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Abstract
This article uses two basic arguments: an even number denoted E' is either E' = 2n x E (E being even) or it is the sum of two or 
more even numbers. In the first case, E' = 2 n x E, this paper shows that primes p < E/2 and if E = p + q (q being prime and > 
E/2) and if E' = p + qx (qx being prime) then qx = (2n - 1)p + 2nq with n idicating the rank of the multiple such that n = 0 for E, 
n = 1 for 2 x E, n = 2 for 22 x E and so on. Therefore, 2n x E = p + (2n - 1)p + 2nq. E' and E must share one common prime p < 
E/2 for this equation to be verified. The primes qx follow an exponential curve with correlation coefficient R2 ≈ 1. This proves 
that the prime p close to 0 has an infinity of possible equidistant primes qx and therefore supports verification of Goldbach's 
conjecture to infinity. In the second case, where E' is the sum of two or more even numbers, the paper shows in a simple way 
that an odd number and a prime number can be the sum of a minimum of three primes. This indicates that weak conjecture of 
Goldbach is deduced from the strong one. Finally, the paper discusses the significance of these results for proving the truth of 
both Goldbach's conjectures to infinity.
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1. Introduction
Goldbach's strong conjecture remains unsolved in mathematics. 
Until now, it has been tackled by pure and applied mathematics. 
In applied mathematics, the use of computers and informatics has 
made it possible to verify its authenticity to increasingly remote 
limits but an empirical verification is not a formal mathematical 
proof in the strict sense of the term, since mathematics is a 
hard science that works only with axioms or theorems [1,2]. In 
pure mathematics, some researchers have tried to tackle this by 
analyzing prime numbers or their equidistance from the natural 
integers or by analyzing the gaps between them ( [3,4]. Others 
have used other approaches to prove Goldbach's strong conjecture 
[5-8]. 

But why does this conjecture resist demonstrability and defy all 
recognized mathematicians in the field? For two key reasons. The 
first is that we don't know what the most common and unvarying 
form of even numbers is: are they all the sum of two primes to 
infinity, or of more primes, and are there any numbers that are 
exceptions to this rule or not? The other, even more difficult reason 
is that, if this common form exists, will it go from 0 to infinity? 
This second reason is difficult to grasp, because we don't know 
whether prime numbers remain as dense at infinity. Indeed the 
prime number theorem being proved independently by Jacques 

Hadamard and Charles Jean de la Vallée Poussin in 1896 using 
ideas introduced by Bernhard Riemann (in particular, the Riemann 
zeta function) (Wikipedia), rather suggests that they become 
rarer at infinity whereas other mathematicians have demonstrated 
theorems that are well known today and which indicate that prime 
numbers go to infinity including Dirichlet theorem, Erd˝os’s proof, 
Euler's proof, and Bertrand's postulate; see also https://proofwiki.
org/wiki/Number_of_Primes_is_Infinite) [9].

The real problem is that infinity is an abstract and very relative 
notion. The proof is that our infinity today is much further away 
than it was in Goldbach's day, and with the relentless progress of 
computing and computers, mathematics will reach limits never 
before known in the history. The other astonishing aspect of 
this conjecture is that it can be approached by basic elementary 
mathematics or with more complex formal concepts that are still 
subjects of research today.  These conjectures still merit study 
and reflection on their significance in arithmetic at all levels. This 
article is therefore another attempt to shed light on this conjecture 
using basic, accessible mathematics.

In two previous articles (under review elsewhere), I emphasized 
that Goldbach's strong conjecture depends on the equidistance 
of the natural integers with respect to the primes, and that this 
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conjecture obeys the equations 6x ± 1, while proposing new 
methods of converting an even number into the sum of two primes. 
The present article is a continuation of these two papers, this time 
focusing on the limits of equidistance to infinity and thus providing 
a new piece of information that closes this work and brings it to a 
definitive conclusion.

2. Results
Conversion of an even E > 4 and the evens 2n x E in sum of two 
primes in line with Goldbach's strong conjecture. First case : E is 
an even 3n or multiple of 3.

1a. Lemma a : « if (2n-1 x E = p + q such that q > p) and (2n x E 
= p + qx such that qx > p). Then qx = p + 2q and this is true to 
infinity ».

•	 For Goldbach's strong conjecture to be true, a natural number 
n > 2 must be surrounded before and after by two equidistant 
primes p and q such that q > p, the sum of which is 2n. In other 
words, if we pose any even number as E = 2n, p and q must 
be equidistant from   E/2 = n such that E/2 - p = q - E/2.  Let t 
= E/2 - p = q - E/2.

•	 p + t = E/2 and p + 2t = q ↔ p + q = (E/2 – t) + (E/2 + t) = 2 
x E/2 = E.

