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Abstract 
The compilation and analysis of radiological images poses numerous challenges for researchers. The sheer volume of data 
as well as the computational needs of algorithms capable of operating on images are extensive. Additionally, the assembly of 
these images alone is difficult, as these exams may differ widely in terms of clinical context, structured annotation available 
for model training, modality, and patient identifiers. In this paper, we describe our experiences and challenges in establishing 
a trusted collection of radiology images linked to the United States Department of Veterans Affairs (VA) electronic health 
record database. We also discuss implications in making this repository research-ready for medical investigators. Key insights 
include uncovering the specific procedures required for transferring images from a clinical to a research-ready environment, 
as well as roadblocks and bottlenecks in this process that may hinder future efforts at automation.
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1. Introduction
Since 2016, Oak Ridge National Laboratory (ORNL) has 
partnered with the US Department of Veteran Affairs (VA) to 
create a large precision medicine platform that hosts the VA’s 
electronic health records (EHR), a huge data set containing the 
medical information of over 24 million US veterans. This year, 
our data team piloted a program to add chest x-ray images to 
its medical data warehouse, enriching a repository consisting 
of structured data (laboratory, billing codes, medications, etc.) 
and unstructured clinical notes. Based on immediate successes, 
we expanded the pilot to include magnetic resonance images 
(MRI). These nontrivial tasks entailed both the secure transfer 
of these images as well as the processing of the image data. After 
mitigating curation and access delays, the data team created 
an automated pipeline for transferring images and associated 
metadata while ensuring the security, privacy, and integrity 
of the image data. The project, titled “Versatile Infrastructure 
System for Image Organization and analysis”, or VISION, ran 
for approximately one year from 2022 to 2023.

The number of images we managed was noteworthy. By the end 
of the pilot, we received 263,000 chest x-rays and 729,000 MRI 
files for a sum total of 1,011,000 medical image files requiring 
transfer, processing, and storage. Each of these images had to be 
linked to the larger VA corporate data warehouse (CDW), also 
containing 24.8 TB of structured data and 13.7 TB of unstructured 

clinical notes. This paper presents our lessons learned in not just 
transferring these images (roughly 5 TB total), but in properly 
setting up a trusted and robust research environment for VA and 
ORNL researchers to easily query over 1 million medical image 
files connected to the vast amount of structured and unstructured 
data within the VA CDW.

The purpose of this pilot was to understand how the source 
repositories were organized on the clinical side, allowing for 
imaging data to be identified and linked to the correct patient 
records so they can be transferred to the research data store. 
There, we cleaned and organized the imaging repository into a 
catalogued [1], researcher-friendly, large-scale, “big data” effort 
with multiple research centers and modalities.

Medical images pose numerous challenges related to data 
gathering, parsing, and quality assurance. For instance, Magudia, 
Bridge, Andriole, and Rosenthal found numerous roadblocks 
during their study of gathering CT scans for a machine learning 
study: cohort identification, retrieval, and storage were all 
significant roadblocks for their team. Most clinical environments 
(e.g., hospitals) store images in a separate location from their 
document-based data (patient demographics, prescription 
information, and so forth). Magudia, Bridge, Andriole, and 
Rosenthal’s study is an excellent example of why this is an issue: 
since their team required more images than were available in one 
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system, they had to query multiple hospital databases, where they 
found that retrieved exams were either mislabeled or difficult to 
characterize, as different systems handled exams in their own 
unique way (labels, identifiers, and application of administrative 
policies) [2]. Identifier inconsistencies result in difficulties with 
matching initial query data to the eventual radiology scan, since 
medical record numbers and accession numbers may reflect 
organizational policy changes that are applied inconsistently 
from one system to another (e.g., prepending identifiers with 
additional letters or numbers, or data migration issues that 
sometimes “break” links between an image and its associated 
documents).

