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Abstract
The author discovers an error in the definition of the magnetic field in Maxwell’s classical electromagnetic theory. This paper 
employs a proof by contradiction to demonstrate that the error occurs during the transition from quasi-static electromagnetic 
fields to radiating electromagnetic fields. Initially assuming the correctness of Maxwell’s electromagnetic theory, the paper 
derives Poynting’s theorem and subsequently derives the theorem of mutual energy flow. Following the principles of the 
latter theorem, the magnetic field is defined, and methods for measuring it are established. It is further demonstrated that the 
magnetic field obtained using this method is consistent with classical electromagnetic theory under quasi-static conditions. 
However, in the transition to radiating electromagnetic fields, the newly defined or measured magnetic field conflicts with 
classical electromagnetic theory. This indicates a flaw in Maxwell’s classical electromagnetic theory. The author identifies 
this flaw as stemming from Maxwell defining the magnetic field as the curl of the magnetic vector potential, a definition 
valid only under quasi-static conditions. This definition undergoes a change in radiating electromagnetic fields, a change 
is overlooked by Maxwell and subsequent researchers. The author proposes a corrective solution to this error in Maxwell’s 
electromagnetic theory. 
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1. Introduction
The original definition of magnetic field was defined by Biota’s law and Ampere’s law of force. Under quasi-static conditions, 
William Thomson Lord Kelvin discovered that the curl of a magnetic vector potential is consistent with the magnetic field defined 
by Biota’s law, so the definition of a magnetic field can be changed to the curl of a magnetic vector potential. Maxwell followed 
Lord Kelvin and changed the definition of magnetic field to the curl of magnetic vector potential. But when it comes to radiated 
electromagnetic fields, the magnetic vector potential needs to consider the retardation factor. Is the curl of a retarded magnetic vector 
potential still a magnetic field? Maxwell thought without hesitation that it was. The author notes that researchers at the same time as 
Maxwell, such as Kirchhoff’s 1857 paper and Lorenz’s 1867 paper, did not define electric and magnetic fields [1,2]. That is to say, 
they do not define the curl of the magnetic vector potential as a magnetic field, that is, they are likely to believe that,

The symbol "=?" indicates that the relationship is uncertain. The relationship is uncertain to the electric field too, 

Lorenz gave the retarded potential of the electromagnetic field in 1867, but in fact, the general solution of Maxwell’s equation also 
depends on Lorenz’s retarded potential solution [2]. Lorenz’s electromagnetic theory was based on Kirchhoff’s electromagnetic 
theory. In his 1857 paper, Kirchhoff proposed the continuity equation of current, Kirchhoff gauge, and scalar imaginary wave 
equation inside the current. If Kirchhoff had used Neumann’s vector potential at that time, he would have obtained the wave equation 
of the scalar potential inside the current, not just the imaginary wave equation. Kirchhoff did not define the concepts of electric and 
magnetic fields, he only used vector potentials and scalar potentials. Lorenz used Neumann’s vector potential in his 1867 paper, thus 
obtaining the wave equations for vector potential and scalar potential, as well as the solutions for these equations with respect to 
retarded potential. Lorenz, like Kirchhoff, did not define magnetic and electric fields. It seems that only Maxwell defined the curl of 
the retarded potential as a magnetic field. It is worth discussing whether this definition is reasonable.
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1  Introduc�on 
 
The original definition of magnetic field was defined by Biota’s law and Ampere’s law of 

force. Under quasi-static conditions, William Thomson Lord Kelvin discovered that the curl of a 
magnetic vector potential is consistent with the magnetic field defined by Biota’s law, so the 
definition of a magnetic field can be changed to the curl of a magnetic vector potential. Maxwell 
followed Lord Kelvin and changed the definition of magnetic field to the curl of magnetic vector 
potential. But when it comes to radiated electromagnetic fields, the magnetic vector potential needs 
to consider the retardation factor. Is the curl of a retarded magnetic vector potential still a magnetic 
field? Maxwell thought without hesitation that it was. The author notes that researchers at the same 
time as Maxwell, such as Kirchhoff’s 1857 paper [1] and Lorenz’s 1867 paper [2], did not define 
electric and magnetic fields. That is to say, they do not define the curl of the magnetic vector 
potential as a magnetic field, that is, they are likely to believe that, 

 
 𝑩𝑩𝑩𝑩 =?∇ × 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) 

The symbol "=?" indicates that the relationship is uncertain. The relationship is uncertain to the 
electric field too,  

 𝑬𝑬𝑬𝑬 =?−∇𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) 

Lorenz gave the retarded potential of the electromagnetic field in 1867 [2], but in fact, the general 
solution of Maxwell’s equation also depends on Lorenz’s retarded potential solution. Lorenz’s 
electromagnetic theory was based on Kirchhoff’s electromagnetic theory. In his 1857 paper, 
Kirchhoff proposed the continuity equation of current, Kirchhoff gauge, and scalar imaginary 
wave equation inside the current. If Kirchhoff had used Neumann’s vector potential at that time, 
he would have obtained the wave equation of the scalar potential inside the current, not just the 
imaginary wave equation. Kirchhoff did not define the concepts of electric and magnetic fields, he 
only used vector potentials and scalar potentials. Lorenz used Neumann’s vector potential in his 
1867 paper, thus obtaining the wave equations for vector potential and scalar potential, as well as 
the solutions for these equations with respect to retarded potential. Lorenz, like Kirchhoff, did not 
define magnetic and electric fields. It seems that only Maxwell defined the curl of the retarded 
potential as a magnetic field. It is worth discussing whether this definition is reasonable. 

The author proposed the mutual energy theorem and inner product of two electromagnetic 
fields (that is the mutaul energy flow) in 1987 [3, 4, 5], and 30 years later, the author discovered 
that this theorem is a Fourier transform of Welch’s time-domain reciprocity theorem published in 
1960 [6]. Therefore, it can be regarded as a same theorem. This theorem has also been 
independently proposed by many different people, including the Rumsey new reciprocity theorem 
in 1963 [7], the De Hoop cross relative reciprocity theorem in 1987 [8], and Petrusenko’s second 
reciprocity theorem in 2009 [9]. Welch’s reciprocity theorem involves advanced waves. The 
author has read works on advanced waves, including Wheeler and Feynman’s absorber theory [10, 
11]. This further revealed Dirac’s theory of self-force [12]. Discovered the theory of action at a 
distance [13, 14, 15]. Discovered the quantum mechanical transctional interpretation of Cramer 
[16, 17], and the advanced wave theory of [18]. In 2017, the author proposed that the mutual energy 
theorem should be the law of conservation of energy, and developed the mutual energy flow 
theorem. And interpret quantum mechanics using mutual energy flow. During this process, the 
author found that self energy flow should not be involved in electromagnetic radiation. Therefore, 
the concept of reverse collapse of self energy flow was proposed [19]. In recent years, the author 
has been studying the application examples of mutual energy flow, and in this process, the author 
has found that the self energy flow must be reactive power[20, 21, 22][23, 24, 25, 26, 27][28, 29, 
30, 31, 32, 33] However, the electromagnetic and magnetic field phases obtained by solving the 
Maxwell equation are in phase, indicating that the electromagnetic wave has active power. The 
author’s findings contradict the conclusions of Maxwell’s classical electromagnetic theory. The 
author believes that the solution to Maxwell’s equation went wrong somewhere. Later, it was 
discovered that Maxwell did define the magnetic field as the curl of the vector potential, and made 
an error when considering the retardation factor in the vector potential. 

This article explains that in the theory of radiated electromagnetic fields, the magnetic field 
should be defined according to the quantity related to the Poynting vector. But the Poynting vector 
is not easy to measure. However, it can also be defined according to the mutual energy flow. The 
mutual energy flow density is a mixed Poynting vector. The mutual energy flow represents the 
energy flow density from the primary coil to secondary coil of a transformer. Mutual energy flow 
is also the energy flow density from the transmitting antenna to the receiving antenna. The mutual 
energy flow theorem can be derived from the Poynting theorem, so it is still the correct energy 
theorem even within the framework of Maxwell’s electromagnetic theory. Therefore, this article 
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The author proposed the mutual energy theorem and inner product of two electromagnetic fields (that is the mutaul energy flow) in 
1987 [3-5], and 30 years later, the author discovered that this theorem is a Fourier transform of Welch’s time-domain reciprocity 
theorem published in 1960 [6]. Therefore, it can be regarded as a same theorem. This theorem has also been independently proposed 
by many different people, including the Rumsey new reciprocity theorem in 1963, the De Hoop cross relative reciprocity theorem 
in 1987, and Petrusenko’s second reciprocity theorem in 2009 [7-9]. Welch’s reciprocity theorem involves advanced waves. The 
author has read works on advanced waves, including Wheeler and Feynman’s absorber theory [10,11]. This further revealed Dirac’s 
theory of self-force [12]. Discovered the theory of action at a distance [13-15]. Discovered the quantum mechanical transctional 
interpretation of Cramer, and the advanced wave theory of [16-18]. In 2017, the author proposed that the mutual energy theorem 
should be the law of conservation of energy, and developed the mutual energy flow theorem. And interpret quantum mechanics 
using mutual energy flow. During this process, the author found that self energy flow should not be involved in electromagnetic 
radiation. Therefore, the concept of reverse collapse of self energy flow was proposed [19]. In recent years, the author has been 
studying the application examples of mutual energy flow, and in this process, the author has found that the self energy flow must 
be reactive power However, the electromagnetic and magnetic field phases obtained by solving the Maxwell equation are in phase, 
indicating that the electromagnetic wave has active power [20-33]. The author’s findings contradict the conclusions of Maxwell’s 
classical electromagnetic theory. The author believes that the solution to Maxwell’s equation went wrong somewhere. Later, it was 
discovered that Maxwell did define the magnetic field as the curl of the vector potential, and made an error when considering the 
retardation factor in the vector potential.

This article explains that in the theory of radiated electromagnetic fields, the magnetic field should be defined according to the 
quantity related to the Poynting vector. But the Poynting vector is not easy to measure. However, it can also be defined according to 
the mutual energy flow. The mutual energy flow density is a mixed Poynting vector. The mutual energy flow represents the energy 
flow density from the primary coil to secondary coil of a transformer. Mutual energy flow is also the energy flow density from the 
transmitting antenna to the receiving antenna. The mutual energy flow theorem can be derived from the Poynting theorem, so it is 
still the correct energy theorem even within the framework of Maxwell’s electromagnetic theory. Therefore, this article adopts the 
method of proof by contradiction, first assuming that Maxwell’s electromagnetic theory is correct. The mutual energy flow theorem 
is derived from this. Therefore, the mutual energy flow theorem is also correct according to Maxwell’s equations, allowing the 
magnetic field to be determined (defined and measured) later by the mutual energy flow theorem. Using this method, it is found that 
there should be a 90 degree phase difference between the magnetic and electric fields of electromagnetic waves. This contradicts the 
fact that the electric and magnetic fields of electromagnetic waves in Maxwell’s electromagnetic theory are in phase, indicating that 
Maxwell’s electromagnetic theory is incorrect. Since Maxwell’s theory is incorrect, the author has revised the definition of magnetic 
field in Maxwell’s electromagnetic theory.

What is new in this paper: (1) define the magnetic field according to Poynting vector and the mutual energy flow. (2) Introduce 
the concept of synchronization of two electromagnetic fields. (3) Introduce a method to measure the magnetic field defined by the 
mutual energy flow. (4) Using method of contradiction to prove there is a bug in Maxwell’s classical electromagnetic field theory. 
(5) Correct the phase of the magnetic field obtained from Maxwell’s theory.

2. The Definition of Magnetic Field is Incorrect
We know that the solution to the electromagnetic field equation under quasi-static conditions is, 

adopts the method of proof by contradiction, first assuming that Maxwell’s electromagnetic theory 
is correct. The mutual energy flow theorem is derived from this. Therefore, the mutual energy flow 
theorem is also correct according to Maxwell’s equations, allowing the magnetic field to be 
determined (defined and measured) later by the mutual energy flow theorem. Using this method, 
it is found that there should be a 90 degree phase difference between the magnetic and electric 
fields of electromagnetic waves. This contradicts the fact that the electric and magnetic fields of 
electromagnetic waves in Maxwell’s electromagnetic theory are in phase, indicating that 
Maxwell’s electromagnetic theory is incorrect. Since Maxwell’s theory is incorrect, the author has 
revised the definition of magnetic field in Maxwell’s electromagnetic theory. 