•	 In this article, we look at the link between prime numbers q > 

E/2 of integers equal to 2 x E; 22 x E,...2n x E.
•	 Be E any even > 4. Let E be 3n (multiple of 3). Let us first 

determine π(E/2) or all primes < E/2. Then primes < E/2 are 
denoted p and those > E/2 are denoted qx (or q, q', q'', q''' ,..). 

•	 « Be E x 2 = Ex such that E = p + q and Ex = p + qx then qx = 
p +2q ». Indeed, Ex = 2E = 2(p + q) = 2p + 2q = p + (p + 2q) = 
p + qx ↔ qx = p +2q. Table 1 shows the examples of     E = 30, 
E = 60 and E = 120.  We have the primes p of π(E/2) including 
π(15), π(30), and π(60) and calculate E/ 2 – p = t. Then q = p 
+ 2t for each number. But since 60 = 2 x 30 and 120 = 2 x 60 
then if 30 = p + q ; 60 = p + q' and 120 = p + q'' then q' = p + 
2q and q'' = p + 2q'.

•	 The three E/2 numbers (15 ; 30 and 60) are at the center of two 
equidistant primes whose sum will give 2 x 15; 2 x 30 and 2 x 
60.  Let p and q be the equidistant primes at 15, p and q' those 
at 30, and p and q'' those at 60. Hence q' = p + 2q, and q'' = 2 
+ pq'. Here are some examples ; 30 = 7 + 23 ; 60 = 7 + ( 7 + 2 
x 23) = 7 + 53 ; and 120 = 7 + (7 + 2 x 53) = 7 + 113. This is 
true for all other primes < E/2 or π(E/2). Another Example 30 
= 13 + 17 ; 60 = 13 + (13 + 2 x 17) = 13 + 47 ; and 120 = 13 + 
(13 + 2 x 47) = 13 + 107.

•	 Note p + 2q is not always prime, it might also be composite. 
We only focus on primes. 

•	 Note that qx = p + 2q only when the numbers 2n x E share p as 
an addition term with E.

E = 30 and E/2 = 15 2 E = 60 and E/2 = 30 4E = 120 and E/2 = 60
p  t = E/2 - p q p  t = E/2 - p q' = p + 2q p  t = E/2 - p q'' = p + 2q'
3 12 27 3 27 57 3 57 117
5 10 25 5 25 55 5 55 115
7 8 23 7 23 53 7 53 113
11 4 19 11 19 49 11 49 109
13 2 17 13 17 47 13 47 107
  17 13 43 17 43 103

19 11 41 19 41 101
23 7 37 23 37 97
29 1 31 29 31 91

31 29 89
37 23 83
43 17 77
47 13 73
53 7 67

Table 1: The table shows primes denoted p of π(E/2) including E/2 = 15 ; E/2 = 30 ; and E/2 = 60.  Let t = E/2 – p. Let q be any 
prime > E/2 such that p + q = 2 x E/2 = E. Note E = 30 ; 2E = 60 ; and 4E = 120 in the table.

Equidistant primes p and q ; or p and q' ; or p and q'' such that p + q 
= 30 ; p + q' = 60 and p + q'' = 120 are highlighted. The table shows 
that q' = p + 2q and q'' = p + 2q'. Note E = p + q ; 2E = p + q' and 
4E = p + q'' according to Goldbach's strong conjecture.

•	 Table 2 extends Table 1 and shows 240 = 2 x 120 so E = 240 
and E/2 = 120. Let p be any prime of π(120) < 120. If 120 = p 
+ q'' and 240 = p + q''', we see that q''' = p +2q''. As an example 

120 = 17 + 103 and 240 = 17 + (17 + 2 x 103) = 17 + 223. Or 
120 = 47 + 73 and thus 240 =  47 + (47 + 2 x 73) = 47 + 193. 
This continues to infinity, showing that p +2q generates an 
infinite number of primes that are equidistant from p.

•	 Table 2 shows an important fact: equidistant primes q''' > E/2 
(E/2 = 120) follow the gaps between p within π(E/2). In other 
words, to convert an even E into the sum of two primes, we 
must first determine π(E/2) and calculate E/2 - p = t and q = p 
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+2t. We see that the primes q > E/2 follow the gaps between 
the primes p < E/2. For example 240 = 7 + 233 and 240 = 13 
+ 227 we have 13 – 7 = 233 – 227 = 6. Or 240 = 7 + 233 and 
240 = 47 + 193 then 47 – 7 = 233 – 193 = 40. This can also 
be seen in Table 1 This method can be pratical to convert any 
even E in sum of two primes.

•	 Note that for an even E 3n, E/2 – p = t is either prime or 
composite numbers that are not 3n.