1.1 Image Transfer Pilot Goals
As mentioned, this study sought to understand the specifics 
behind search and retrieval of medical images on the clinical 
side (where images are stored in sundry locations and tied to 
reporting and other patient data in a variety of ways) as well as 
how to effectively transfer these images into a hosted research 
environment, such as the one ORNL has set up for the VA. 
Within the research environment, this particular transfer process 
facilitated researcher capabilities with creating multimodal 
predictive modelling using deep learning (DL) techniques on 
chest X-Rays and MRI data. For this pilot, the iterative transfer 
approach (described below) enabled the effective development 
of DL models, where imaging data served as model input and 
clinical structured data from the CDW served as outcomes. 
Validated image batches were systematically used by researchers 
at ORNL to test the DL models as well as data viability prior 
to building models, a process which is compute-intensive when 
using a complete dataset.

2. Radiology Imaging: Background
Radiology data is a combination of text and image data, both 
of which are bundled together in an international standard 
data model, DICOM (Digital Imaging and Communications in 
Medicine) . DICOM data is grouped into data sets, where images 
are bundled together with identifiers, other embedded tags, and 
attributes. As such, DICOM images are extremely sensitive, 
since patient identifiers, names, and other personally identifiable 
information is embedded in the image file. To aid researchers 
interested in radiology images (e.g., develop algorithms for 
automatic identification of cancers or production of radiology 
reports), several data sets de-identified of patient information 
are available to researchers. One used most heavily by the VA 
research team is the Medical Imaging and Data Resource Center 
[19]. This is a multi-institutional effort between the American 
College of Radiology, Radiological Society of North America, 
and the American Association of Physicists in Medicine. 
Together, they have created a publicly available image repository 
to assist with machine learning research in medical imaging, 
where de-identified images and metadata are openly accessible, 
minus a small percentage reserved to act as the testing set for 
algorithm evaluations. Other notable public data sets of chest 
x-rays (CXR) include ChestX-ray8, ChestX-ray14, Padchest, 
MIMIC-CXR, CheXpert, and VinDr-CXR.

The ChestX-Ray8 data set is one of the first large publicly 
available chest x-ray data sets. which is still frequently used and 
widely accessible for medical imaging studies. It includes over 
100,000 de-identified frontal view x-ray images of over 30,000 
unique patients, all acquired from NIH Clinical Center routine 
care. Data includes images covering 8 different respiratory 
diseases: atelectasis, infiltration, pneumothorax, masses, 
effusion, pneumonia, cardiomegaly, and nodules [3]. The data 
quality is somewhat lacking, as the original radiology reports 
are not available, disease bounding boxes are limited, and image 
labels are created using natural language processing, so 100 
percent accuracy of labels is not guaranteed. ChestX-ray14, an 
extended version of ChestX-ray8, was also recently released 
by the US National Institutes of Health (NIH), containing over 
112,000 CXR scans from more than 30,000 patients.

PADCHEST includes more than 160,000 images from 67,000 
patients at Hospital San Juan Hospital (Spain) from 2009 
to 2017 [4]. The images cover six different position views, 
including additional information on image acquisition and 
patient demography. The labels of this data set are notably rich, 
including 174 findings, 19 diagnoses, and 104 localizations (as 
compared to approximately 14 binary labels for each of the other 
data sets). MIMIC-CXR is a data set slightly larger than ChestX-
Ray8 (around 377,000 images) that also includes radiology 
report text along with the chest radiographs [5]. In addition to 
the images, 227,835 radiographic studies are also included along 
with deidentified DICOMs. This is the data set used most often 
by ORNL medical image researchers, and links to the MIMIC-
IV EHR data set. CheXpert is another data set that is similar in 
size to MIMIC-CXR (around 224,000 images). While it does 
not link to a full EHR data set, CheXpert does have high-quality 
labels including more ground truths from radiologists than the 
other available data sets.