What is new in this paper: (1) define the magnetic field according to Poynting vector and 
the mutual energy flow. (2) Introduce the concept of synchronization of two electromagnetic fields. 
(3) Introduce a method to measure the magnetic field defined by the mutual energy flow. (4) Using 
method of contradiction to prove there is a bug in Maxwell’s classical electromagnetic field theory. 
(5) Correct the phase of the magnetic field obtained from Maxwell’s theory. 

 
2  The defini�on of magne�c field is incorrect 
 
We know that the solution to the electromagnetic field equation under quasi-static 

conditions is,  
 𝑨𝑨𝑨𝑨 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (1) 

  
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≜ ∇ × 𝑨𝑨𝑨𝑨 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 ∇
1
𝑟𝑟𝑟𝑟

× 𝑱𝑱𝑱𝑱𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (2) 
 

We use the subscript Maxwell to remind readers that the definition of this magnetic field 
was completed by Maxwell and it may be controversial, so there is, 

 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (3) 

 
We also know that according to Biota’s law, the magnetic field is,  
 𝑩𝑩𝑩𝑩 ≜ 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (4) 

 
The symbol "≜" represents the meaning of the definition, so we conclude that,  
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑩𝑩𝑩𝑩 (5) 

 
This indicates that the magnetic field defined by Maxwell under quasi-static conditions is 

the same as the magnetic field defined by Biota’s law. But when it comes to radiated 
electromagnetic fields, the vector potential must consider the retardation factor, which is present 
in the frequency domain,  

 𝑨𝑨𝑨𝑨 = 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉

𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (6) 
 

Therefore,  
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∇ × 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 ∇(1
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)) × 𝑱𝑱𝑱𝑱𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (7) 
 

adopts the method of proof by contradiction, first assuming that Maxwell’s electromagnetic theory 
is correct. The mutual energy flow theorem is derived from this. Therefore, the mutual energy flow 
theorem is also correct according to Maxwell’s equations, allowing the magnetic field to be 
determined (defined and measured) later by the mutual energy flow theorem. Using this method, 
it is found that there should be a 90 degree phase difference between the magnetic and electric 
fields of electromagnetic waves. This contradicts the fact that the electric and magnetic fields of 
electromagnetic waves in Maxwell’s electromagnetic theory are in phase, indicating that 
Maxwell’s electromagnetic theory is incorrect. Since Maxwell’s theory is incorrect, the author has 
revised the definition of magnetic field in Maxwell’s electromagnetic theory. 

What is new in this paper: (1) define the magnetic field according to Poynting vector and 
the mutual energy flow. (2) Introduce the concept of synchronization of two electromagnetic fields. 
(3) Introduce a method to measure the magnetic field defined by the mutual energy flow. (4) Using 
method of contradiction to prove there is a bug in Maxwell’s classical electromagnetic field theory. 
(5) Correct the phase of the magnetic field obtained from Maxwell’s theory. 
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Maxwell’s electromagnetic theory is incorrect. Since Maxwell’s theory is incorrect, the author has 
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What is new in this paper: (1) define the magnetic field according to Poynting vector and 
the mutual energy flow. (2) Introduce the concept of synchronization of two electromagnetic fields. 
(3) Introduce a method to measure the magnetic field defined by the mutual energy flow. (4) Using 
method of contradiction to prove there is a bug in Maxwell’s classical electromagnetic field theory. 
(5) Correct the phase of the magnetic field obtained from Maxwell’s theory. 
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We know that the solution to the electromagnetic field equation under quasi-static 
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We use the subscript Maxwell to remind readers that the definition of this magnetic field 
was completed by Maxwell and it may be controversial, so there is, 
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the same as the magnetic field defined by Biota’s law. But when it comes to radiated 
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adopts the method of proof by contradiction, first assuming that Maxwell’s electromagnetic theory 
is correct. The mutual energy flow theorem is derived from this. Therefore, the mutual energy flow 
theorem is also correct according to Maxwell’s equations, allowing the magnetic field to be 
determined (defined and measured) later by the mutual energy flow theorem. Using this method, 
it is found that there should be a 90 degree phase difference between the magnetic and electric 
fields of electromagnetic waves. This contradicts the fact that the electric and magnetic fields of 
electromagnetic waves in Maxwell’s electromagnetic theory are in phase, indicating that 
Maxwell’s electromagnetic theory is incorrect. Since Maxwell’s theory is incorrect, the author has 
revised the definition of magnetic field in Maxwell’s electromagnetic theory. 

What is new in this paper: (1) define the magnetic field according to Poynting vector and 
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(3) Introduce a method to measure the magnetic field defined by the mutual energy flow. (4) Using 
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This indicates that the magnetic field defined by Maxwell under quasi-static conditions is the same as the magnetic field defined by 
Biota’s law. But when it comes to radiated electromagnetic fields, the vector potential must consider the retardation factor, which is 
present in the frequency domain, 

adopts the method of proof by contradiction, first assuming that Maxwell’s electromagnetic theory 
is correct. The mutual energy flow theorem is derived from this. Therefore, the mutual energy flow 
theorem is also correct according to Maxwell’s equations, allowing the magnetic field to be 
determined (defined and measured) later by the mutual energy flow theorem. Using this method, 
it is found that there should be a 90 degree phase difference between the magnetic and electric 
fields of electromagnetic waves. This contradicts the fact that the electric and magnetic fields of 
electromagnetic waves in Maxwell’s electromagnetic theory are in phase, indicating that 
Maxwell’s electromagnetic theory is incorrect. Since Maxwell’s theory is incorrect, the author has 
revised the definition of magnetic field in Maxwell’s electromagnetic theory. 

What is new in this paper: (1) define the magnetic field according to Poynting vector and 
the mutual energy flow. (2) Introduce the concept of synchronization of two electromagnetic fields. 
(3) Introduce a method to measure the magnetic field defined by the mutual energy flow. (4) Using 
method of contradiction to prove there is a bug in Maxwell’s classical electromagnetic field theory. 
(5) Correct the phase of the magnetic field obtained from Maxwell’s theory. 
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adopts the method of proof by contradiction, first assuming that Maxwell’s electromagnetic theory 
is correct. The mutual energy flow theorem is derived from this. Therefore, the mutual energy flow 
theorem is also correct according to Maxwell’s equations, allowing the magnetic field to be 
determined (defined and measured) later by the mutual energy flow theorem. Using this method, 
it is found that there should be a 90 degree phase difference between the magnetic and electric 
fields of electromagnetic waves. This contradicts the fact that the electric and magnetic fields of 
electromagnetic waves in Maxwell’s electromagnetic theory are in phase, indicating that 
Maxwell’s electromagnetic theory is incorrect. Since Maxwell’s theory is incorrect, the author has 
revised the definition of magnetic field in Maxwell’s electromagnetic theory. 

What is new in this paper: (1) define the magnetic field according to Poynting vector and 
the mutual energy flow. (2) Introduce the concept of synchronization of two electromagnetic fields. 
(3) Introduce a method to measure the magnetic field defined by the mutual energy flow. (4) Using 
method of contradiction to prove there is a bug in Maxwell’s classical electromagnetic field theory. 
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Therefore,  
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∇ × 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 ∇(1
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)) × 𝑱𝑱𝑱𝑱𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (7) 
 

adopts the method of proof by contradiction, first assuming that Maxwell’s electromagnetic theory 
is correct. The mutual energy flow theorem is derived from this. Therefore, the mutual energy flow 
theorem is also correct according to Maxwell’s equations, allowing the magnetic field to be 
determined (defined and measured) later by the mutual energy flow theorem. Using this method, 
it is found that there should be a 90 degree phase difference between the magnetic and electric 
fields of electromagnetic waves. This contradicts the fact that the electric and magnetic fields of 
electromagnetic waves in Maxwell’s electromagnetic theory are in phase, indicating that 
Maxwell’s electromagnetic theory is incorrect. Since Maxwell’s theory is incorrect, the author has 
revised the definition of magnetic field in Maxwell’s electromagnetic theory. 

What is new in this paper: (1) define the magnetic field according to Poynting vector and 
the mutual energy flow. (2) Introduce the concept of synchronization of two electromagnetic fields. 
(3) Introduce a method to measure the magnetic field defined by the mutual energy flow. (4) Using 
method of contradiction to prove there is a bug in Maxwell’s classical electromagnetic field theory. 
(5) Correct the phase of the magnetic field obtained from Maxwell’s theory. 

 
2  The defini�on of magne�c field is incorrect 
 
We know that the solution to the electromagnetic field equation under quasi-static 

conditions is,  
 𝑨𝑨𝑨𝑨 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (1) 

  
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≜ ∇ × 𝑨𝑨𝑨𝑨 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 ∇
1
𝑟𝑟𝑟𝑟

× 𝑱𝑱𝑱𝑱𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (2) 
 

We use the subscript Maxwell to remind readers that the definition of this magnetic field 
was completed by Maxwell and it may be controversial, so there is, 

 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (3) 

 
We also know that according to Biota’s law, the magnetic field is,  
 𝑩𝑩𝑩𝑩 ≜ 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (4) 

 
The symbol "≜" represents the meaning of the definition, so we conclude that,  
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑩𝑩𝑩𝑩 (5) 

 
This indicates that the magnetic field defined by Maxwell under quasi-static conditions is 

the same as the magnetic field defined by Biota’s law. But when it comes to radiated 
electromagnetic fields, the vector potential must consider the retardation factor, which is present 
in the frequency domain,  

 𝑨𝑨𝑨𝑨 = 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉

𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (6) 
 

Therefore,  
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∇ × 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 ∇(1
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)) × 𝑱𝑱𝑱𝑱𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (7) 
 

Therefore, 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (8) 
 

Obviously,  
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (9) 

 
Therefore, there is no reason to believe that 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the magnetic field 𝑩𝑩𝑩𝑩. Let’s take 

a step back and consider,  
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
 

 = 𝑩𝑩𝑩𝑩 + 𝑗𝑗𝑗𝑗 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × (𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟

𝑟𝑟𝑟𝑟
)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (10) 

 
At this point, there are still, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (11) 

 
We know that, 
 
 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 → 0 (12) 

 
imply 
 
 2𝜋𝜋𝜋𝜋

𝜆𝜆𝜆𝜆
𝑗𝑗𝑗𝑗 → 0 (13) 

 
Or,  
 𝑗𝑗𝑗𝑗 ≪ 𝜆𝜆𝜆𝜆 (14) 

 This situation has degenerated to quasi-static conditions, but lim𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  still cannot 
degenerate to the magnetic field 𝑩𝑩𝑩𝑩. Therefore, The reason why 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is called a magnetic 
field is insufficient. Let’s compare the situation of induced electric fields,  

 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨 (15) 

 
In the frequency domain, 
 
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (16) 

 
When it comes to radiating electromagnetic fields,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (17) 
 

Therefore, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉

𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (18) 

Therefore, 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (8) 
 

Obviously,  
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (9) 

 
Therefore, there is no reason to believe that 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the magnetic field 𝑩𝑩𝑩𝑩. Let’s take 

a step back and consider,  
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
 

 = 𝑩𝑩𝑩𝑩 + 𝑗𝑗𝑗𝑗 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × (𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟

𝑟𝑟𝑟𝑟
)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (10) 

 
At this point, there are still, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (11) 

 
We know that, 
 
 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 → 0 (12) 

 
imply 
 
 2𝜋𝜋𝜋𝜋

𝜆𝜆𝜆𝜆
𝑗𝑗𝑗𝑗 → 0 (13) 

 
Or,  
 𝑗𝑗𝑗𝑗 ≪ 𝜆𝜆𝜆𝜆 (14) 

 This situation has degenerated to quasi-static conditions, but lim𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  still cannot 
degenerate to the magnetic field 𝑩𝑩𝑩𝑩. Therefore, The reason why 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is called a magnetic 
field is insufficient. Let’s compare the situation of induced electric fields,  