•	 Another important fact is that calculating the second prime 
q (or q', q'', q''',...) as in Tables 1 and 2 shows that we have 
all the conversions to the sum of two primes of the numbers 
E/2. This can be seen in the first two columns orresponding 

to p and (E/2 – p) of E/2 = 30; E/2 = 60 in Table 1 and the 
case of E/2 = 120 in Table 2. This means that the conversion 
of a number 2n x E always depends on that of the number  
2n-1 x E. For example, in Table 2 we have all the conversions 
into the sum of two primes of the number E/2 = 120 (the first 
two columns corresponding to p and E/2 - p) from which we 
deduce that of E/2 x 2 = 120 x 2 = 240. This is undoubtedly 
a very efficient method for converting any even number > 4 
into the sum of two primes in line with Goldbach's strong 
conjecture. However, note that t = E/2 – p of (2n - 1 x E) number 
is not always prime but can also be composite, but in all cases, 
determine the conversion of the (2n x E) number.

p t = E/2 - p q''' = p +2q''
3 117 237
5 115 235
7 113 233
11 109 229
13 107 227
17 103 223
19 101 221
23 97 217
29 91 211
31 89 209
37 83 203
41 79 199
43 77 197
47 73 193
53 67 187
59 61 181
61 59 179
67 53 173
73 47 167
79 41 161
83 37 157
89 31 151
97 23 143
101 19 139
103 17 137
107 13 133
109 11 131
113 7 127

Table 2:  The table shows primes denoted p of π(E/2) of E = 240 and E/2 = 120 (note 240 = 23 x 30).  Let t = E/2 – p. Let q be any 
prime > E/2 such that p + q = 2 x E/2 = E. Equidistant primes p and q''' are highlighted. The table shows that q''' = p + 2q'' (q'' 
of E = 120 and E/2 = 60 of Table 1). Then E = 240 = p + q'''.

1b. Lemma b : « Primes p + 2q of of successive 2n x E numbers line 
up on an exponential curve with a correlation coefficient R2 ≈ 1 »

Be E = p + q and let us consider the numbers 2n x E = p + qx. The 
table 3 starts with                          

E = 30 = 7 + 23. Then  2n x E = 7 + qx  are determined and qx 
calculated kowing that if 2n-1 x E = p + q then 2n x E = p +qx such 
that qx = p + 2q. The graphic 1 shows that the prime numbers 
qx equidistant at p (= 7) from the numbers 2n x E are strongly 
correlated with a correlation coefficient R2 ≈ 1 and line up on 
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an exponential curve. The graph shows the qx primes according 
to their rank or order of appearance. Whether you increase the 
number of qx primes by calculating other numbers 2n x E, the qx 
primes always line up on an exponential curve. If we set E = p + 

q, this shows that prime number p < E/2 has an infinite number 
of equidistant primes qx > E/2 of form       p + 2q resulting from 
numbers of type 2n x E.

 2n x 30 E  E = 7 + qx
n = 0 30 23
n = 1 60 53
n = 2 120 113
n = 3 240 233
n = 5 960 953
n = 6 1920 1913
n = 7 3840 3833
n = 8 7680 7673
n = 10 30720 30713

Table 3: Be 2n-1 x E = p + q and  2n x E = p + qx. The table gives primes qx = p + 2q for E = 30 = 7 + 23 and p = 7 of successive 2n-1 

x E  and 2n x E numbers listed from top to bottom in the second column. Note that not all  E = 7 + qx are primes but can also be 
odd composite (like the cases of n = 4 or n = 9).

Table 3: Be 2n-1 x E = p + q and 2n x E = p + qx. The table gives primes qx = p + 2q for E = 30 = 7

+ 23 and p = 7 of successive 2n-1 x E and 2n x E numbers listed from top to bottom in the second

column. Note that not all E = 7 + qx are primes but can also be odd composite (like the cases of n =

4 or n = 9).

2n x 30 E E = 7 + qx

n = 0 30 23

n = 1 60 53

n = 2 120 113

n = 3 240 233

n = 5 960 953

n = 6 1920 1913

n = 7 3840 3833

n = 8 7680 7673

n = 10 30720 30713

Graphic 1: Primes qx of successive 2n-1 x E and 2n x E numbers line up on an exponential curve

with a correlation coefficient R2 ≈ 1 according to their rank or order of appearance (n value). The

graphic is from table 3 with p = 7 and E = 30 = 7 + 23. The graphic shows primes qx such that 2n

x E = p + qx and qx = p + 2q with q from the preceding 2n -1 x E.

Prime qx

Order of appearance (exponent n value)

1C. The equation of the exponential progression of the qx factors of the numbers 2n x E.
Graphic 1: Primes qx of successive 2n-1 x E  and 2n x E numbers line up on an exponential curve  with a correlation coefficient R2 ≈ 1 
according to their rank or order of appearance (n value). The graphic is from table 3 with p = 7 and    E = 30 = 7 + 23. The graphic shows 
primes qx such that 2n x E = p + qx and qx = p + 2q with q from the preceding 2n -1 x E.

1C. The equation of the exponential progression of the qx factors 
of the numbers 2n x E.