Finally, the VinDr-CXR, is a collection of 18,000 images 
collected at Hospital 108 and Hanoi Medical University 
Hospital, two large hospitals in Vietnam [6]. Though smaller 
than the other data sets, this set is of high quality: the published 
data set consists of 18,000 postero-anterior (PA) view CXR 
scans that come with both the localization of critical findings 
and the classification of common thoracic diseases. Every image 
in the training set (15000 images) was labelled by 3 radiologists, 
and for the 3000 test images, 5 radiologists read each one. These 
have been labeled with 22 critical findings (local labels) and 
6 diagnoses (global labels), with each finding indicated by a 
bounding box.

2.1 Medical Imaging Data Storage
Most medical data are generated by the electronic healthcare 
record system and ancillary systems such as pathology, pharmacy, 
radiology, etc . All of these entities are relatively interoperable 
in that the data are linked by common identifiers, such as patient 
or encounter IDs. Clinical/corporate Data Warehouses (CDW) 
serve to aggregate these various data sources and enable a 
variety of clinical research, such as phenomic analyses. Multiple 
resources of medical data are available to the medical community. 
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i2b2, developed by Harvard Medical School and funded by the 
National Institute of Health, integrates clinical and genomic data 
into a data warehouse-style star schema. Another widely-used 
warehouse solution is Dr. Warehouse, developed at Necker’s 
Children’s Hospital in Paris, which is a framework that integrates 
26 data sources (EHR, biological data, and other document-
based data) from over 500,000 patients and enables multiple 
views for clinicians to generate medical narrative reports [7]. 
Other proposed solutions include Stanford’s STRIDE, radBank 
and radTF, Vanderbilt’s research data warehouse solution, Mayo 
Clinic’s Enterprise Data Trust, DW4TR, METEOR, and the 
SMart EYeE DATabase [8-15].

To make data aggregation and therefore analyses easier, several 
efforts have emphasized creating standards for medical data 
archiving. The OHDSI initiative has published a common data 
model, the OMOP-CDM (Observational Medical Outcomes 
Partnership). This contributed to standardization for medical 
data warehousing, and has been adopted by many partners over 
the world. i2b2 is OMOP-compatible, as is Dr. Warehouse. 
However, OMOP is specific for clinical data, needs additional 
standards to accommodate the metadata associated with medical 
images.
Since medical imaging data have large storage requirements 
and are not in a format easily accommodated by traditional data 
warehouses, they are rarely integrated into CDWs (i.e., stores 
of tabular data and text that are easily grouped into fields and 
tables). Instead, medical images are frequently stored separately 
and linked to any related patient data and text-based study 
interpretation via an identifier (or multiple identifiers, depending 
on the images). Of the solutions listed above, they either do not 
include images as part of the main data model, or the system 
inadequately addresses the logistical challenges of managing 
image data collection, integration, and data quality assurance. 
One promising recent development in standardization of medical 
imaging data is the recent publication of the Radiology Common 
Data Model (R-CDM), though further research is necessary to 
understand how this data model may be integrated into current 
radiology image extract transform and load (ETL) workflows, 
such as those described in this paper [16].

3. Methods
This project was approved by the VA Central Institutional 
Review Board (IRB).

Figure 1: Overview of DICOM Image Transfer Pipeline (VA 
in blue and ORNL in green)

The processing solution was carefully designed, implemented, 
validated, and documented. Because the transfer process is 
laborintensive, images were transferred in batches, where 
multiple imaging studies are transmitted as a group. This 
approach allowed for iterative development, and benefited 
both the persons facilitating the transfers from the clinical 
environment as well as the researchers. Figure 1 shows an 
overview of the transfer process; the blue box corresponds to 
the Clinical Environment pipeline at the VA, and the green to the 
Research Environment at ORNL.

Below are the detailed steps that each pipeline entails: one 
from the VA’s clinical environment, where the images were 
searched, aggregated, and sent, and one from ORNL’s research 
environment, where images were received, processed, and stored 
for use. Both pipelines require input from clinical and consulting 
Subject Matter Experts (SMEs).