 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨 (15) 

 
In the frequency domain, 
 
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (16) 

 
When it comes to radiating electromagnetic fields,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (17) 
 

Therefore, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉

𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (18) 

Therefore, 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (8) 
 

Obviously,  
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (9) 

 
Therefore, there is no reason to believe that 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the magnetic field 𝑩𝑩𝑩𝑩. Let’s take 

a step back and consider,  
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
 

 = 𝑩𝑩𝑩𝑩 + 𝑗𝑗𝑗𝑗 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × (𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟

𝑟𝑟𝑟𝑟
)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (10) 

 
At this point, there are still, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (11) 

 
We know that, 
 
 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 → 0 (12) 

 
imply 
 
 2𝜋𝜋𝜋𝜋

𝜆𝜆𝜆𝜆
𝑗𝑗𝑗𝑗 → 0 (13) 

 
Or,  
 𝑗𝑗𝑗𝑗 ≪ 𝜆𝜆𝜆𝜆 (14) 

 This situation has degenerated to quasi-static conditions, but lim𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  still cannot 
degenerate to the magnetic field 𝑩𝑩𝑩𝑩. Therefore, The reason why 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is called a magnetic 
field is insufficient. Let’s compare the situation of induced electric fields,  

 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨 (15) 

 
In the frequency domain, 
 
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (16) 

 
When it comes to radiating electromagnetic fields,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (17) 
 

Therefore, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉

𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (18) 

Therefore, 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (8) 
 

Obviously,  
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (9) 

 
Therefore, there is no reason to believe that 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the magnetic field 𝑩𝑩𝑩𝑩. Let’s take 

a step back and consider,  
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
 

 = 𝑩𝑩𝑩𝑩 + 𝑗𝑗𝑗𝑗 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × (𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟

𝑟𝑟𝑟𝑟
)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (10) 

 
At this point, there are still, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (11) 

 
We know that, 
 
 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 → 0 (12) 

 
imply 
 
 2𝜋𝜋𝜋𝜋

𝜆𝜆𝜆𝜆
𝑗𝑗𝑗𝑗 → 0 (13) 

 
Or,  
 𝑗𝑗𝑗𝑗 ≪ 𝜆𝜆𝜆𝜆 (14) 

 This situation has degenerated to quasi-static conditions, but lim𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  still cannot 
degenerate to the magnetic field 𝑩𝑩𝑩𝑩. Therefore, The reason why 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is called a magnetic 
field is insufficient. Let’s compare the situation of induced electric fields,  

 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨 (15) 

 
In the frequency domain, 
 
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (16) 

 
When it comes to radiating electromagnetic fields,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (17) 
 

Therefore, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉

𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (18) 

Therefore, 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (8) 
 

Obviously,  
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (9) 

 
Therefore, there is no reason to believe that 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the magnetic field 𝑩𝑩𝑩𝑩. Let’s take 

a step back and consider,  
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
 

 = 𝑩𝑩𝑩𝑩 + 𝑗𝑗𝑗𝑗 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × (𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟

𝑟𝑟𝑟𝑟
)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (10) 

 
At this point, there are still, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (11) 

 
We know that, 
 
 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 → 0 (12) 

 
imply 
 
 2𝜋𝜋𝜋𝜋

𝜆𝜆𝜆𝜆
𝑗𝑗𝑗𝑗 → 0 (13) 

 
Or,  
 𝑗𝑗𝑗𝑗 ≪ 𝜆𝜆𝜆𝜆 (14) 

 This situation has degenerated to quasi-static conditions, but lim𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  still cannot 
degenerate to the magnetic field 𝑩𝑩𝑩𝑩. Therefore, The reason why 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is called a magnetic 
field is insufficient. Let’s compare the situation of induced electric fields,  

 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨 (15) 

 
In the frequency domain, 
 
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (16) 

 
When it comes to radiating electromagnetic fields,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (17) 
 

Therefore, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉

𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (18) 

Therefore, 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (8) 
 

Obviously,  
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (9) 

 
Therefore, there is no reason to believe that 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the magnetic field 𝑩𝑩𝑩𝑩. Let’s take 

a step back and consider,  
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
 

 = 𝑩𝑩𝑩𝑩 + 𝑗𝑗𝑗𝑗 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × (𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟

𝑟𝑟𝑟𝑟
)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (10) 

 
At this point, there are still, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (11) 

 
We know that, 
 
 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 → 0 (12) 

 
imply 
 
 2𝜋𝜋𝜋𝜋

𝜆𝜆𝜆𝜆
𝑗𝑗𝑗𝑗 → 0 (13) 

 
Or,  
 𝑗𝑗𝑗𝑗 ≪ 𝜆𝜆𝜆𝜆 (14) 

 This situation has degenerated to quasi-static conditions, but lim𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  still cannot 
degenerate to the magnetic field 𝑩𝑩𝑩𝑩. Therefore, The reason why 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is called a magnetic 
field is insufficient. Let’s compare the situation of induced electric fields,  

 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨 (15) 

 
In the frequency domain, 
 
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (16) 

 
When it comes to radiating electromagnetic fields,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (17) 
 

Therefore, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉

𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (18) 

Therefore, 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (8) 
 

Obviously,  
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (9) 

 
Therefore, there is no reason to believe that 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the magnetic field 𝑩𝑩𝑩𝑩. Let’s take 

a step back and consider,  
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
 

 = 𝑩𝑩𝑩𝑩 + 𝑗𝑗𝑗𝑗 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × (𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟

𝑟𝑟𝑟𝑟
)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (10) 

 
At this point, there are still, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (11) 

 
We know that, 
 
 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 → 0 (12) 

 
imply 
 
 2𝜋𝜋𝜋𝜋

𝜆𝜆𝜆𝜆
𝑗𝑗𝑗𝑗 → 0 (13) 

 
Or,  
 𝑗𝑗𝑗𝑗 ≪ 𝜆𝜆𝜆𝜆 (14) 

 This situation has degenerated to quasi-static conditions, but lim𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  still cannot 
degenerate to the magnetic field 𝑩𝑩𝑩𝑩. Therefore, The reason why 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is called a magnetic 
field is insufficient. Let’s compare the situation of induced electric fields,  

 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨 (15) 

 
In the frequency domain, 
 
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (16) 

 
When it comes to radiating electromagnetic fields,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (17) 
 

Therefore, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉

𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (18) 

Therefore, 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (8) 
 

Obviously,  
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (9) 

 
Therefore, there is no reason to believe that 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the magnetic field 𝑩𝑩𝑩𝑩. Let’s take 

a step back and consider,  
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
 

 = 𝑩𝑩𝑩𝑩 + 𝑗𝑗𝑗𝑗 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × (𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟

𝑟𝑟𝑟𝑟
)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (10) 

 
At this point, there are still, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (11) 

 
We know that, 
 
 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 → 0 (12) 

 
imply 
 
 2𝜋𝜋𝜋𝜋

𝜆𝜆𝜆𝜆
𝑗𝑗𝑗𝑗 → 0 (13) 

 
Or,  
 𝑗𝑗𝑗𝑗 ≪ 𝜆𝜆𝜆𝜆 (14) 

 This situation has degenerated to quasi-static conditions, but lim𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  still cannot 
degenerate to the magnetic field 𝑩𝑩𝑩𝑩. Therefore, The reason why 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is called a magnetic 
field is insufficient. Let’s compare the situation of induced electric fields,  

 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨 (15) 

 
In the frequency domain, 
 
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (16) 

 
When it comes to radiating electromagnetic fields,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (17) 
 

Therefore, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉

𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (18) 

Therefore, 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (8) 
 

Obviously,  
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (9) 

 
Therefore, there is no reason to believe that 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the magnetic field 𝑩𝑩𝑩𝑩. Let’s take 

a step back and consider,  
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
 

 = 𝑩𝑩𝑩𝑩 + 𝑗𝑗𝑗𝑗 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × (𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟

𝑟𝑟𝑟𝑟
)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (10) 

 
At this point, there are still, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (11) 

 
We know that, 
 
 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 → 0 (12) 

 
imply 
 
 2𝜋𝜋𝜋𝜋

𝜆𝜆𝜆𝜆
𝑗𝑗𝑗𝑗 → 0 (13) 

 
Or,  
 𝑗𝑗𝑗𝑗 ≪ 𝜆𝜆𝜆𝜆 (14) 

 This situation has degenerated to quasi-static conditions, but lim𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  still cannot 
degenerate to the magnetic field 𝑩𝑩𝑩𝑩. Therefore, The reason why 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is called a magnetic 
field is insufficient. Let’s compare the situation of induced electric fields,  

 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨 (15) 

 
In the frequency domain, 
 
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (16) 

 
When it comes to radiating electromagnetic fields,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (17) 
 

Therefore, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉

𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (18) 

Therefore, 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (8) 
 

Obviously,  
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (9) 

 
Therefore, there is no reason to believe that 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the magnetic field 𝑩𝑩𝑩𝑩. Let’s take 

a step back and consider,  
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
 

 = 𝑩𝑩𝑩𝑩 + 𝑗𝑗𝑗𝑗 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × (𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟

𝑟𝑟𝑟𝑟
)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (10) 

 
At this point, there are still, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (11) 

 
We know that, 
 
 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 → 0 (12) 

 
imply 
 
 2𝜋𝜋𝜋𝜋

𝜆𝜆𝜆𝜆
𝑗𝑗𝑗𝑗 → 0 (13) 

 
Or,  
 𝑗𝑗𝑗𝑗 ≪ 𝜆𝜆𝜆𝜆 (14) 

 This situation has degenerated to quasi-static conditions, but lim𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  still cannot 
degenerate to the magnetic field 𝑩𝑩𝑩𝑩. Therefore, The reason why 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is called a magnetic 
field is insufficient. Let’s compare the situation of induced electric fields,  

 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨 (15) 

 
In the frequency domain, 
 
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (16) 

 
When it comes to radiating electromagnetic fields,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (17) 
 

Therefore, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉

𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (18) 

Therefore, 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (8) 
 

Obviously,  
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (9) 

 
Therefore, there is no reason to believe that 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the magnetic field 𝑩𝑩𝑩𝑩. Let’s take 

a step back and consider,  
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
 

 = 𝑩𝑩𝑩𝑩 + 𝑗𝑗𝑗𝑗 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × (𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟

𝑟𝑟𝑟𝑟
)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (10) 

 
At this point, there are still, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (11) 

 
We know that, 
 
 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 → 0 (12) 

 
imply 
 
 2𝜋𝜋𝜋𝜋

𝜆𝜆𝜆𝜆
𝑗𝑗𝑗𝑗 → 0 (13) 

 
Or,  
 𝑗𝑗𝑗𝑗 ≪ 𝜆𝜆𝜆𝜆 (14) 

 This situation has degenerated to quasi-static conditions, but lim𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  still cannot 
degenerate to the magnetic field 𝑩𝑩𝑩𝑩. Therefore, The reason why 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is called a magnetic 
field is insufficient. Let’s compare the situation of induced electric fields,  

 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨 (15) 

 
In the frequency domain, 
 
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (16) 

 
When it comes to radiating electromagnetic fields,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (17) 
 

Therefore, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉

𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (18) 

Therefore, 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗))𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (8) 
 

Obviously,  
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (9) 

 
Therefore, there is no reason to believe that 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the magnetic field 𝑩𝑩𝑩𝑩. Let’s take 

a step back and consider,  
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × ( 𝒓𝒓𝒓𝒓
𝑟𝑟𝑟𝑟3

+ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
 

 = 𝑩𝑩𝑩𝑩 + 𝑗𝑗𝑗𝑗 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉 𝑱𝑱𝑱𝑱 × (𝑗𝑗𝑗𝑗𝑟̂𝑟𝑟𝑟

𝑟𝑟𝑟𝑟
)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (10) 

 
At this point, there are still, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑩𝑩𝑩𝑩 (11) 

 
We know that, 
 
 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 → 0 (12) 

 
imply 
 
 2𝜋𝜋𝜋𝜋

𝜆𝜆𝜆𝜆
𝑗𝑗𝑗𝑗 → 0 (13) 

 
Or,  
 𝑗𝑗𝑗𝑗 ≪ 𝜆𝜆𝜆𝜆 (14) 

 This situation has degenerated to quasi-static conditions, but lim𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  still cannot 
degenerate to the magnetic field 𝑩𝑩𝑩𝑩. Therefore, The reason why 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is called a magnetic 
field is insufficient. Let’s compare the situation of induced electric fields,  

 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨 (15) 

 
In the frequency domain, 
 
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (16) 

 
When it comes to radiating electromagnetic fields,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≜ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (17) 
 

Therefore, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟

exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔 𝜇𝜇𝜇𝜇0
4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉

𝑱𝑱𝑱𝑱
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (18) 

Therefore, there is no reason to believe that BMaxwell is the magnetic field B. Let’s take a step back and consider, 

 This situation has degenerated to quasi-static conditions, but limkr→0 BMaxwell still cannot degenerate to the magnetic field B. Therefore, 
The reason why BMaxwell is called a magnetic field is insufficient. Let’s compare the situation of induced electric fields, 
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That is, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 (19) 

 
From this, it can be seen that 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  can degenerate into 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 . But 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  cannot 

degenerate into 𝑩𝑩𝑩𝑩. Actually, if we consider  
 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 ≜ −∇𝜙𝜙𝜙𝜙, (20) 

  
 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≜ −∇𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) (21) 

 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 (22) 

 
Therefore, the electrostatic field 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  cannot degenerate to either 𝑬𝑬𝑬𝑬𝒔𝒔𝒔𝒔 . Therefore, 

There are also issues if 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is defined as 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠. But this article will not discuss that issue. 
Only discuss the issue of magnetic fields. 