•	 Let E = p + q (p and q are prime numbers) such that q > p and 
q - E/2 = p - E/2. Let qx be any prime of 2n x E. We have 2 x 
E = p + (p +2q) as seen above and so qx = p + 2q. For 22 x E 
= 2p + 2(p + 2q) = 4p + 22q = p + (3p +  22q). For 23 x E = 2p 
+ 2(3p + 22q) = p + (7p + 8q). For 24 x E = 2p + 2(7p + 8q)) 
=  p + (15p + 24q) and so on. Therefore 2n x E =  p + ((2n - 1)
p + 2nq)) → qx = (2n - 1)p + 2nq with n ≥ 0. The exponent n is 
the variable which represents  the order of the multiple, so n 
= 0 for E ; n = 1 for 2 x E ; n = 2 for  for 22 x E ; and n = 3 for 
23 x E and so on.                          

•	 Using standard mathematical equation notation, we have y = 
qx = (2x - 1)a + 2xb so that x is the variable which corresponds 
to the order of the multiple, so x ≥ 0. We have x = 0 for 20 x E 
; x = 1 for 21 x E and increases by one unit from one multiple 
to the next. We have the constants a and b such that a = p and 
b = q and 20E = E = a + b = p + q.

•	 Note that this equation doesn't always produce a prime, but 
it possibly produce an infinity of primes at positions we 
cannot predict unless we perform a primality test. However, 
this equation proves that p has an infinite number of possible 
equidistant  (2x - 1)a + 2xb primes, which are essential if 
Goldbach's strong conjecture is to be true to infinity.

•	 Note that every prime p < E/2 common to successive 2n-1 x E  
and 2n x E numbers has infinitely many possible equidistant 
primes qx. The larger the number 2n x E, or the more it tends 
to infinity, the more an infinity of numbers p < E/2 has an 
infinity of equidistant primes qx, which follow an exponential 
progression. We can extend this further and say that the 
numbers p of π(2nE/2) or π(2n-1E) (note p < E/2)  have an 
infinite number of primes qx (note qx > E/2) to the exponential, 
which infinitely increases the chances that the primes p have 
equidistant primes qx and thus proves Goldbach's conjecture 
to infinity.

•	 An even number that is a multiple of 3 results from the equations 
6x ± 1. In fact, all prime numbers and their multiples except 
those of 2 and 3 are 6x  ± 1 and so, to have an even number 
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3n, two prime numbers 6x + 1 and 6x - 1 must add up. E = (6x 
+ 1) + (6x - 1) = 6x.

•	 E = (6x + 1) + (6x - 1) = 6x. And so, to obtain a prime number 
from E/2 of an even number 3n, you need E - (6x - 1) = 6x + 
1 or E - (6x - 1) = 6x + 1. But since 6x ± 1 is either prime or 
a multiple of primes (except those of 2 ad 3), we have either 
a prime number or multiple of primes that are 6x ± 1 (Table 
1 and 2). This applies to even E/2 of even numbers 3n (see 
Table 1 for E = 60, E/2 = 30; and E = 120, E/2 = 60 and Table 
2 for E = 240, E/2 = 120). For example 60 = 13 + 47 and we 
have 13 is 6x + 1 and 47 is 6x – 1. And therefore to get primes 
numbers from 60, we must calculate 60 – 7 ; 60 – 11 ; 60 – 13 
and so on. This will not give primes at all times but all primes 
that add up to make 60.

•	 But if E/2 of an even number 3n is odd, then 2n that are not 
multiples of 3 must be subtracted or added (see table 1, the 
number E = 30 and E/2 = 15). For example 15 – 2 = 13 ; 15 – 
4 = 11  and 15 – 8 = 7. All these rules apply to both addition 
and subtraction.

3. Conversion of an Even E > 4 and the Evens 2n x E in sum of 
two Primes in line with Goldbach's Strong Conjecture. Second 
Case : E is  not 3n
We follow the same method as for E = 3n. An even number E is 
either 3n or not, and in both cases gives either an even E/2 number 
or an odd E/2 number. We have seen the case of E = 3n with E/2 
odd or even. Here we see the example of an even number E = 170 
(E/2 = 85) which is not 3n and whose E/2 is odd. Then come the 
cases of even E/2.

Since E/2 is odd, it makes sense to add even numbers t to it to 
obtain primes qx = E/2 + t. The primes qx are equidistant from p. 
Table 4A show that t = E/2 - p is always a multiple of 3 when qx is 
prime (except with 3). We also see that in all cases q = p + 2t which 
is also logical because E = p + q with q > p and p = E/2 - t and q 
= E/2 + t and therefore q = p + 2t. For example, in Table 4A, we 
have q = 167 = 3 + (82 x 2) or q = 163 = 7 + (78 x 2). Note that the 
equation q = p + 2t applies to any even E > 4 sum of two primes 
p and q, but here the remarkable fact is that for an even number 
that is not 3n and whose E/2 is odd, the values of t are all 3n when 
q is prime (except with 3). This is true for any prime number p of 
π(E/2) which has an equidistant prime q.