● Pipeline 1: Clinical Environment (VA)
Step 1: VA and ORNL agree on a batch size for image transfer(s)
Step 2: Process SME requests batch from imaging SME
Step 3: Imaging SME identifies the radiological studies that 
meet the current batch size
Step 4: This list of studies (accession numbers) is requested
from the facility administrator
Step 5: The facility extracts the images based on the study list 
and notifies the transfer team of the staging location
Step 6: The transfer team transfers the files to ORNL and notifies 
the VA SME
Step 7: VA SME notifies ORNL of successful transmission
Step 8: Upon receipt confirmation from ORNL, transfer team 
deletes batch from the staging location

The clinical environment pipeline’s first four steps require 
input from a minimum of three individuals. Step 1 requires 
collaborative decision making between the clinical and research 
sides, where a designated batch size (i.e., sum total size or 
number of files) is agreed upon. Steps 2 and 3 entail collaboration 
between a Process SME and Imaging SME, who provide a 
facility administrator with a list of accession numbers (step 
4) to extract the images from the VA’s research environment, 
a large facility data warehouse (step 5). Steps 6 - 8 entail the 
actual image transfer, which also requires direct communication 
between individuals to confirm image receipt and subsequent 
deletion from the staging area in the clinical environment.

● Pipeline 2: Research Environment (ORNL)
Step 1: Batch receipt confirmed by ORNL IT SME
Step 2: File hashes created and stored as metadata by ORNL 
Engineering SME
Step 3: Images scanned for file and study related metadata and 
persisted in research workspace by ORNL Engineering SME
Step 4: Report text and demographic data persisted in the 
research workspace
Step 5: Data profiled for quality and reporting

The research environment’s pipeline begins with confirmed 
receipt of the images, Step 7 in the clinical environment pipeline. 
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findings (local labels) and 6 diagnoses (global labels), with each
finding indicated by a bounding box.

2.1 Medical Imaging Data Storage
Most medical data are generated by the electronic healthcare record
system and ancillary systems such as pathology, pharmacy, radiol-
ogy, etc . All of these entities are relatively interoperable in that the
data are linked by common identifiers, such as patient or encounter
IDs. Clinical/corporate Data Warehouses (CDW) serve to aggregate
these various data sources and enable a variety of clinical research,
such as phenomic analyses. Multiple resources of medical data are
available to the medical community. i2b2, developed by Harvard
Medical School and funded by the National Institute of Health,
integrates clinical and genomic data into a data warehouse-style
star schema. Another widely-used warehouse solution is Dr. Ware-
house, developed at Necker’s Children’s Hospital in Paris, which is
a framework that integrates 26 data sources (EHR, biological data,
and other document-based data) from over 500,000 patients and
enables multiple views for clinicians to generate medical narrative
reports[15]. Other proposed solutions include Stanford’s STRIDE[1],
radBank[18] and radTF[7], Vanderbilt’s research data warehouse
solution[6], Mayo Clinic’s Enterprise Data Trust[5], DW4TR[8],
METEOR[17], and the SMart EYeE DATabase[11].

To make data aggregation and therefore analyses easier, several
efforts have emphasized creating standards for medical data archiv-
ing. The OHDSI initiative has published a common data model,
the OMOP-CDM (Observational Medical Outcomes Partnership).
This contributed to standardization for medical data warehousing,
and has been adopted by many partners over the world. i2b2 is
OMOP-compatible, as is Dr. Warehouse. However, OMOP is spe-
cific for clinical data, needs additional standards to accommodate
the metadata associated with medical images.

Since medical imaging data have large storage requirements
and are not in a format easily accommodated by traditional data
warehouses, they are rarely integrated into CDWs (i.e., stores of
tabular data and text that are easily grouped into fields and tables).
Instead, medical images are frequently stored separately and linked
to any related patient data and text-based study interpretation via
an identifier (or multiple identifiers, depending on the images). Of
the solutions listed above, they either do not include images as part
of the main data model, or the system inadequately addresses the
logistical challenges of managing image data collection, integration,
and data quality assurance. One promising recent development in
standardization of medical imaging data is the recent publication of
the Radiology Common Data Model (R-CDM) [16], though further
research is necessary to understand how this data model may be
integrated into current radiology image extract transform and load
(ETL) workflows, such as those described in this paper.

