavior, which 
contrasts with the more rigid patterns depicted in the clustering 
model [7].

5.3. Neural Connectivity and Behavioral Correlates 
The observed differences in connectivity in the models have 
parallels in neural connectivity patterns in individuals with 
autism. Research has shown that individuals with autism 
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may exhibit overconnectivity within certain brain regions and 
underconnectivity between regions, leading to difficulties 
in integrating information across different neural networks 
[10,11]. The clustering model can be seen as a representation 
of overconnectivity within specific neural networks, while 
the stochastic model may reflect a more balanced or varied 
connectivity pattern. 

These neural connectivity patterns can explain some of the 
behavioral characteristics of autism. For example, the preference 
for continuous movements and repetitive actions, such as 
watching wheels rolling, can be understood as a manifestation 
of the brain's need for predictability and order. Continuous 
and repetitive actions provide a sense of stability and control, 
which can be comforting for individuals with autism who might 
otherwise experience sensory overload or difficulty in processing 
complex stimuli [14].

5.4. Implications for Intervention 
Understanding these connectivity patterns is crucial for designing 
effective interventions and support systems for individuals 
with autism. For those exhibiting behaviors similar to those in 
the clustering model, interventions might focus on gradually 

increasing exposure to new social situations and strengthening 
weak connections. This approach can help individuals develop 
the skills needed to navigate more complex social environments 
and reduce the reliance on repetitive behaviors [12].

For individuals resembling the stochastic model, interventions 
might focus on enhancing communication skills and providing 
support to navigate varied social interactions. These interventions 
can leverage the existing flexibility and adaptability observed 
in these individuals, helping them to build more robust social 
networks and improve their overall social functioning [13].

Conclusion 
The computational models presented in this study provide 
valuable insights into the diverse social and neural connectivity 
patterns observed in individuals with autism. By visualizing 
these patterns, we can better understand the unique challenges 
and strengths of individuals on the autism spectrum, ultimately 
guiding more effective and personalized support strategies. 
These models underscore the importance of a nuanced approach 
to autism intervention, one that recognizes the variability within 
the spectrum and addresses the specific needs of each individual 
[18-33]. 
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Section 6. Attachments 

Python Code Graph 1. 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Parameters 

num_cells = 400 

radius = 8 

x_positions = np.linspace(-200, 200, num_cells) 

 

# Model 1: Clustering Migration 

theta_1 = np.linspace(0, np.pi, num_cells) 

x_migrated_1 = radius * np.cos(theta_1) 

y_migrated_1 = radius * np.sin(theta_1) 

 

# Adding some clustering effect by perturbing positions 

cluster_effect = np.random.normal(0, 0.2, num_cells) 

x_migrated_1 += cluster_effect 

 

# Model 2: Stochastic Migration 

np.random.seed(42) 

theta_2 = np.linspace(0, np.pi, num_cells) + np.random.normal(0, 0.3, num_cells) 
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Python Code Graph 1. 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Parameters 

num_cells = 400 

radius = 8 

x_positions = np.linspace(-200, 200, num_cells) 

 

# Model 1: Clustering Migration 

theta_1 = np.linspace(0, np.pi, num_cells) 

x_migrated_1 = radius * np.cos(theta_1) 

y_migrated_1 = radius * np.sin(theta_1) 

 

# Adding some clustering effect by perturbing positions 

cluster_effect = np.random.normal(0, 0.2, num_cells) 

x_migrated_1 += cluster_effect 

 

# Model 2: Stochastic Migration 

np.random.seed(42) 

theta_2 = np.linspace(0, np.pi, num_cells) + np.random.normal(0, 0.3, num_cells) 

theta_2 = np.clip(theta_2, 0, np.pi)  # Ensure theta_2 is within [0, pi] to stay above x-
axis 

x_migrated_2 = radius * np.cos(theta_2) 

y_migrated_2 = radius * np.sin(theta_2) 

 

# Plotting the results 

fig, ax = plt.subplots(1, 2, figsize=(14, 7)) 

 