E = 170 and E/2 = 85
p t = E/2 - p q = p + 2t
3 82 167
5 80 165
7 78* 163
11 74 159
13 72* 157
17 68 153
19 66* 151
23 62 147
29 56 141
31 54* 139
37 48 133
43 42* 127
47 38 123
53 32 117
59 26 111
61 24* 109
67 18* 103
71 14 99
73 12* 97
79 6 91
83 2 87

Table 4A: Conversion of an even number E to sums of two primes p and q. E is not 3n and whose E/2 is odd. Here the number 
E = 170 and E/2 = 85 is shown as a example. Note that prime q = p + 2t knowing that t = E/2 – p. Also note that t is always 3n 
when q = p + 2t is prime except with p = 3. Values of t that are 3n (and that give primes q) are marked by an asterix. E = p + q.
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•	 The table 4Bwhich is a continuation of the previous one (Table 
4A) shows that if  2n-1 x E = p + q then 2n x E = p + qx so that 
qx = p + 2q. The same rule applies to any even number E > 4.  
In table 4B ; E = 340 = 2 x 170 (170 being shown in table 4A). 
For instance 170 = 3 + 167 and 340 = 3 + 337 with 337 = 3 + 
(167 x 2).  In this example, 170 and 340 have no primes p in 
common except 3 and qx = p + 2t. Note that 340 is not 3n and 
E/2 is even this time.

•	 The analysis has been extended to 680 (Table 4C), and it can 
be seen that equidistant primes always occur with t-values that 

are multiples of 3. Note here that 170 and 340 have only 3 as 
a common prime that participates in their sum with 170 = 3 
+ 167 and 340 = 3 + 337. Similarly, 340 and 680 have only 
3 primes in common (Tables 4B and 4C). But 170 and 680 
have more common primes including 7, 19, 61, 67 and 73. 
If we follow the values in Tables 4A, 4B and 4C, we can see 
that either qx is prime or a multiple of 3 or composite, and the 
reverse is true for t. Again all t values are 3n but this time they 
are odd beause E/2 is even

E = 340 E/2 = 170  
p t = E/2 - p q = p + 2t
3 167 337
5 165 335
7 163 333
11 159 329
13 157 327
17 153 323
19 151 321
23 147* 317
29 141* 311
31 139 309
37 133 303
41 129 299
43 127 297
47 123* 293
53 117 287
59 111* 281
61 109 279
67 103 273
71 99* 269
73 97 267
79 91 261
83 87 257
89 81* 251
97 73 243
101 69* 239
103 67 237
107 63* 233
109 61 231
113 57* 227
127 43 213
131 39 209
137 33 203
139 31 201
149 21* 191
151 19 189
157 13 183
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163 7 177
167 3* 173

Table 4B: Conversion of an even number E to sums of two primes p and q. E is not 3n and whose E/2 is even. Here the number 
E = 340 and E/2 = 170 is shown as a example. Note that primer q = p + 2t knowing that t = E/2 – p. Also note that t is always 3n 
when q = p + 2t is prime except with p = 3. Values of t that are 3n (and that give primes q) are marked by an asterix. E = p + q.

E = 680 E/2 = 340
p t = E/2 - p q = p + 2t
3 337 677
5 335 675
7 333* 673
11 329 669
13 327 667
17 323 663
19 321* 661
23 317 657
29 311 651
31 309 649
37 303* 643
41 299 639
43 297 637
47 293 633
53 287 627
59 281 621
61 279* 619
67 273* 613
71 269 609
73 267* 607
79 261* 601
83 257 597
89 251 591
97 243 583
101 239 579
103 237* 577
107 233 573
109 231* 571
113 227 567
127 213 553
131 209 549
137 203 543
139 201* 541
149 191 531
151 189 529
157 183* 523
163 177 517
167 173 513
173 167 507
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179 161 501
181 159* 499
191 149 489
193 147* 487
197 143 483
199 141 481
211 129 469
223 117* 457
227 113 453
229 111 451
233 107 447
239 101 441
241 99* 439
251 89 429
257 83 423
263 77 417
269 71 411
271 69* 409
277 63 403
281 59 399
283 57* 397
293 47 387
307 33* 373
311 29 369
313 27* 367
317 23 363
331 9* 359
• 337 • 3* • 353

Table 4C: Conversion of an even number E to sums of two primes p and q. E is not 3n and whose E/2 is even. Here the number 
E = 680 and E/2 = 340 is shown as a example. Note that prime q = p + 2t knowing that t = E/2 – p. Also note that t is always 3n 
when q = p + 2t is prime except with p = 3. Values of t that are 3n (and that give primes q) are marked by an asterix. E = p + q.