3 METHODS
This project was approved by the VA Central Institutional Review
Board (IRB).

Figure 1: Overview of DICOM Image Transfer Pipeline (VA
in blue and ORNL in green)

The processing solution was carefully designed, implemented,
validated, and documented. Because the transfer process is labor-
intensive, images were transferred in batches, where multiple imag-
ing studies are transmitted as a group. This approach allowed for it-
erative development, and benefited both the persons facilitating the
transfers from the clinical environment as well as the researchers.
Figure 1 shows an overview of the transfer process; the blue box
corresponds to the Clinical Environment pipeline at the VA, and
the green to the Research Environment at ORNL.

Below are the detailed steps that each pipeline entails: one from
the VA’s clinical environment, where the images were searched,
aggregated, and sent, and one from ORNL’s research environment,
where images were received, processed, and stored for use. Both
pipelines require input from clinical and consulting Subject Matter
Experts (SMEs).

Pipeline 1: Clinical Environment (VA)
Step 1: VA and ORNL agree on a batch size for image
transfer(s)
Step 2: Process SME requests batch from imaging SME
Step 3: Imaging SME identifies the radiological studies that
meet the current batch size
Step 4: This list of studies (accession numbers) is requested
from the facility administrator
Step 5: The facility extracts the images based on the study
list and notifies the transfer team of the staging location
Step 6: The transfer team transfers the files to ORNL and
notifies the VA SME
Step 7: VA SME notifies ORNL of successful transmission
Step 8: Upon receipt confirmation from ORNL, transfer team
deletes batch from the staging location

The clinical environment pipeline’s first four steps require input
from a minimum of three individuals. Step 1 requires collaborative
decision making between the clinical and research sides, where
a designated batch size (i.e., sum total size or number of files) is
agreed upon. Steps 2 and 3 entail collaboration between a Process
SME and Imaging SME, who provide a facility administrator with
a list of accession numbers (step 4) to extract the images from the
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File hashes are generated and saved as a “snapshot” of what has 
been received. Next are scripts that open each image to extract 
key DICOM header metadata elements as well as information 
about the file itself, such as size and location, which is saved 
to the research workspace. Using these metadata, we then 
extract related structured and unstructured data from the larger 
VA data warehouse. This includes demographic information, 
study dates, and report texts that can be linked directly to the 
image data. Having all these data in the research workspace 
minimizes the need for researchers to perform time-consuming 
data engineering tasks. Finally, this process profiles the resulting 
data on a dashboard that generates reports (e.g., any metadata 
errors on read) for both operational and research use.

3.1 Data Collection
The chest x-ray pilot began by using images from a single VA 
site to limit the complexity of data collection. Even still, each 
site can contain multiple Picture Archiving and Communicating 
System (PACS) interfaces. To ensure close collaboration 
between ORNL and the VA for the duration of the project, we 
chose a VA site that included a VA imaging subject matter expert 
to assist with consulting and validation. Furthermore, as this 
pilot was to develop an entirely new ETL process for medical 
images, we chose an iterative approach to ensure continuous 
process improvement.

3.1.1 Image Identification
First, image studies are identified by a subject matter expert at 
the VA. To do this, they need to identify the accession numbers 
associated with each image (the DICOM standard uses a system-
generated accession number to link the image study order to the 
imaging system). These associated accession numbers are divided 
into manageable batches and then used by the VA SME to pull 
the image files. Image extraction was noticeably slower during 
regular business hours, and overall the process was relatively 
slow. For instance, 40 accession numbers took 9 hours to extract 
from the system. A different, smaller batch of 10 took somewhat 
less time, but also required human intervention and did not add 
to overall productivity of the process. Furthermore, running a 
job on more than one server required special care to ensure the 
correct data was pulled. Overall, this is crucial information for 
any effort at scaling, as any move toward automation will need to 
consider business hours, system overall capability, time required 
for overall image extraction, as well as process quality control.