 
3  Energy related theorems 
 
We know that the following Poynting’s theorem holds under both magnetic quasi-static 

conditions and radiation electromagnetic field conditions,  
 −∯ (𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬 ⋅ 𝑱𝑱𝑱𝑱)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑈𝑈𝑈𝑈 (23) 

 
In magnetic quasi-static state, the energy is only magnetic field energy,  
 𝑈𝑈𝑈𝑈 = 1

2 ∫𝑉𝑉𝑉𝑉 (𝑯𝑯𝑯𝑯 ⋅ 𝑩𝑩𝑩𝑩)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (24) 
 

Under radiation electromagnetic field conditions, the energy is,  
 𝑈𝑈𝑈𝑈 = 1

2 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬 ⋅ 𝑫𝑫𝑫𝑫 + 𝑯𝑯𝑯𝑯 ⋅ 𝑩𝑩𝑩𝑩)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (25) 
 

Consider the integration of energy over time,  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑈𝑈𝑈𝑈 = 𝑈𝑈𝑈𝑈(∞) − 𝑈𝑈𝑈𝑈(−∞) = 0 (26) 

 
𝑈𝑈𝑈𝑈(−∞), 𝑈𝑈𝑈𝑈(∞) is the energy at the beginning of the system and the energy at the end of 

the system, both of which should be zero. Integrating Poynting’s theorem in time with time can 
eliminate the energy term, resulting in, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬 ⋅ 𝑱𝑱𝑱𝑱)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (27) 

 
Consider that the current source consists of two current elements, and then consider the 

superposition principle,  
 𝑱𝑱𝑱𝑱 = ∑2

𝑖𝑖𝑖𝑖=1 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖 ,      𝑬𝑬𝑬𝑬 = ∑2
𝑖𝑖𝑖𝑖=1 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ,      𝑯𝑯𝑯𝑯 = ∑2

𝑖𝑖𝑖𝑖=1 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖 (28) 
 

 
That is, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 (19) 

 
From this, it can be seen that 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  can degenerate into 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 . But 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  cannot 

degenerate into 𝑩𝑩𝑩𝑩. Actually, if we consider  
 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 ≜ −∇𝜙𝜙𝜙𝜙, (20) 

  
 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≜ −∇𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) (21) 

 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 (22) 

 
Therefore, the electrostatic field 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  cannot degenerate to either 𝑬𝑬𝑬𝑬𝒔𝒔𝒔𝒔 . Therefore, 

There are also issues if 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is defined as 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠. But this article will not discuss that issue. 
Only discuss the issue of magnetic fields. 

 
3  Energy related theorems 
 
We know that the following Poynting’s theorem holds under both magnetic quasi-static 

conditions and radiation electromagnetic field conditions,  
 −∯ (𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬 ⋅ 𝑱𝑱𝑱𝑱)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑈𝑈𝑈𝑈 (23) 

 
In magnetic quasi-static state, the energy is only magnetic field energy,  
 𝑈𝑈𝑈𝑈 = 1

2 ∫𝑉𝑉𝑉𝑉 (𝑯𝑯𝑯𝑯 ⋅ 𝑩𝑩𝑩𝑩)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (24) 
 

Under radiation electromagnetic field conditions, the energy is,  
 𝑈𝑈𝑈𝑈 = 1

2 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬 ⋅ 𝑫𝑫𝑫𝑫 + 𝑯𝑯𝑯𝑯 ⋅ 𝑩𝑩𝑩𝑩)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (25) 
 

Consider the integration of energy over time,  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑈𝑈𝑈𝑈 = 𝑈𝑈𝑈𝑈(∞) − 𝑈𝑈𝑈𝑈(−∞) = 0 (26) 

 
𝑈𝑈𝑈𝑈(−∞), 𝑈𝑈𝑈𝑈(∞) is the energy at the beginning of the system and the energy at the end of 

the system, both of which should be zero. Integrating Poynting’s theorem in time with time can 
eliminate the energy term, resulting in, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬 ⋅ 𝑱𝑱𝑱𝑱)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (27) 

 
Consider that the current source consists of two current elements, and then consider the 

superposition principle,  
 𝑱𝑱𝑱𝑱 = ∑2

𝑖𝑖𝑖𝑖=1 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖 ,      𝑬𝑬𝑬𝑬 = ∑2
𝑖𝑖𝑖𝑖=1 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ,      𝑯𝑯𝑯𝑯 = ∑2

𝑖𝑖𝑖𝑖=1 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖 (28) 
 

 
That is, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 (19) 

 
From this, it can be seen that 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  can degenerate into 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 . But 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  cannot 

degenerate into 𝑩𝑩𝑩𝑩. Actually, if we consider  
 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 ≜ −∇𝜙𝜙𝜙𝜙, (20) 

  
 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≜ −∇𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) (21) 
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Therefore, the electrostatic field 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  cannot degenerate to either 𝑬𝑬𝑬𝑬𝒔𝒔𝒔𝒔 . Therefore, 

There are also issues if 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is defined as 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠. But this article will not discuss that issue. 
Only discuss the issue of magnetic fields. 

 
3  Energy related theorems 
 
We know that the following Poynting’s theorem holds under both magnetic quasi-static 

conditions and radiation electromagnetic field conditions,  
 −∯ (𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬 ⋅ 𝑱𝑱𝑱𝑱)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑈𝑈𝑈𝑈 (23) 

 
In magnetic quasi-static state, the energy is only magnetic field energy,  
 𝑈𝑈𝑈𝑈 = 1

2 ∫𝑉𝑉𝑉𝑉 (𝑯𝑯𝑯𝑯 ⋅ 𝑩𝑩𝑩𝑩)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (24) 
 

Under radiation electromagnetic field conditions, the energy is,  
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2 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬 ⋅ 𝑫𝑫𝑫𝑫 + 𝑯𝑯𝑯𝑯 ⋅ 𝑩𝑩𝑩𝑩)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (25) 
 

Consider the integration of energy over time,  
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𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑈𝑈𝑈𝑈 = 𝑈𝑈𝑈𝑈(∞) − 𝑈𝑈𝑈𝑈(−∞) = 0 (26) 

 
𝑈𝑈𝑈𝑈(−∞), 𝑈𝑈𝑈𝑈(∞) is the energy at the beginning of the system and the energy at the end of 

the system, both of which should be zero. Integrating Poynting’s theorem in time with time can 
eliminate the energy term, resulting in, 
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Consider that the current source consists of two current elements, and then consider the 

superposition principle,  
 𝑱𝑱𝑱𝑱 = ∑2

𝑖𝑖𝑖𝑖=1 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖 ,      𝑬𝑬𝑬𝑬 = ∑2
𝑖𝑖𝑖𝑖=1 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ,      𝑯𝑯𝑯𝑯 = ∑2

𝑖𝑖𝑖𝑖=1 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖 (28) 
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degenerate into 𝑩𝑩𝑩𝑩. Actually, if we consider  
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Only discuss the issue of magnetic fields. 

 
3  Energy related theorems 
 
We know that the following Poynting’s theorem holds under both magnetic quasi-static 

conditions and radiation electromagnetic field conditions,  
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Consider the integration of energy over time,  
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eliminate the energy term, resulting in, 
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𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 (22) 

 
Therefore, the electrostatic field 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  cannot degenerate to either 𝑬𝑬𝑬𝑬𝒔𝒔𝒔𝒔 . Therefore, 

There are also issues if 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is defined as 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠. But this article will not discuss that issue. 
Only discuss the issue of magnetic fields. 

 
3  Energy related theorems 
 
We know that the following Poynting’s theorem holds under both magnetic quasi-static 

conditions and radiation electromagnetic field conditions,  
 −∯ (𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬 ⋅ 𝑱𝑱𝑱𝑱)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑈𝑈𝑈𝑈 (23) 

 
In magnetic quasi-static state, the energy is only magnetic field energy,  
 𝑈𝑈𝑈𝑈 = 1

2 ∫𝑉𝑉𝑉𝑉 (𝑯𝑯𝑯𝑯 ⋅ 𝑩𝑩𝑩𝑩)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (24) 
 

Under radiation electromagnetic field conditions, the energy is,  
 𝑈𝑈𝑈𝑈 = 1

2 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬 ⋅ 𝑫𝑫𝑫𝑫 + 𝑯𝑯𝑯𝑯 ⋅ 𝑩𝑩𝑩𝑩)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (25) 
 

Consider the integration of energy over time,  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑈𝑈𝑈𝑈 = 𝑈𝑈𝑈𝑈(∞) − 𝑈𝑈𝑈𝑈(−∞) = 0 (26) 

 
𝑈𝑈𝑈𝑈(−∞), 𝑈𝑈𝑈𝑈(∞) is the energy at the beginning of the system and the energy at the end of 

the system, both of which should be zero. Integrating Poynting’s theorem in time with time can 
eliminate the energy term, resulting in, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬 ⋅ 𝑱𝑱𝑱𝑱)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (27) 

 
Consider that the current source consists of two current elements, and then consider the 

superposition principle,  
 𝑱𝑱𝑱𝑱 = ∑2

𝑖𝑖𝑖𝑖=1 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖 ,      𝑬𝑬𝑬𝑬 = ∑2
𝑖𝑖𝑖𝑖=1 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ,      𝑯𝑯𝑯𝑯 = ∑2

𝑖𝑖𝑖𝑖=1 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖 (28) 
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𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 (19) 

 
From this, it can be seen that 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  can degenerate into 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 . But 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  cannot 

degenerate into 𝑩𝑩𝑩𝑩. Actually, if we consider  
 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 ≜ −∇𝜙𝜙𝜙𝜙, (20) 
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There are also issues if 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is defined as 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠. But this article will not discuss that issue. 
Only discuss the issue of magnetic fields. 