# Plot for Model 1 

ax[0].scatter(x_positions, np.zeros(num_cells), color='blue', label='Initial Position') 

ax[0].scatter(x_migrated_1, y_migrated_1, color='red', label='Migrated Position') 

ax[0].set_title('Model 1: Clustering Migration') 

ax[0].legend() 

ax[0].axis('equal') 

ax[0].set_xlim([-radius*1.5, radius*1.5]) 

ax[0].set_ylim([-1, radius*1.5]) 

 

nx.draw(G2, nx.get_node_attributes(G2, 'pos'), ax=ax[1], with_labels=True, 
node_color='green', edge_color='black', node_size=500, font_color='white') 

draw_reverberation(ax[1], G2, exits2, num_reverberations_model2, 
escape_ratio_model2, noise_multiplier_model2) 

ax[1].set_title('Model 2: Circle with 5 Exits') 

Python code Graph 2.  

import numpy as np 

import matplotlib.pyplot as plt 

import networkx as nx 

import matplotlib.animation as animation 
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y_migrated_2 = radius * np.sin(theta_2) 
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# Plot for Model 1 
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Python code Graph 2.  

import numpy as np 

import matplotlib.pyplot as plt 

import networkx as nx 

import matplotlib.animation as animation  

# Function to create a circle graph with exits 

def create_circle_graph(num_nodes, num_exits, strong_weight=2, weak_weight=0.1): 

    G = nx.Graph() 

    nodes = range(num_nodes) 

    for i in nodes: 

        G.add_node(i, pos=(np.cos(2 * np.pi * i / num_nodes), np.sin(2 * np.pi * i / 
num_nodes))) 

        G.add_edge(i, (i + 1) % num_nodes, weight=strong_weight) 

     

    exits = np.random.choice(nodes, num_exits, replace=False) 

    for exit in exits: 

        G.add_edge(exit, (exit + num_nodes // 2) % num_nodes, weight=weak_weight) 

     

    return G, exits 

 

# Parameters 

num_nodes = 20 

num_exits_model1 = 2 

num_exits_model2 = 5 

num_reverberations_model1 = 20 

num_reverberations_model2 = 5 

escape_ratio_model1 = 0.2 

escape_ratio_model2 = 0.5 

 

# Create graphs for both models 
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    for exit in exits: 
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    return G, exits 

 

# Parameters 

num_nodes = 20 

num_exits_model1 = 2 

num_exits_model2 = 5 

num_reverberations_model1 = 20 

num_reverberations_model2 = 5 

escape_ratio_model1 = 0.2 

escape_ratio_model2 = 0.5 

 

# Create graphs for both models 
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G1, exits1 = create_circle_graph(num_nodes, num_exits_model1) 

G2, exits2 = create_circle_graph(num_nodes, num_exits_model2) 

 

# Function to draw reverberating signals 

def draw_reverberation(ax, G, exits, num_reverberations, escape_ratio): 

    pos = nx.get_node_attributes(G, 'pos') 

    nodes = list(G.nodes) 

    signals = [0]  # Start at node 0 

    for _ in range(num_reverberations): 

        new_signals = [] 

        for signal in signals: 

            neighbors = list(G.neighbors(signal)) 

            for neighbor in neighbors: 

                if np.random.rand() > escape_ratio or neighbor in exits: 

                    new_signals.append(neighbor) 

                    ax.plot([pos[signal][0], pos[neighbor][0]], [pos[signal][1], 
pos[neighbor][1]], color='yellow') 

        signals = new_signals 

 

# Plot settings 

fig, ax = plt.subplots(1, 2, figsize=(14, 7)) 

 

# Plot for Model 1 

nx.draw(G1, nx.get_node_attributes(G1, 'pos'), ax=ax[0], with_labels=True, 
node_color='red', edge_color='black', node_size=500, font_color='white') 

draw_reverberation(ax[0], G1, exits1, num_reverberations_model1, 
escape_ratio_model1) 
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ax[0].set_title('Model 1: Reverberating Circle with 2 Exits') 

 