After extraction, the image files are transferred to ORNL, after 
which the accession numbers are then used at ORNL to validate 
the image transfers. File transfer time was also time-dependent, 
as the image SME noticed that file transfer to ORNL took 
significantly less time in the morning than the afternoon. Again, 
as efforts toward automation of this process grow in size and 
scope, these details will be essential to note and understand to 
streamline the overall process.

3.1.2 Batch Transfers
The ORNL copy of VA CDW receives daily updates from the 
VA using a secure connection between the sites. An Extract, 
Transform, and Load (ETL) process purpose built by the VA 

keeps the ORNL copy of CDW current. Since this process is 
relied upon for other research, it was imperative that we do 
not interfere with that process. The batch approach to transfers 
allows us to the potential for saturating the connection and 
interfering with the existing ETL process. By limiting the 
number of studies in a batch, we were able to control the load 
on the transfer pipeline based on transfer size and time of day.

3.1.3 Processing Pipeline and Data Integration
 Upon arrival to the data transfer node, an automated process 
creates a hash value of each image file to ensure image 
integrity. This hash value allows for easy validation of images 
by researchers, e.g., that the image hasn’t been subsequently 
corrupted or modified after being transferred and stored on 
ORNL’s infrastructure. Once released to the research space, the 
processing pipeline performs a number of critical steps which is 
the final step in the data collection process.

First, the processing pipeline reads selected DICOM header 
information for each transferred image, which validates that 
the file transferred is truly a DICOM image and not another 
image format. This is a crucial step, as during our pilot, we 
found a small number of images that failed. However, on closer 
examination, we found that a legacy system stored the image and 
header data separately. When these studies were converted to 
the modern DICOM standard, the four byte "DICM" prefix was 
omitted–so the failed images were, in fact, DICOM images. As 
there are plans to eventually automate this process, it is essential 
that we understand such discrepancies and idiosyncrasies, to 
help truly distinguish between undesired data and data arriving 
in unexpected formats due to legacy systems. The team uses an 
open source Python library, pydicom, to read in the DICOM 
header metadata, which has the ability to “force” read the header 
information, allowing us to capture that status of the image as 
modern, legacy, or corrupt [17].

Next, the information extracted from the DICOM header is 
persisted in a database set aside specifically for the research 
project. Researchers can access the selected DICOM elements 
quickly and easily without having to go back to the actual 
image files. This includes device related information such as 
kilovoltage peak (kVp), exposure time, and resolution as well 
as manufacturer and software version. It also includes patient-
related information such as procedure description, image type, 
and view position. This also includes metadata information 
such as accession number, file location, and size. The accession 
number can be validated against the accession number list 
provided by the VA during the first part of the data collection 
process.

Next, the pipeline is used to snapshot and persist key clinical 
and demographic information from the VA’s Corporate Data 
Warehouse (CDW). Having this information readily available 
alongside the image data allows researchers to minimize time 
spent on data engineering and maximize time spent on research.

For now, the entire collection and integration pipeline runs upon 
arrival of a new batch of images. As new elements in the DICOM 
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standard and/or in the clinical warehouse are identified, they are 
automatically collected in the next batch ingress. The pipeline 
can process approximately 157 images per second (500k+ files 
per hour). Future versions of the pipeline will include hardware-
accelerated processing and ultimately will move to a differential 
approach for processing only newly arrived data. Other than a 
small number of metadata elements (e.g., batch number), the 
pipeline is fully contained and thus could be easily automated.
Finally, we profiled and pushed the metadata to an interactive 
dashboard that is useful for operational status as well as research 
exploration. While the primary goal of the pilot was not to 
generate a list of standardized data terms and processes related 
to image data collection (e.g., formats, roles of people involved, 
processes, platforms, governing entities, and so on), this is still 
something the team views as essential to support research related 
to electronic health records.