 
3  Energy related theorems 
 
We know that the following Poynting’s theorem holds under both magnetic quasi-static 

conditions and radiation electromagnetic field conditions,  
 −∯ (𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬 ⋅ 𝑱𝑱𝑱𝑱)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕
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𝑈𝑈𝑈𝑈 (23) 

 
In magnetic quasi-static state, the energy is only magnetic field energy,  
 𝑈𝑈𝑈𝑈 = 1

2 ∫𝑉𝑉𝑉𝑉 (𝑯𝑯𝑯𝑯 ⋅ 𝑩𝑩𝑩𝑩)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (24) 
 

Under radiation electromagnetic field conditions, the energy is,  
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2 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬 ⋅ 𝑫𝑫𝑫𝑫 + 𝑯𝑯𝑯𝑯 ⋅ 𝑩𝑩𝑩𝑩)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (25) 
 

Consider the integration of energy over time,  
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𝑈𝑈𝑈𝑈 = 𝑈𝑈𝑈𝑈(∞) − 𝑈𝑈𝑈𝑈(−∞) = 0 (26) 

 
𝑈𝑈𝑈𝑈(−∞), 𝑈𝑈𝑈𝑈(∞) is the energy at the beginning of the system and the energy at the end of 

the system, both of which should be zero. Integrating Poynting’s theorem in time with time can 
eliminate the energy term, resulting in, 
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Consider that the current source consists of two current elements, and then consider the 

superposition principle,  
 𝑱𝑱𝑱𝑱 = ∑2

𝑖𝑖𝑖𝑖=1 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖 ,      𝑬𝑬𝑬𝑬 = ∑2
𝑖𝑖𝑖𝑖=1 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ,      𝑯𝑯𝑯𝑯 = ∑2

𝑖𝑖𝑖𝑖=1 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖 (28) 
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degenerate into 𝑩𝑩𝑩𝑩. Actually, if we consider  
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There are also issues if 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is defined as 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠. But this article will not discuss that issue. 
Only discuss the issue of magnetic fields. 

 
3  Energy related theorems 
 
We know that the following Poynting’s theorem holds under both magnetic quasi-static 

conditions and radiation electromagnetic field conditions,  
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From this, it can be seen that 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  can degenerate into 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 . But 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  cannot 

degenerate into 𝑩𝑩𝑩𝑩. Actually, if we consider  
 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 ≜ −∇𝜙𝜙𝜙𝜙, (20) 

  
 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≜ −∇𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) (21) 

 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 (22) 

 
Therefore, the electrostatic field 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  cannot degenerate to either 𝑬𝑬𝑬𝑬𝒔𝒔𝒔𝒔 . Therefore, 

There are also issues if 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is defined as 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠. But this article will not discuss that issue. 
Only discuss the issue of magnetic fields. 

 
3  Energy related theorems 
 
We know that the following Poynting’s theorem holds under both magnetic quasi-static 

conditions and radiation electromagnetic field conditions,  
 −∯ (𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬 ⋅ 𝑱𝑱𝑱𝑱)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑈𝑈𝑈𝑈 (23) 

 
In magnetic quasi-static state, the energy is only magnetic field energy,  
 𝑈𝑈𝑈𝑈 = 1

2 ∫𝑉𝑉𝑉𝑉 (𝑯𝑯𝑯𝑯 ⋅ 𝑩𝑩𝑩𝑩)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (24) 
 

Under radiation electromagnetic field conditions, the energy is,  
 𝑈𝑈𝑈𝑈 = 1

2 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬 ⋅ 𝑫𝑫𝑫𝑫 + 𝑯𝑯𝑯𝑯 ⋅ 𝑩𝑩𝑩𝑩)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (25) 
 

Consider the integration of energy over time,  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑈𝑈𝑈𝑈 = 𝑈𝑈𝑈𝑈(∞) − 𝑈𝑈𝑈𝑈(−∞) = 0 (26) 

 
𝑈𝑈𝑈𝑈(−∞), 𝑈𝑈𝑈𝑈(∞) is the energy at the beginning of the system and the energy at the end of 

the system, both of which should be zero. Integrating Poynting’s theorem in time with time can 
eliminate the energy term, resulting in, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬 ⋅ 𝑱𝑱𝑱𝑱)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (27) 

 
Consider that the current source consists of two current elements, and then consider the 

superposition principle,  
 𝑱𝑱𝑱𝑱 = ∑2

𝑖𝑖𝑖𝑖=1 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖 ,      𝑬𝑬𝑬𝑬 = ∑2
𝑖𝑖𝑖𝑖=1 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ,      𝑯𝑯𝑯𝑯 = ∑2

𝑖𝑖𝑖𝑖=1 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖 (28) 
 

 
That is, 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 (19) 

 
From this, it can be seen that 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  can degenerate into 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 . But 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  cannot 

degenerate into 𝑩𝑩𝑩𝑩. Actually, if we consider  
 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 ≜ −∇𝜙𝜙𝜙𝜙, (20) 

  
 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≜ −∇𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) (21) 

 
 
 lim

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗→0
𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 (22) 

 
Therefore, the electrostatic field 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  cannot degenerate to either 𝑬𝑬𝑬𝑬𝒔𝒔𝒔𝒔 . Therefore, 

There are also issues if 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is defined as 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠. But this article will not discuss that issue. 
Only discuss the issue of magnetic fields. 

 
3  Energy related theorems 
 
We know that the following Poynting’s theorem holds under both magnetic quasi-static 

conditions and radiation electromagnetic field conditions,  
 −∯ (𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬 ⋅ 𝑱𝑱𝑱𝑱)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑈𝑈𝑈𝑈 (23) 

 
In magnetic quasi-static state, the energy is only magnetic field energy,  
 𝑈𝑈𝑈𝑈 = 1

2 ∫𝑉𝑉𝑉𝑉 (𝑯𝑯𝑯𝑯 ⋅ 𝑩𝑩𝑩𝑩)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (24) 
 

Under radiation electromagnetic field conditions, the energy is,  
 𝑈𝑈𝑈𝑈 = 1

2 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬 ⋅ 𝑫𝑫𝑫𝑫 + 𝑯𝑯𝑯𝑯 ⋅ 𝑩𝑩𝑩𝑩)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (25) 
 

Consider the integration of energy over time,  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑈𝑈𝑈𝑈 = 𝑈𝑈𝑈𝑈(∞) − 𝑈𝑈𝑈𝑈(−∞) = 0 (26) 

 
𝑈𝑈𝑈𝑈(−∞), 𝑈𝑈𝑈𝑈(∞) is the energy at the beginning of the system and the energy at the end of 

the system, both of which should be zero. Integrating Poynting’s theorem in time with time can 
eliminate the energy term, resulting in, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬 ⋅ 𝑱𝑱𝑱𝑱)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (27) 

 
Consider that the current source consists of two current elements, and then consider the 

superposition principle,  
 𝑱𝑱𝑱𝑱 = ∑2

𝑖𝑖𝑖𝑖=1 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖 ,      𝑬𝑬𝑬𝑬 = ∑2
𝑖𝑖𝑖𝑖=1 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ,      𝑯𝑯𝑯𝑯 = ∑2

𝑖𝑖𝑖𝑖=1 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖 (28) 
 

From this, it can be seen that EiMaxwell can degenerate into Ei. But BMaxwell cannot degenerate into B. Actually, if we consider 

Therefore, the electrostatic field EsMaxwell cannot degenerate to either Es. Therefore, There are also issues if EsMaxwell is defined as Es. 
But this article will not discuss that issue. Only discuss the issue of magnetic fields.

3. Energy Related Theorems
We know that the following Poynting’s theorem holds under both magnetic quasi-static conditions and radiation electromagnetic 
field conditions, 

In magnetic quasi-static state, the energy is only magnetic field energy, 

Under radiation electromagnetic field conditions, the energy is, 

Consider the integration of energy over time, 

U(-∞), U(∞) is the energy at the beginning of the system and the energy at the end of the system, both of which should be zero. 
Integrating Poynting’s theorem in time with time can eliminate the energy term, resulting in,

Consider that the current source consists of two current elements, and then consider the superposition principle, 

Using the above superposition principle in (27),Using the above superposition principle in (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (29) 

 
According to (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫ ∑2
𝑖𝑖𝑖𝑖=1𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (30) 

 
Subtract (30) from (29) to obtain, 
 
−∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (31) 
 

Alternatively,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (32) 

 
We assume that 𝑱𝑱𝑱𝑱1 is a radiation source, therefore 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 It is a retarded wave, assuming 

𝑱𝑱𝑱𝑱2 is a radiation sink, such as a receiving antenna, so 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is not a retarded wave. According 
to Maxwell’s electromagnetic theory, the receiving antenna does not produce radiation, and the 
far-field of this electromagnetic wave is zero. According to Wheeler Feynman’s absorber theory, 
Cramer’s quantum mechanics transactional interpretation, or the author’s advanced wave theory, 
𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is an advanced wave. This 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 and 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 Not reaching surfaces with infinite 
radii at the same time Γ. Therefore, the surface integral on the surface Γ is zero,  

 ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = 0 (33) 
 

Obtained from (32, 33),  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 (34) 

 
Or,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (35) 

 
The above equation is the Welch time-domain reciprocity theorem [6], which we obtained 

from the Poynting theorem, therefore it is an energy theorem. Transform to frequency domain as, 
 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (36) 

 
The above equation is the mutual energy theorem proposed by the author [3, 4, 5] in 1987. 

Since it is derived from Poynting’s theorem, it is also the energy theorem. Consider Γ = Γ1 in 
(32) , Γ1 is only contains one current 𝑱𝑱𝑱𝑱1 Therefore, there are, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (37) 
 

Using the above superposition principle in (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (29) 

 
According to (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫ ∑2
𝑖𝑖𝑖𝑖=1𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (30) 

 
Subtract (30) from (29) to obtain, 
 
−∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (31) 
 

Alternatively,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (32) 

 
We assume that 𝑱𝑱𝑱𝑱1 is a radiation source, therefore 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 It is a retarded wave, assuming 

𝑱𝑱𝑱𝑱2 is a radiation sink, such as a receiving antenna, so 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is not a retarded wave. According 
to Maxwell’s electromagnetic theory, the receiving antenna does not produce radiation, and the 
far-field of this electromagnetic wave is zero. According to Wheeler Feynman’s absorber theory, 
Cramer’s quantum mechanics transactional interpretation, or the author’s advanced wave theory, 
𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is an advanced wave. This 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 and 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 Not reaching surfaces with infinite 
radii at the same time Γ. Therefore, the surface integral on the surface Γ is zero,  

 ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = 0 (33) 
 

Obtained from (32, 33),  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 (34) 

 
Or,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (35) 

 
The above equation is the Welch time-domain reciprocity theorem [6], which we obtained 

from the Poynting theorem, therefore it is an energy theorem. Transform to frequency domain as, 
 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (36) 

 
The above equation is the mutual energy theorem proposed by the author [3, 4, 5] in 1987. 

Since it is derived from Poynting’s theorem, it is also the energy theorem. Consider Γ = Γ1 in 
(32) , Γ1 is only contains one current 𝑱𝑱𝑱𝑱1 Therefore, there are, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (37) 
 

Using the above superposition principle in (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (29) 

 
According to (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫ ∑2
𝑖𝑖𝑖𝑖=1𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (30) 

 
Subtract (30) from (29) to obtain, 
 
−∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (31) 
 

Alternatively,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (32) 

 
We assume that 𝑱𝑱𝑱𝑱1 is a radiation source, therefore 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 It is a retarded wave, assuming 

𝑱𝑱𝑱𝑱2 is a radiation sink, such as a receiving antenna, so 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is not a retarded wave. According 
to Maxwell’s electromagnetic theory, the receiving antenna does not produce radiation, and the 
far-field of this electromagnetic wave is zero. According to Wheeler Feynman’s absorber theory, 
Cramer’s quantum mechanics transactional interpretation, or the author’s advanced wave theory, 
𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is an advanced wave. This 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 and 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 Not reaching surfaces with infinite 
radii at the same time Γ. Therefore, the surface integral on the surface Γ is zero,  

 ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = 0 (33) 
 

Obtained from (32, 33),  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 (34) 

 
Or,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (35) 

 
The above equation is the Welch time-domain reciprocity theorem [6], which we obtained 

from the Poynting theorem, therefore it is an energy theorem. Transform to frequency domain as, 
 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (36) 

 
The above equation is the mutual energy theorem proposed by the author [3, 4, 5] in 1987. 