•	 An even number E that is not a multiple of 3, is such that E/2 
= p + 3n with p prime. And so to obtain a prime of this type 
of number, we need to subtract 3n and so p = E/2 - 3n. If E/2 
is even, 3n is odd, and if E/2 is odd, 3n is even. This is shown 
in tables 4A, B and C. Example in Table 4A, we have E = 170 
and E/2 = 85. The table shows E/2 = 85 = p + t = p + 3n when 
q = p + 2t is prime. Example 85 = 7 + 78 with 78 = 3n and q 
= 7 + 2 x 78 = 163 that is prime → 170 = 7 + 163. Another 
example from Table 4B with E = 340 and E/2 = 170. We have 
170 = 29 + 141  with 141 = 3n and q = 29 + 2 x 141 = 311 that 
is prime →  340 = 29 + 311. A final example from table 4C 
with E = 680 and E/2 = 340. We have 340 = 157 + 183 with 
183 = 3n and q = 157 + 2 x 183 = 523 that prime → 680 = 
157 + 523.

•	 There are three types of even numbers 6x, 6x + 2 and 6x + 4. 
The last two are not 3n. We have 6x + 2 = (6x + 1) + (6x + 1), 
so we need two 6x + 1 primes. Whereas 6x + 4 can also be 

considered as 6x - 2 and are therefore the sum of two prime 
numbers 6x - 1. But remember that 6x ± 1 are not always prime 
but can also be multiples of prime numbers except 2 and 3. 
Here are some examples of how to convert even numbers into 
the sum of two prime numbers we've just seen in Tables 4A, 
4B and 4C by using here the equations 6x ± 1. For example 
170 = 6 x 28 + 2 and so it is 6x + 2 and we have 170 = 13 + 
157 with      13 = 2 x 6 + 1 and 157 = 6 x 26 + 1 thus both 6x + 
1. While the number 340 = 6 x 56 + 4 so it is 6x + 4 or 6x – 2 
and we have 340 = 83 + 257 with 83 = 13 x 6 + 5 and 257 = 6 x 
42 + 5 being both 6x - 1. Indeed 6x – 1 is also 6x + 5. We also 
have 680 = 6 x 113 + 2 so it is 6x + 2. We have for example 
680 = 283 + 397 with 283 = 6 x 47 + 1 and 397 = 6 x 66 + 1 
thus being both 6x + 1. In fact Goldbach's strong conjecture 
obeys equations 6x ± 1 

•	 Indeed if p and q are equidistant primes such that p + q = 
E then E/2 - p = q – E/2 = t. Therefore, the appearance of a 
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prime number depends upon t that must be 3n for a non-3n E/2 
number to get primes except with 3. If E/2 is even t = 3n is odd 
and if E/2 is odd t = 3n is even.  Whereas for even numbers 
3n (Table 1 and 2), t is odd and is either prime or composite 
but never a multiple of 3 when 3n E/2 is even. But if 3n E/2 
is odd, then t = 2n but never 3n. For such numbers, p > 3. All 
these rules apply to both addition and subtraction. These rules 
are essential conditions for Goldbach's strong conjecture to 
be true for Even numbers.

•	 We then calculate the qx of successive numbers 2n-1 x E and 
2n x E umbers as above except this time E is not multiple of 
3. Here we take the example of E = 170. If we examine the 
primes qx of 2n-1 x 170 and 2n x 170 numbers, we see that 
they all follow an exponential curve as before, although this 
time the correlation coefficient R2 ≈ 0.98 (Graphic 2 and the 
inserted table ). They obey to the same equation as above such 
that 2x x E = a + (2x - 1)a + 2xb  with qx = (2x - 1)a + 2xb.

E x 2n E x 2n = Primes qx
170 x 20 170 167
170 x 21 340 337
170 x 22 680 677
170 x 25 5440 5437
170 x 27 21760 21757
170 x 28 43520 43517
170 x 29 87040 87037
170 x 210 174080 174077
170 x 212 696320 696317

Primes qx

0 1 2 3 4 5 6 7 8 9 10

Order of appearance (exponent n)

4. Conclusions

• E = p + q such that q > p and both q and p are primes then p < E/2 and q > E/2 such that

p = E/2 – t and q = E/2 + t. The primes p and q are said to be equidistant at E/2. Note E/2 is

any integer < 2 odd or even. This is the first basic principle for the Goldbach's strong

conjecture to be true.

• The numbers 2 x E are also evens and can be converted to sums of p + qx. In this case,

qx = p + 2q. E = p + q and 2 x E = p + qx → qx = p + 2q.

• Let us take E, 2E, 22E, 23E, 24E,...2nE then the rule applies whatever the number 2nE we start

with. We can start, for example, with 210E, then calculate qx of 211E ; 212E ; 213E ;... 2nE or

even more. The larger the number 2nE, the more prime numbers π(2nE/2) will contain. All

calculated primes qx line up on an exponential curve.