4. Challenges and Insights
The challenges related to medical image integration with clinical 
data cannot be understated. The research environment hosted at 
ORNL is a 38.5 TB data warehouse containing over 68 schemas 
and over 1,600 tables holding over 20 years of patient data 
for US Veterans. Access to data within is based on user status 
restrictions with multiple granularity levels, so integrating image 
data to this vast data store requires attention to multiple data 
components. Below we will describe some of the key lessons 
learned during this pilot, with an eye to how this may scale when 
additional modalities and/or facilities are added to the process.

One standout challenge was related to data quality and trust, which 
will be described in detail below. Bad labels and inconsistent 
identifiers may require months of necessary data reconciliation 
and cleanup work before an investigation can even begin. Thus, 
eliminating the task of linking data and potentially dealing with 
incorrect or otherwise corrupted identifiers across data stores, 
coupled with highly performant storage, allows researchers to 
focus solely on scientific research rather than time-consuming 
data wrangling and quality control.

4.1 Summary of Lessons Learned
There are many key insights this pilot project brought to light. 
First, metadata management is not only a huge problem, but the 
systems designed to manage transferring medical images will 
need to address this issue up front, not as an afterthought. ORNL 
spent many hours clarifying what the clinical side intended to 
send versus what was actually received, much of which was due 
to issues with metadata such as accession number formatting, 
duplication, or other header data within the image files that 
required manual scrutiny. Some of this was due to legacy data, 
which is also a reality that any efforts toward automation will 
need to address: legacy data may reflect former standards and 
policy applications (e.g., prepending identifiers with additional 
characters) that can hinder data processing pipelines. Without 
properly addressing this, there is little chance of effectively 
automating this process, which will subsequently affect 
scalability.

Furthermore, it is essential that image search, retrieval, and 

transfer do not interfere with existing business processes or 
systems tied to day-to-day clinical care. Many hospital systems 
are in use during regular hours by physicians, and cannot be 
“tied up” by extensive search/retrieval tasks.

We learned a number of lessons from the process itself. While 
developing the process iteratively did allow the team to add 
features to the pipeline quickly, it also significantly added to 
the amount of technical debt accrued during the QA process. 
For example, during the pilot we decided to include accession 
and file metadata with each batch in the form of manifest files. 
These manifest files can be used to confirm that all intended files 
were transferred. However, these manifest files do not exist for 
previously transferred batches. Therefore, automated processes 
need account for this absence without marking the batch as 
incomplete. We were also able to understand how many manual 
processes are involved in image search, aggregation, and transfer, 
and have a much clearer conception of what can be investigated 
for streamlining. Visualization of descriptive statistics was 
useful by operations and planning teams for such activities as 
understanding batch size and disk usage. Researchers also found 
this useful for understanding distributions based on elements 
such a manufacturer and modality.

Ultimately, this pilot indicated that there is a real research need 
for having images linked to both structured and unstructured 
clinical data within the same environment. Clinical systems are 
not set up for research (e.g., connected to HPC or systems that 
enable aggregation and analysis of data), so moving these images 
to a location where researchers have immediate and easy access 
to HPC, ample storage, and software packages is essential. Our 
investigation not only highlights this need, but also underscores 
what specific challenges should be addressed when developing 
a scalable system that not only transfers medical images of 
various sizes and modalities, but also combines them with other 
complex clinical data.

4.2 Data Quality and Trust
The pilot identified potential issues with data quality in what 
ultimately became two stages. The first stage sought to understand 
image data at a very high level: images were inventoried based on 
expected file count. Meaning, a basic chest x-ray study can consist 
of minimum two images; a front view and a side view, plus four 
to six modified versions of the front and side view, each captured 
by the same hardware in relevant angles by radiologist. Thus, if 10 
x-ray studies are anticipated, then the approximate total expected 
image files will be around 80. As a result, during the first stage the 
team was able to anticipate an approximate average of 7-8 files 
per study, and gauge the expected file ingest volume accordingly.