Since it is derived from Poynting’s theorem, it is also the energy theorem. Consider Γ = Γ1 in 
(32) , Γ1 is only contains one current 𝑱𝑱𝑱𝑱1 Therefore, there are, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (37) 
 

Using the above superposition principle in (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (29) 

 
According to (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫ ∑2
𝑖𝑖𝑖𝑖=1𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (30) 

 
Subtract (30) from (29) to obtain, 
 
−∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (31) 
 

Alternatively,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (32) 

 
We assume that 𝑱𝑱𝑱𝑱1 is a radiation source, therefore 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 It is a retarded wave, assuming 

𝑱𝑱𝑱𝑱2 is a radiation sink, such as a receiving antenna, so 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is not a retarded wave. According 
to Maxwell’s electromagnetic theory, the receiving antenna does not produce radiation, and the 
far-field of this electromagnetic wave is zero. According to Wheeler Feynman’s absorber theory, 
Cramer’s quantum mechanics transactional interpretation, or the author’s advanced wave theory, 
𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is an advanced wave. This 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 and 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 Not reaching surfaces with infinite 
radii at the same time Γ. Therefore, the surface integral on the surface Γ is zero,  

 ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = 0 (33) 
 

Obtained from (32, 33),  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 (34) 

 
Or,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (35) 

 
The above equation is the Welch time-domain reciprocity theorem [6], which we obtained 

from the Poynting theorem, therefore it is an energy theorem. Transform to frequency domain as, 
 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (36) 

 
The above equation is the mutual energy theorem proposed by the author [3, 4, 5] in 1987. 

Since it is derived from Poynting’s theorem, it is also the energy theorem. Consider Γ = Γ1 in 
(32) , Γ1 is only contains one current 𝑱𝑱𝑱𝑱1 Therefore, there are, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (37) 
 

Using the above superposition principle in (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (29) 

 
According to (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫ ∑2
𝑖𝑖𝑖𝑖=1𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (30) 

 
Subtract (30) from (29) to obtain, 
 
−∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (31) 
 

Alternatively,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (32) 

 
We assume that 𝑱𝑱𝑱𝑱1 is a radiation source, therefore 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 It is a retarded wave, assuming 

𝑱𝑱𝑱𝑱2 is a radiation sink, such as a receiving antenna, so 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is not a retarded wave. According 
to Maxwell’s electromagnetic theory, the receiving antenna does not produce radiation, and the 
far-field of this electromagnetic wave is zero. According to Wheeler Feynman’s absorber theory, 
Cramer’s quantum mechanics transactional interpretation, or the author’s advanced wave theory, 
𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is an advanced wave. This 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 and 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 Not reaching surfaces with infinite 
radii at the same time Γ. Therefore, the surface integral on the surface Γ is zero,  

 ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = 0 (33) 
 

Obtained from (32, 33),  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 (34) 

 
Or,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (35) 

 
The above equation is the Welch time-domain reciprocity theorem [6], which we obtained 

from the Poynting theorem, therefore it is an energy theorem. Transform to frequency domain as, 
 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (36) 

 
The above equation is the mutual energy theorem proposed by the author [3, 4, 5] in 1987. 

Since it is derived from Poynting’s theorem, it is also the energy theorem. Consider Γ = Γ1 in 
(32) , Γ1 is only contains one current 𝑱𝑱𝑱𝑱1 Therefore, there are, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (37) 
 

Using the above superposition principle in (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (29) 

 
According to (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫ ∑2
𝑖𝑖𝑖𝑖=1𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (30) 

 
Subtract (30) from (29) to obtain, 
 
−∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (31) 
 

Alternatively,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (32) 

 
We assume that 𝑱𝑱𝑱𝑱1 is a radiation source, therefore 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 It is a retarded wave, assuming 

𝑱𝑱𝑱𝑱2 is a radiation sink, such as a receiving antenna, so 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is not a retarded wave. According 
to Maxwell’s electromagnetic theory, the receiving antenna does not produce radiation, and the 
far-field of this electromagnetic wave is zero. According to Wheeler Feynman’s absorber theory, 
Cramer’s quantum mechanics transactional interpretation, or the author’s advanced wave theory, 
𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is an advanced wave. This 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 and 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 Not reaching surfaces with infinite 
radii at the same time Γ. Therefore, the surface integral on the surface Γ is zero,  

 ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = 0 (33) 
 

Obtained from (32, 33),  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 (34) 

 
Or,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (35) 

 
The above equation is the Welch time-domain reciprocity theorem [6], which we obtained 

from the Poynting theorem, therefore it is an energy theorem. Transform to frequency domain as, 
 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (36) 

 
The above equation is the mutual energy theorem proposed by the author [3, 4, 5] in 1987. 

Since it is derived from Poynting’s theorem, it is also the energy theorem. Consider Γ = Γ1 in 
(32) , Γ1 is only contains one current 𝑱𝑱𝑱𝑱1 Therefore, there are, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (37) 
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Using the above superposition principle in (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (29) 

 
According to (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫ ∑2
𝑖𝑖𝑖𝑖=1𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (30) 

 
Subtract (30) from (29) to obtain, 
 
−∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (31) 
 

Alternatively,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (32) 

 
We assume that 𝑱𝑱𝑱𝑱1 is a radiation source, therefore 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 It is a retarded wave, assuming 

𝑱𝑱𝑱𝑱2 is a radiation sink, such as a receiving antenna, so 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is not a retarded wave. According 
to Maxwell’s electromagnetic theory, the receiving antenna does not produce radiation, and the 
far-field of this electromagnetic wave is zero. According to Wheeler Feynman’s absorber theory, 
Cramer’s quantum mechanics transactional interpretation, or the author’s advanced wave theory, 
𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is an advanced wave. This 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 and 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 Not reaching surfaces with infinite 
radii at the same time Γ. Therefore, the surface integral on the surface Γ is zero,  

 ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = 0 (33) 
 

Obtained from (32, 33),  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 (34) 

 
Or,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (35) 

 
The above equation is the Welch time-domain reciprocity theorem [6], which we obtained 

from the Poynting theorem, therefore it is an energy theorem. Transform to frequency domain as, 
 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (36) 

 
The above equation is the mutual energy theorem proposed by the author [3, 4, 5] in 1987. 

Since it is derived from Poynting’s theorem, it is also the energy theorem. Consider Γ = Γ1 in 
(32) , Γ1 is only contains one current 𝑱𝑱𝑱𝑱1 Therefore, there are, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (37) 
 

Using the above superposition principle in (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (29) 

 
According to (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫ ∑2
𝑖𝑖𝑖𝑖=1𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (30) 

 
Subtract (30) from (29) to obtain, 
 
−∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (31) 
 

Alternatively,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (32) 

 
We assume that 𝑱𝑱𝑱𝑱1 is a radiation source, therefore 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 It is a retarded wave, assuming 

𝑱𝑱𝑱𝑱2 is a radiation sink, such as a receiving antenna, so 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is not a retarded wave. According 
to Maxwell’s electromagnetic theory, the receiving antenna does not produce radiation, and the 
far-field of this electromagnetic wave is zero. According to Wheeler Feynman’s absorber theory, 
Cramer’s quantum mechanics transactional interpretation, or the author’s advanced wave theory, 
𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is an advanced wave. This 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 and 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 Not reaching surfaces with infinite 
radii at the same time Γ. Therefore, the surface integral on the surface Γ is zero,  

 ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = 0 (33) 
 

Obtained from (32, 33),  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 (34) 

 
Or,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (35) 

 
The above equation is the Welch time-domain reciprocity theorem [6], which we obtained 

from the Poynting theorem, therefore it is an energy theorem. Transform to frequency domain as, 
 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (36) 

 
The above equation is the mutual energy theorem proposed by the author [3, 4, 5] in 1987. 

Since it is derived from Poynting’s theorem, it is also the energy theorem. Consider Γ = Γ1 in 
(32) , Γ1 is only contains one current 𝑱𝑱𝑱𝑱1 Therefore, there are, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (37) 
 

Using the above superposition principle in (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (29) 

 
According to (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫ ∑2
𝑖𝑖𝑖𝑖=1𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (30) 

 
Subtract (30) from (29) to obtain, 
 
−∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (31) 
 

Alternatively,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (32) 

 
We assume that 𝑱𝑱𝑱𝑱1 is a radiation source, therefore 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 It is a retarded wave, assuming 

𝑱𝑱𝑱𝑱2 is a radiation sink, such as a receiving antenna, so 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is not a retarded wave. According 
to Maxwell’s electromagnetic theory, the receiving antenna does not produce radiation, and the 
far-field of this electromagnetic wave is zero. According to Wheeler Feynman’s absorber theory, 
Cramer’s quantum mechanics transactional interpretation, or the author’s advanced wave theory, 
𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is an advanced wave. This 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 and 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 Not reaching surfaces with infinite 
radii at the same time Γ. Therefore, the surface integral on the surface Γ is zero,  

 ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = 0 (33) 
 

Obtained from (32, 33),  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 (34) 

 
Or,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (35) 

 
The above equation is the Welch time-domain reciprocity theorem [6], which we obtained 

from the Poynting theorem, therefore it is an energy theorem. Transform to frequency domain as, 
 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (36) 

 
The above equation is the mutual energy theorem proposed by the author [3, 4, 5] in 1987. 

Since it is derived from Poynting’s theorem, it is also the energy theorem. Consider Γ = Γ1 in 
(32) , Γ1 is only contains one current 𝑱𝑱𝑱𝑱1 Therefore, there are, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (37) 
 

Using the above superposition principle in (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (29) 

 
According to (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫ ∑2
𝑖𝑖𝑖𝑖=1𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (30) 

 
Subtract (30) from (29) to obtain, 
 
−∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (31) 
 

Alternatively,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (32) 

 
We assume that 𝑱𝑱𝑱𝑱1 is a radiation source, therefore 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 It is a retarded wave, assuming 

𝑱𝑱𝑱𝑱2 is a radiation sink, such as a receiving antenna, so 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is not a retarded wave. According 
to Maxwell’s electromagnetic theory, the receiving antenna does not produce radiation, and the 
far-field of this electromagnetic wave is zero. According to Wheeler Feynman’s absorber theory, 
Cramer’s quantum mechanics transactional interpretation, or the author’s advanced wave theory, 
𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is an advanced wave. This 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 and 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 Not reaching surfaces with infinite 
radii at the same time Γ. Therefore, the surface integral on the surface Γ is zero,  

 ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = 0 (33) 
 

Obtained from (32, 33),  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 (34) 

 
Or,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (35) 

 
The above equation is the Welch time-domain reciprocity theorem [6], which we obtained 

from the Poynting theorem, therefore it is an energy theorem. Transform to frequency domain as, 
 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (36) 

 
The above equation is the mutual energy theorem proposed by the author [3, 4, 5] in 1987. 

Since it is derived from Poynting’s theorem, it is also the energy theorem. Consider Γ = Γ1 in 
(32) , Γ1 is only contains one current 𝑱𝑱𝑱𝑱1 Therefore, there are, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (37) 
 

Using the above superposition principle in (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (29) 

 
According to (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫ ∑2
𝑖𝑖𝑖𝑖=1𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (30) 

 
Subtract (30) from (29) to obtain, 
 
−∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (31) 
 

Alternatively,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (32) 

 
We assume that 𝑱𝑱𝑱𝑱1 is a radiation source, therefore 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 It is a retarded wave, assuming 

𝑱𝑱𝑱𝑱2 is a radiation sink, such as a receiving antenna, so 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is not a retarded wave. According 
to Maxwell’s electromagnetic theory, the receiving antenna does not produce radiation, and the 
far-field of this electromagnetic wave is zero. According to Wheeler Feynman’s absorber theory, 
Cramer’s quantum mechanics transactional interpretation, or the author’s advanced wave theory, 
𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is an advanced wave. This 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 and 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 Not reaching surfaces with infinite 
radii at the same time Γ. Therefore, the surface integral on the surface Γ is zero,  

 ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = 0 (33) 
 

Obtained from (32, 33),  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 (34) 

 
Or,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (35) 

 
The above equation is the Welch time-domain reciprocity theorem [6], which we obtained 

from the Poynting theorem, therefore it is an energy theorem. Transform to frequency domain as, 
 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (36) 

 
The above equation is the mutual energy theorem proposed by the author [3, 4, 5] in 1987. 