• Note that this is true for any prime p of π(E/2). Indeed, the rule applies for each prime factor

of π(2nE/2). For example if we take the number 96 and 96/2 = 48 = 7 + 41 we therefore have

p = 7 and qx = 7 + 2 x 41 = 89. Therefore 96 = 7 + 89. For 96 x 2 = 192, we have qx = 7 +

(2 x 89) = 185 (not prime), then for 96 x 4 = 384, we have qx = 7 + (2 x 185) = 377 (not

prime), and then 96 x 8 = 768 with qx = 7 + (2 x 377) = 761 which is prime and so 768 = 7 +

761. If we start with 48 = 17 + 31 then 96 = 17 + (2 x 31) = 17 + 79, then 96 x 2 = 192 has

qx = 17 + (2 x 79) = 175 (not prime) ; and 96 x 4 = 384 has qx = 17 + ( 2 x 175) = 367

which is prime then 384 = 17 + 367 and so on. Therefore, each p of π(E/2) has an infinity of

possible equidistant primes qx resulting from 2n x E.

Graphic 2: Primes qx of 2n-1 x 170 and 2n x 170 numbers line up on an exponential curve  with a correlation coefficient  R2 ≈ 0.98 
according to their rank or order of appearance.

The graphic is from the inserted table with p = 7 and E = 170 = 7 
+ 163. The graphic shows primes qx of 2n x E. We have 2n x E = 
p + qx such that qx = p + 2q with q from the preceding 2n -1 x E. 
Note (2x - 1)a + 2xb is not always prime (case of n = 3, n = 4, n = 
6, n = 11).

4. Conclusions
•	 E = p + q such that q > p and both q and p are primes then p < 

E/2 and q > E/2 such that        p = E/2 – t and q = E/2 + t. The 
primes p and q are said to be equidistant at E/2. Note E/2 is 
any integer < 2 odd or even. This is the first basic principle for 
the Goldbach's strong conjecture to be true.

•	 The numbers 2 x E are also evens and can be converted to 
sums of  p + qx. In this case,        qx = p + 2q. E = p + q and  2 
x E =  p + qx → qx = p + 2q. 

•	 Let us take E, 2E, 22E, 23E, 24E,...2nE then the rule applies 
whatever the number 2nE we start with. We can start, for 

example, with 210E, then calculate qx of  211E ; 212E ; 213E ;... 
2nE or even more. The larger the number 2nE, the more prime 
numbers π(2nE/2) will contain. All calculated primes qx line 
up on an exponential curve.

•	 Note that this is true for any prime p of π(E/2). Indeed, the rule 
applies for each prime factor of π(2nE/2). For example if we 
take the number 96 and 96/2 = 48 = 7 + 41 we therefore have 
p = 7 and qx = 7 + 2 x 41 = 89. Therefore 96 = 7 + 89. For 96 
x 2 = 192,  we have qx = 7 + (2 x 89) =  185 (not prime), then 
for 96 x 4 = 384, we have qx = 7 + (2 x 185) = 377 (not prime), 
and then 96 x 8 = 768 with qx = 7 + (2 x 377) = 761 which is 
prime and so 768 = 7 + 761. If we start with 48 = 17 + 31 then 
96 = 17 + (2 x 31) = 17 + 79, then 96 x 2 = 192 has qx = 17 
+ (2 x 79) = 175 (not prime) ; and 96 x 4 = 384 has qx =  17 
+ ( 2 x 175) = 367 which is prime then 384 = 17 + 367 and 
so on. Therefore, each p of π(E/2) has an infinity of possible 
equidistant primes qx resulting from 2n x E. 
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•	 Calculating primes p of π(E/2) is a very efficient method to 
find equidistant primes q knowing that q = p + 2t such that t 
= E/2 – p.

•	 In all cases of Evens E and if E = p + q → qx of 2nE = (2x - 1)
a + 2xb  and 2x x E = a + (2x - 1)a + 2xb  with qx = (2x - 1)a + 
2xb (x > 0). The exponent x represents the order or rank of the 
multiple 2x x E with x = 1 for 2 x E if we start with E = p + q.

•	 Each number qx = (2x - 1)a + 2xb is either prime or not. But by 
continuing the operations, and if a number qx exists, it will be 
qx = (2x - 1)a + 2xb. 

•	 There is an important distinction to note. The prime number 
qx of 2n x E follows the equation 2p + q (or y = qx = 2a + 
b) with q = b belonging to the preceding number 2n-1 x E. 
But if we take all the numbers qx of the successive numbers 
2n-1E and 2nE, then they follow an approximate exponential 
equation because this depends on the correlation coefficient, 
which is never = 1 with any accuracy. 