However, once we added MRI studies to the data ingest pipeline, 
the team quickly learned that such a simple, high-level approach 
would not scale for more complex image data and research goals. 
This is because a single MRI image can consist of a wide number 
of images, generally between 200 and 1,600 image files. Thus, we 
determined that there was a second stage necessary to understand 
how to account for the files we expected from the VA.
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The second stage, then, became an iterative process. The 
team developed and incorporated a procedure to include basic 
metadata with each batch of files in the form of two text files 
that are generated during the file transfer. These files contain 
study and file metadata, respectively. As the format of these files 
stabilized, the ingest data pipeline parsed and tested each batch. 
This allowed for more advanced features such as rejecting a 
batch while automating what is currently still a manually labor 
intensive process. This second stage has revealed a number of 
opportunities for improvement, as the complexity of these file 
transfers cannot be understated. Potential issues with ensuring 
data quality include proper management of duplicate files, 
studies, and/or batches, as well as duplicated accession numbers 
and other identifiers.

As stewards of the clinical data, it is imperative that the research 
team not just successfully receive and store the images, but also 
account for what has been received. This accounting allowed the 
team to effectively communicate to the clinical research team if 
data were missing, received in duplicate, or if data that should 
not have been sent was accidentally communicated. This was 
essential to keep the team compliant with any IRB restrictions 
as well as communicate to end users whether accounting for 
duplicate or missing information was necessary (and how they 
should do that).

4.3 Access, Compute, and Cost
Several areas were not addressed with this pilot project. 
Logistics surrounding secure access to the images (on both 
the clinical and research sides) and other necessary security 
measures are built upon security and privacy policies already 
in place as set by the VA and managed by ORNL’s Knowledge 
Discovery Infrastructure (KDI) team. Furthermore, the research 
environment within the ORNL enclave uses a Lakehouse 
approach to access control and security. Other investigations 
and subsequent systems development may need to incorporate 
policies and procedures related to IRB restrictions or other 
access and security concerns [18].

Furthermore, the ORNL environment is already set up for 
medical analyses on high performance machines, all with access 
to ample file storage. Logistics and cost related to standing up 
appropriate hardware as well as staff to manage HPC systems 
was out of scope of this pilot. For the next iteration of our 
investigation regarding medical image transfer and storage, the 
team intends to focus not just on scalability, but on cost, and 
what cost reduction measures may be taken as this effort scales.

5. Conclusion
Healthcare imaging systems pose numerous challenges for 
researchers wishing to conduct large imaging studies. Having 
a trusted paradigm for gathering and organizing imaging in a 
research environment allows researchers to focus primarily on 
research and less on planning and engineering. With this pilot, we 
sought to understand what this paradigm entails. Of significant 
importance is the quality of the image metadata, which may 
vary depending on legacy systems and/or how policy choices 
are reflected in what is recorded in the metadata. Additionally, 

understanding the extent to which human interaction was 
necessary for the transfer is key, as any system in place to enable 
automated image transfer will need to account for clinic-specific 
workflows, that, when scaled to multiple institutions and/or 
modalities (that may involve additional systems, departments, 
policies, and so on), will grow exponentially complex.

Our investigation was initially based on the data and workflows 
for one clinic, and one image modality only (chest x-rays) and 
later expanded to abdominal MRIs. As such, the problems we 
uncovered with 1 million images and 5 terabytes of data will 
grow exponentially when scaled to cover all possible medical 
image modalities as well as all of the clinical facilities that store 
these images. Estimating the sum total data this will entail (along 
with the variety of institutional systems and policies affecting 
the data quality) is outside the scope of this project, and part of 
why we chose to approach this problem by conducting a study of 
just one location and modality. As machine learning research on 
medical images increases, however, understanding the processes 
involved in increasing and storing these images is essential for 
developing large research environments with access to a data 
common.
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