Since it is derived from Poynting’s theorem, it is also the energy theorem. Consider Γ = Γ1 in 
(32) , Γ1 is only contains one current 𝑱𝑱𝑱𝑱1 Therefore, there are, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (37) 
 

Using the above superposition principle in (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (29) 

 
According to (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫ ∑2
𝑖𝑖𝑖𝑖=1𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (30) 

 
Subtract (30) from (29) to obtain, 
 
−∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (31) 
 

Alternatively,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (32) 

 
We assume that 𝑱𝑱𝑱𝑱1 is a radiation source, therefore 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 It is a retarded wave, assuming 

𝑱𝑱𝑱𝑱2 is a radiation sink, such as a receiving antenna, so 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is not a retarded wave. According 
to Maxwell’s electromagnetic theory, the receiving antenna does not produce radiation, and the 
far-field of this electromagnetic wave is zero. According to Wheeler Feynman’s absorber theory, 
Cramer’s quantum mechanics transactional interpretation, or the author’s advanced wave theory, 
𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is an advanced wave. This 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 and 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 Not reaching surfaces with infinite 
radii at the same time Γ. Therefore, the surface integral on the surface Γ is zero,  

 ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = 0 (33) 
 

Obtained from (32, 33),  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 (34) 

 
Or,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (35) 

 
The above equation is the Welch time-domain reciprocity theorem [6], which we obtained 

from the Poynting theorem, therefore it is an energy theorem. Transform to frequency domain as, 
 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (36) 

 
The above equation is the mutual energy theorem proposed by the author [3, 4, 5] in 1987. 

Since it is derived from Poynting’s theorem, it is also the energy theorem. Consider Γ = Γ1 in 
(32) , Γ1 is only contains one current 𝑱𝑱𝑱𝑱1 Therefore, there are, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (37) 
 

Using the above superposition principle in (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (29) 

 
According to (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫ ∑2
𝑖𝑖𝑖𝑖=1𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (30) 

 
Subtract (30) from (29) to obtain, 
 
−∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (31) 
 

Alternatively,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (32) 

 
We assume that 𝑱𝑱𝑱𝑱1 is a radiation source, therefore 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 It is a retarded wave, assuming 

𝑱𝑱𝑱𝑱2 is a radiation sink, such as a receiving antenna, so 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is not a retarded wave. According 
to Maxwell’s electromagnetic theory, the receiving antenna does not produce radiation, and the 
far-field of this electromagnetic wave is zero. According to Wheeler Feynman’s absorber theory, 
Cramer’s quantum mechanics transactional interpretation, or the author’s advanced wave theory, 
𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is an advanced wave. This 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 and 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 Not reaching surfaces with infinite 
radii at the same time Γ. Therefore, the surface integral on the surface Γ is zero,  

 ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = 0 (33) 
 

Obtained from (32, 33),  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 (34) 

 
Or,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (35) 

 
The above equation is the Welch time-domain reciprocity theorem [6], which we obtained 

from the Poynting theorem, therefore it is an energy theorem. Transform to frequency domain as, 
 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (36) 

 
The above equation is the mutual energy theorem proposed by the author [3, 4, 5] in 1987. 

Since it is derived from Poynting’s theorem, it is also the energy theorem. Consider Γ = Γ1 in 
(32) , Γ1 is only contains one current 𝑱𝑱𝑱𝑱1 Therefore, there are, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (37) 
 

Using the above superposition principle in (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (29) 

 
According to (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫ ∑2
𝑖𝑖𝑖𝑖=1𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (30) 

 
Subtract (30) from (29) to obtain, 
 
−∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (31) 
 

Alternatively,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (32) 

 
We assume that 𝑱𝑱𝑱𝑱1 is a radiation source, therefore 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 It is a retarded wave, assuming 

𝑱𝑱𝑱𝑱2 is a radiation sink, such as a receiving antenna, so 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is not a retarded wave. According 
to Maxwell’s electromagnetic theory, the receiving antenna does not produce radiation, and the 
far-field of this electromagnetic wave is zero. According to Wheeler Feynman’s absorber theory, 
Cramer’s quantum mechanics transactional interpretation, or the author’s advanced wave theory, 
𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is an advanced wave. This 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 and 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 Not reaching surfaces with infinite 
radii at the same time Γ. Therefore, the surface integral on the surface Γ is zero,  

 ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = 0 (33) 
 

Obtained from (32, 33),  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 (34) 

 
Or,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (35) 

 
The above equation is the Welch time-domain reciprocity theorem [6], which we obtained 

from the Poynting theorem, therefore it is an energy theorem. Transform to frequency domain as, 
 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (36) 

 
The above equation is the mutual energy theorem proposed by the author [3, 4, 5] in 1987. 

Since it is derived from Poynting’s theorem, it is also the energy theorem. Consider Γ = Γ1 in 
(32) , Γ1 is only contains one current 𝑱𝑱𝑱𝑱1 Therefore, there are, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (37) 
 

Using the above superposition principle in (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (29) 

 
According to (27), 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑖𝑖𝑖𝑖) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫ ∑2
𝑖𝑖𝑖𝑖=1𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (30) 

 
Subtract (30) from (29) to obtain, 
 
−∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 × 𝑯𝑯𝑯𝑯𝑗𝑗𝑗𝑗) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∑2

𝑖𝑖𝑖𝑖=1 ∑2
𝑗𝑗𝑗𝑗=1,𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 ∫

∞
𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 ⋅ 𝑱𝑱𝑱𝑱𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (31) 
 

Alternatively,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (32) 

 
We assume that 𝑱𝑱𝑱𝑱1 is a radiation source, therefore 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 It is a retarded wave, assuming 

𝑱𝑱𝑱𝑱2 is a radiation sink, such as a receiving antenna, so 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is not a retarded wave. According 
to Maxwell’s electromagnetic theory, the receiving antenna does not produce radiation, and the 
far-field of this electromagnetic wave is zero. According to Wheeler Feynman’s absorber theory, 
Cramer’s quantum mechanics transactional interpretation, or the author’s advanced wave theory, 
𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 is an advanced wave. This 𝑬𝑬𝑬𝑬1 , 𝑯𝑯𝑯𝑯1 and 𝑬𝑬𝑬𝑬2 , 𝑯𝑯𝑯𝑯2 Not reaching surfaces with infinite 
radii at the same time Γ. Therefore, the surface integral on the surface Γ is zero,  

 ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ = 0 (33) 
 

Obtained from (32, 33),  
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2 + 𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 (34) 

 
Or,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (35) 

 
The above equation is the Welch time-domain reciprocity theorem [6], which we obtained 

from the Poynting theorem, therefore it is an energy theorem. Transform to frequency domain as, 
 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (36) 

 
The above equation is the mutual energy theorem proposed by the author [3, 4, 5] in 1987. 

Since it is derived from Poynting’s theorem, it is also the energy theorem. Consider Γ = Γ1 in 
(32) , Γ1 is only contains one current 𝑱𝑱𝑱𝑱1 Therefore, there are, 

 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (37) 
 

We assume that J1 is a radiation source, therefore E1 , H1 It is a retarded wave, assuming J2 is a radiation sink, such as a receiving 
antenna, so E2 , H2 is not a retarded wave. According to Maxwell’s electromagnetic theory, the receiving antenna does not produce 
radiation, and the far-field of this electromagnetic wave is zero. According to Wheeler Feynman’s absorber theory, Cramer’s quantum 
mechanics transactional interpretation, or the author’s advanced wave theory, E2 , H2 is an advanced wave. This E1 , H1 and E2 , H2 
Not reaching surfaces with infinite radii at the same time Γ. Therefore, the surface integral on the surface Γ is zero, 

The above equation is the Welch time-domain reciprocity theorem [6], which we obtained from the Poynting theorem, therefore it 
is an energy theorem. Transform to frequency domain as,

The above equation is the mutual energy theorem proposed by the author [3-5] in 1987. Since it is derived from Poynting’s theorem, 
it is also the energy theorem. Consider Γ=Γ1 in (32) , Γ1 is only contains one current J1 Therefore, there are,

Consider that the outer normal of the surface coincides with the normal from region 1 to region 2,

Consider in (32) Γ=Γ2, Γ2 only contains one current J2. Therefore, there are,

Consider that the normal direction outside the surface is opposite to the normal direction from region 1 to region 2,

Consider that the outer normal of the surface coincides with the normal from region 1 to 
region 2, 

 
 𝑛𝑛𝑛𝑛� = 𝑛𝑛𝑛𝑛�1→2 (38) 

  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (39) 
 

Consider in (32) Γ = Γ2, Γ2 only contains one current 𝑱𝑱𝑱𝑱2. Therefore, there are, 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Consider that the normal direction outside the surface is opposite to the normal direction from 
region 1 to region 2, 

 
 𝑛𝑛𝑛𝑛� = −𝑛𝑛𝑛𝑛�1→2 

We have obtained, 
 
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (40) 
 

By combining (39), (40), and (36), it can be concluded that,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

 
 

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2
= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (41) 

 
The two surface integrals in the above equation can be combined to form one, 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ   
 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (42) 

 
In the given equation, the surface Γ  represents any closed surface that separates the 

currents 𝑱𝑱𝑱𝑱1, 𝑱𝑱𝑱𝑱2, or an infinite open surface that separates them, such as an infinite plane. The 
equation is then transformed into the Fourier frequency domain: 

 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2

∗ + 𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (43) 
 

In the given equations (42,43), the mutual energy flow theorem was proposed by the author 
in 2017 [19]. This theorem holds under both quasi-static and radiating electromagnetic field 
conditions, considering the situation of retarded potentials. Therefore, assuming Maxwell’s 
electromagnetic theory is correct, we can derive the mutual energy flow theorem (43). 

 
3.1  Synchroniza�on 
 

Consider that the outer normal of the surface coincides with the normal from region 1 to 
region 2, 

 
 𝑛𝑛𝑛𝑛� = 𝑛𝑛𝑛𝑛�1→2 (38) 

  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (39) 
 

Consider in (32) Γ = Γ2, Γ2 only contains one current 𝑱𝑱𝑱𝑱2. Therefore, there are, 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Consider that the normal direction outside the surface is opposite to the normal direction from 
region 1 to region 2, 

 
 𝑛𝑛𝑛𝑛� = −𝑛𝑛𝑛𝑛�1→2 

We have obtained, 
 
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (40) 
 

By combining (39), (40), and (36), it can be concluded that,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

 
 

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2
= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (41) 

 
The two surface integrals in the above equation can be combined to form one, 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ   
 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (42) 

 
In the given equation, the surface Γ  represents any closed surface that separates the 

currents 𝑱𝑱𝑱𝑱1, 𝑱𝑱𝑱𝑱2, or an infinite open surface that separates them, such as an infinite plane. The 
equation is then transformed into the Fourier frequency domain: 

 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2

∗ + 𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (43) 
 

In the given equations (42,43), the mutual energy flow theorem was proposed by the author 
in 2017 [19]. This theorem holds under both quasi-static and radiating electromagnetic field 
conditions, considering the situation of retarded potentials. Therefore, assuming Maxwell’s 
electromagnetic theory is correct, we can derive the mutual energy flow theorem (43). 

 
3.1  Synchroniza�on 
 

Consider that the outer normal of the surface coincides with the normal from region 1 to 
region 2, 

 
 𝑛𝑛𝑛𝑛� = 𝑛𝑛𝑛𝑛�1→2 (38) 

  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (39) 
 

Consider in (32) Γ = Γ2, Γ2 only contains one current 𝑱𝑱𝑱𝑱2. Therefore, there are, 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Consider that the normal direction outside the surface is opposite to the normal direction from 
region 1 to region 2, 

 
 𝑛𝑛𝑛𝑛� = −𝑛𝑛𝑛𝑛�1→2 

We have obtained, 
 
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (40) 
 

By combining (39), (40), and (36), it can be concluded that,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

 
 

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2
= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (41) 

 
The two surface integrals in the above equation can be combined to form one, 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ   
 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (42) 

 
In the given equation, the surface Γ  represents any closed surface that separates the 

currents 𝑱𝑱𝑱𝑱1, 𝑱𝑱𝑱𝑱2, or an infinite open surface that separates them, such as an infinite plane. The 
equation is then transformed into the Fourier frequency domain: 

 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2

∗ + 𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (43) 
 

In the given equations (42,43), the mutual energy flow theorem was proposed by the author 
in 2017 [19]. This theorem holds under both quasi-static and radiating electromagnetic field 
conditions, considering the situation of retarded potentials. Therefore, assuming Maxwell’s 
electromagnetic theory is correct, we can derive the mutual energy flow theorem (43). 