5. The other Case Where an Even Number is the Sum of 
Smaller Even Numbers
Let's assume that E = E1 + E2 such that E2 > E1. If we follow 
Goldbach's strong conjecture, we have E1 = p1 + q1 and E2 = p2 + 
q2. Suppose p1 = p2 then E = p1 + q1 + p1 + q2 = p1 + (p1 + q1 + 
q2) and if E = p1 + qx (qx prime) then qx = p1 + q1 + q2. Because 
E = E1 + E2 then E1 < E/2 and E2 > E/2 which means that π(E2) 
contains all the primes of π(E1). In addition, π(E) contains both 
π(E1) and π(E2). Therefore, E, E1, and E2 could possibly have 
common primes p < E/2 to be put into the sum of two primes. 
Example 7 + 13 = 20 and 7 + 41 = 48. Given that 68 = 7 + 61 then       
61 = 7 + 13 + 41. Example 11 + 19 = 30 and 11 + 43 = 54 and since 
84 = 11 + 73 then 73 = 11 + 19 + 43. This means that if  E = E1 
+ E2 with E, E1 and E2 sharing one prime p to be in sums of two 
primes like E = p1 + qx ; E1 = p1 + q1 and E2 = p2 + q2 → qx = 
p1 + q1 + q2.

Indeed if  E = E1 + E2 and if we suppose E, E1 and E2 share 
one common prime number p1 < E/2, then we have E1 = p1 + 
q1 and E2 = p2 + q2. Thus we have either E = p1 + qx such that 
qx is prime or E = p1 + c such that c is composite (multiple of 
primes). In this case we have                              qx or c =  p1 + q1 
+ q2.  Because qx or c are odd then an odd is sum of three primes 
which is the Goldbach's weak conjecture. We see that the strong 
conjecture leads to the weak one. But the latter only indicates the 
minimum number of primes an odd number could consist of. 

If E is the sum of n even numbers that share a prime number p1 
< at their halves, then E = p + qx or E + c and qx or c will be the 
sum of several primes that tends to infinity. So three primes is the 
minimal form of the sum of an odd number. The latter can be the 
sum of as many primes as it is large. The infinity of prime numbers 
also results from the addition of pre-existing primes. The case of 
an even number being the sum of two or more odd numbers will 
not be discussed, as it follows the same argument and leads to the 
same result.

6.  Discussion
If an even number E is equal to the sum of two primes p and q such 
that q > p, then all numbers 2n x E can be written as sums of the 
same prime p and possible but infinite primes of type p + 2q. The 
more E tends to infinity, the more π(E/2) tends to infinity, the more 
the possible number of primes  p +2q tends to infinity (as there are 
infinite number of primes p < E/2). An infinite even number 2n x 
E therefore has an infinite possibility of having a prime number 
qx equidistant to a number p of π(E/2). Goldbach's conjecture is 
therefore true to infinity. The primes qx of successive 2n-1 x E and 
2n x E ( n > 1) all line up on an exponential curve following the 
equation qx =(2x - 1)p + 2xq with the initial E = p + q. We know that 
between 0 and E/2 there are more primes than between E/2 and E, 
but given the infinite number of p of π(E/2) as E tends to infinity, 
this increases to infinity the probability that qx equidistant to every 
p of π(E/2) will continue to exist.

There is a notable difference between factoring an integer into 
a product of prime factors and Goldbach's strong conjecture of 
converting an even number into the sum of two primes. To illustrate 
this, let's consider a biprime number Bn = s x t (s and t are primes). 
In this case s < square root of Bn and t > square root of Bn. Now 
let us suppose that the square root of Bn is > to any known prime 
number, however large, so t must be a new prime number that 
tends even further to infinity. We see that for a biprime number, 
the square root is the limit. Whereas for Goldbach's conjecture, 
for an even number E = p + q (p and q are prime and q > p), E/2 
is the limit. If E/2 is > any known prime number, however large, 
then q must be a new prime number. Let's call this new prime q'. 
In fact, all primes p < E/2 that are infinite will produce all possible 
differences E/2 - p. And so there should be a prime p such that E/2 
- p = q' - E/2. In fact, prime numbers which are 6x ± 1 advance by 
a distance of 6 (between 6x - 1 on the one hand and 6x + 1 on the 
other) and there are infinite distances 2n between 6x - 1 and 6x + 
1. The prime q' will be in continuity with the primes that precede it, 
and it will always be possible to find a prime p < E/2 such that E/2 
- p = q' - E/2. This is why Goldbach's strong conjecture depends on 
a critical density of primes before E/2. 

Now suppose that an even number E' is at infinity and that E' = 2n x 
E. Assume that E'/2 is > all known primes denoted p and q, and if E 
= p + q, then there must exist a prime q' = (2x - 1)p + 2xq such that 
p + q' = E'. The prime q' has infinitely many possibilities. Again, 
this depends on the critical density of primes < E'/2. 

Consequently, all the results and arguments in this article plead 
and demonstrate the validity of Goldbach's strong conjecture at 
infinity. But Goldbach's two conjectures, strong and weak, teach 
us only the minimum number of primes of which an even or odd 
number can be the sum.
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