# Plot for Model 2 

nx.draw(G2, nx.get_node_attributes(G2, 'pos'), ax=ax[1], with_labels=True, 
node_color='green', edge_color='black', node_size=500, font_color='white') 

draw_reverberation(ax[1], G2, exits2, num_reverberations_model2, 
escape_ratio_model2) 

ax[1].set_title('Model 2: Circle with 5 Exits') 

 

plt.show() 

 

plt.show() 

# Plot for Model 2 

ax[1].scatter(x_positions, np.zeros(num_cells), color='blue', label='Initial Position') 

ax[1].scatter(x_migrated_2, y_migrated_2, color='green', label='Migrated Position') 

ax[1].set_title('Model 2: Stochastic Migration') 

ax[1].legend() 

ax[1].axis('equal') 

ax[1].set_xlim([-radius*1.5, radius*1.5]) 

ax[1].set_ylim([-1, radius*1.5]) 

 

plt.show() 

Python codes 

Graph 3.  

import numpy as np 

import matplotlib.pyplot as plt 
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import networkx as nx 

 

# Function to create a circle graph with exits 

def create_circle_graph(num_nodes, num_exits, strong_weight=2, weak_weight=0.1): 

    G = nx.Graph() 

    nodes = range(num_nodes) 

    for i in nodes: 

        G.add_node(i, pos=(np.cos(2 * np.pi * i / num_nodes), np.sin(2 * np.pi * i / 
num_nodes))) 

        G.add_edge(i, (i + 1) % num_nodes, weight=strong_weight) 

     

    exits = np.random.choice(nodes, num_exits, replace=False) 

    for exit in exits: 

        G.add_edge(exit, (exit + num_nodes // 2) % num_nodes, weight=weak_weight) 

     

    return G, exits 

 

# Parameters 

num_nodes = 20 

num_exits_model1 = 2 

num_exits_model2 = 5 

num_reverberations_model1 = 20 

num_reverberations_model2 = 5 

escape_ratio_model1 = 0.2 

escape_ratio_model2 = 0.5 

noise_multiplier_model1 = 10 
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noise_multiplier_model2 = 5 

 

# Create graphs for both models 

G1, exits1 = create_circle_graph(num_nodes, num_exits_model1) 

G2, exits2 = create_circle_graph(num_nodes, num_exits_model2) 

 

# Function to draw reverberating signals with noise and exits 

def draw_reverberation(ax, G, exits, num_reverberations, escape_ratio, 
noise_multiplier): 

    pos = nx.get_node_attributes(G, 'pos') 

    nodes = list(G.nodes) 

    signals = [0]  # Start at node 0 

    for _ in range(num_reverberations): 

        new_signals = [] 

        for signal in signals: 

            neighbors = list(G.neighbors(signal)) 

            for neighbor in neighbors: 

                if np.random.rand() > escape_ratio or neighbor in exits: 

                    new_signals.append(neighbor) 

                    for _ in range(noise_multiplier): 

                        noise_x = np.random.normal(0, 0.02) 

                        noise_y = np.random.normal(0, 0.02) 

                        ax.plot([pos[signal][0], pos[neighbor][0] + noise_x], [pos[signal][1], 
pos[neighbor][1] + noise_y], color='orange') 

        signals = new_signals 

        for exit in exits: 
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            ax.plot([pos[exit][0], pos[(exit + num_nodes // 2) % num_nodes][0]], 

                    [pos[exit][1], pos[(exit + num_nodes // 2) % num_nodes][1]],  

                    color='yellow', linewidth=2, linestyle='dashed') 

 

# Plot settings 

fig, ax = plt.subplots(1, 2, figsize=(14, 7)) 

 

# Plot for Model 1 

nx.draw(G1, nx.get_node_attributes(G1, 'pos'), ax=ax[0], with_labels=True, 
node_color='red', edge_color='black', node_size=500, font_color='white') 

draw_reverberation(ax[0], G1, exits1, num_reverberations_model1, 
escape_ratio_model1, noise_multiplier_model1) 

ax[0].set_title('Model 1: Reverberating Circle with 2 Exits') 

 

# Plot for Model 2 

Python code graph 3.  
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