 
3.1  Synchroniza�on 
 

Consider that the outer normal of the surface coincides with the normal from region 1 to 
region 2, 

 
 𝑛𝑛𝑛𝑛� = 𝑛𝑛𝑛𝑛�1→2 (38) 

  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (39) 
 

Consider in (32) Γ = Γ2, Γ2 only contains one current 𝑱𝑱𝑱𝑱2. Therefore, there are, 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Consider that the normal direction outside the surface is opposite to the normal direction from 
region 1 to region 2, 

 
 𝑛𝑛𝑛𝑛� = −𝑛𝑛𝑛𝑛�1→2 

We have obtained, 
 
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (40) 
 

By combining (39), (40), and (36), it can be concluded that,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

 
 

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2
= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (41) 

 
The two surface integrals in the above equation can be combined to form one, 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ   
 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (42) 

 
In the given equation, the surface Γ  represents any closed surface that separates the 

currents 𝑱𝑱𝑱𝑱1, 𝑱𝑱𝑱𝑱2, or an infinite open surface that separates them, such as an infinite plane. The 
equation is then transformed into the Fourier frequency domain: 

 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2

∗ + 𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (43) 
 

In the given equations (42,43), the mutual energy flow theorem was proposed by the author 
in 2017 [19]. This theorem holds under both quasi-static and radiating electromagnetic field 
conditions, considering the situation of retarded potentials. Therefore, assuming Maxwell’s 
electromagnetic theory is correct, we can derive the mutual energy flow theorem (43). 

 
3.1  Synchroniza�on 
 

Consider that the outer normal of the surface coincides with the normal from region 1 to 
region 2, 

 
 𝑛𝑛𝑛𝑛� = 𝑛𝑛𝑛𝑛�1→2 (38) 

  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (39) 
 

Consider in (32) Γ = Γ2, Γ2 only contains one current 𝑱𝑱𝑱𝑱2. Therefore, there are, 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Consider that the normal direction outside the surface is opposite to the normal direction from 
region 1 to region 2, 

 
 𝑛𝑛𝑛𝑛� = −𝑛𝑛𝑛𝑛�1→2 

We have obtained, 
 
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (40) 
 

By combining (39), (40), and (36), it can be concluded that,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

 
 

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2
= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (41) 

 
The two surface integrals in the above equation can be combined to form one, 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ   
 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (42) 

 
In the given equation, the surface Γ  represents any closed surface that separates the 

currents 𝑱𝑱𝑱𝑱1, 𝑱𝑱𝑱𝑱2, or an infinite open surface that separates them, such as an infinite plane. The 
equation is then transformed into the Fourier frequency domain: 

 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2

∗ + 𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (43) 
 

In the given equations (42,43), the mutual energy flow theorem was proposed by the author 
in 2017 [19]. This theorem holds under both quasi-static and radiating electromagnetic field 
conditions, considering the situation of retarded potentials. Therefore, assuming Maxwell’s 
electromagnetic theory is correct, we can derive the mutual energy flow theorem (43). 

 
3.1  Synchroniza�on 
 

Consider that the outer normal of the surface coincides with the normal from region 1 to 
region 2, 

 
 𝑛𝑛𝑛𝑛� = 𝑛𝑛𝑛𝑛�1→2 (38) 

  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (39) 
 

Consider in (32) Γ = Γ2, Γ2 only contains one current 𝑱𝑱𝑱𝑱2. Therefore, there are, 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Consider that the normal direction outside the surface is opposite to the normal direction from 
region 1 to region 2, 

 
 𝑛𝑛𝑛𝑛� = −𝑛𝑛𝑛𝑛�1→2 

We have obtained, 
 
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (40) 
 

By combining (39), (40), and (36), it can be concluded that,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

 
 

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2
= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (41) 

 
The two surface integrals in the above equation can be combined to form one, 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ   
 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (42) 

 
In the given equation, the surface Γ  represents any closed surface that separates the 

currents 𝑱𝑱𝑱𝑱1, 𝑱𝑱𝑱𝑱2, or an infinite open surface that separates them, such as an infinite plane. The 
equation is then transformed into the Fourier frequency domain: 

 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2

∗ + 𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (43) 
 

In the given equations (42,43), the mutual energy flow theorem was proposed by the author 
in 2017 [19]. This theorem holds under both quasi-static and radiating electromagnetic field 
conditions, considering the situation of retarded potentials. Therefore, assuming Maxwell’s 
electromagnetic theory is correct, we can derive the mutual energy flow theorem (43). 

 
3.1  Synchroniza�on 
 

Consider that the outer normal of the surface coincides with the normal from region 1 to 
region 2, 

 
 𝑛𝑛𝑛𝑛� = 𝑛𝑛𝑛𝑛�1→2 (38) 

  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (39) 
 

Consider in (32) Γ = Γ2, Γ2 only contains one current 𝑱𝑱𝑱𝑱2. Therefore, there are, 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Consider that the normal direction outside the surface is opposite to the normal direction from 
region 1 to region 2, 

 
 𝑛𝑛𝑛𝑛� = −𝑛𝑛𝑛𝑛�1→2 

We have obtained, 
 
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (40) 
 

By combining (39), (40), and (36), it can be concluded that,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

 
 

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2
= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (41) 

 
The two surface integrals in the above equation can be combined to form one, 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ   
 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (42) 

 
In the given equation, the surface Γ  represents any closed surface that separates the 

currents 𝑱𝑱𝑱𝑱1, 𝑱𝑱𝑱𝑱2, or an infinite open surface that separates them, such as an infinite plane. The 
equation is then transformed into the Fourier frequency domain: 

 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2

∗ + 𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (43) 
 

In the given equations (42,43), the mutual energy flow theorem was proposed by the author 
in 2017 [19]. This theorem holds under both quasi-static and radiating electromagnetic field 
conditions, considering the situation of retarded potentials. Therefore, assuming Maxwell’s 
electromagnetic theory is correct, we can derive the mutual energy flow theorem (43). 

 
3.1  Synchroniza�on 
 

Consider that the outer normal of the surface coincides with the normal from region 1 to 
region 2, 

 
 𝑛𝑛𝑛𝑛� = 𝑛𝑛𝑛𝑛�1→2 (38) 

  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (39) 
 

Consider in (32) Γ = Γ2, Γ2 only contains one current 𝑱𝑱𝑱𝑱2. Therefore, there are, 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Consider that the normal direction outside the surface is opposite to the normal direction from 
region 1 to region 2, 

 
 𝑛𝑛𝑛𝑛� = −𝑛𝑛𝑛𝑛�1→2 

We have obtained, 
 
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (40) 
 

By combining (39), (40), and (36), it can be concluded that,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

 
 

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2
= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (41) 

 
The two surface integrals in the above equation can be combined to form one, 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ   
 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (42) 

 
In the given equation, the surface Γ  represents any closed surface that separates the 

currents 𝑱𝑱𝑱𝑱1, 𝑱𝑱𝑱𝑱2, or an infinite open surface that separates them, such as an infinite plane. The 
equation is then transformed into the Fourier frequency domain: 

 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2

∗ + 𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (43) 
 

In the given equations (42,43), the mutual energy flow theorem was proposed by the author 
in 2017 [19]. This theorem holds under both quasi-static and radiating electromagnetic field 
conditions, considering the situation of retarded potentials. Therefore, assuming Maxwell’s 
electromagnetic theory is correct, we can derive the mutual energy flow theorem (43). 

 
3.1  Synchroniza�on 
 

Consider that the outer normal of the surface coincides with the normal from region 1 to 
region 2, 

 
 𝑛𝑛𝑛𝑛� = 𝑛𝑛𝑛𝑛�1→2 (38) 

  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (39) 
 

Consider in (32) Γ = Γ2, Γ2 only contains one current 𝑱𝑱𝑱𝑱2. Therefore, there are, 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Consider that the normal direction outside the surface is opposite to the normal direction from 
region 1 to region 2, 

 
 𝑛𝑛𝑛𝑛� = −𝑛𝑛𝑛𝑛�1→2 

We have obtained, 
 
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (40) 
 

By combining (39), (40), and (36), it can be concluded that,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

 
 

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2
= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (41) 

 
The two surface integrals in the above equation can be combined to form one, 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ   
 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (42) 

 
In the given equation, the surface Γ  represents any closed surface that separates the 

currents 𝑱𝑱𝑱𝑱1, 𝑱𝑱𝑱𝑱2, or an infinite open surface that separates them, such as an infinite plane. The 
equation is then transformed into the Fourier frequency domain: 

 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2

∗ + 𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (43) 
 

In the given equations (42,43), the mutual energy flow theorem was proposed by the author 
in 2017 [19]. This theorem holds under both quasi-static and radiating electromagnetic field 
conditions, considering the situation of retarded potentials. Therefore, assuming Maxwell’s 
electromagnetic theory is correct, we can derive the mutual energy flow theorem (43). 

 
3.1  Synchroniza�on 
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In the given equation, the surface Γ represents any closed surface that separates the currents J1, J2, or an infinite open surface that 
separates them, such as an infinite plane. The equation is then transformed into the Fourier frequency domain:

In the given equations (42,43), the mutual energy flow theorem was proposed by the author in 2017 [19]. This theorem holds under 
both quasi-static and radiating electromagnetic field conditions, considering the situation of retarded potentials. Therefore, assuming 
Maxwell’s electromagnetic theory is correct, we can derive the mutual energy flow theorem (43).

3.1 Synchronization
If we consider the principle of half retardation and half advance in the above equation, there is a correction factor of 1/2. The idea 
of this principle can be derived from [10, 11]. That is,

In fact, the author believes that the above equation can be broken down into:, 

Action is an action of electric field E1 to current J2. The function of action is achieved through 			       Reaction is 
an action of the electric field E2 to current J1. This function is achieved through			              The above equation 
should be an extension of Newton’s third law when objects are not in contact with each other. The above formula means,

Therefore, the mutual energy flow can be calculated using any of the following pairs, (E1,H2) or (E2,H1).

When the current element J1 generates a retarded field E1 reaching the current J2, J2 precisely has a current in phase with E1. At this 
point, J2 generates an advanced field E2, and the field of E2 reaching the current J1 is exactly 180 degrees out of phase with J1. This 
indicates that the two electric fields E1, E2 are synchronized. The 180-degree phase difference here is due to the negative sign on the 
right side of equation (44). When they are in sync, E1, H2 have the same phase, and E2, H1 have the same phase.

4. Proof of Contradiction Proves that the Definition of Maxwell’s Magnetic Field is Incorrect
4.1 Theoretical Definition of Magnetic Field
The method of definition is to seek a formula that includes a magnetic field, such as the Poynting vector, which is a good formula 
for defining a magnetic field, 

If we know S and E, we can obtain H. This is obvious. However, the Poynting vector itself is not an easily measurable quantity, 
so the significance of the magnetic field defined above is not significant. In fact, we usually calculate the Poynting vector based on 
electric and magnetic fields. But not the opposite. Therefore, this definition of magnetic field is Ok but not very good. We also need 
to consider ease of measurement when defining a magnetic field. In addition, there is no dispute about the magnitude of the magnetic 
field value, only the phase of the magnetic field is disputed. Therefore, what we will focus on discussing below is the definition of 
the phase of the magnetic field.

Consider the formula (43). This formula is derived from Maxwell’s equation and Poynting’s theorem. Therefore, according to 
Maxwell’s electromagnetic theory, it is a correct formula. Consider current J2 It is a straight wire antenna, or a dipole antenna. We 
use this receiving antenna to measure the magnetic field H1 . Firstly, consider the load resistance of this antenna, 

Consider that the outer normal of the surface coincides with the normal from region 1 to 
region 2, 

 
 𝑛𝑛𝑛𝑛� = 𝑛𝑛𝑛𝑛�1→2 (38) 

  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (39) 
 

Consider in (32) Γ = Γ2, Γ2 only contains one current 𝑱𝑱𝑱𝑱2. Therefore, there are, 
 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Consider that the normal direction outside the surface is opposite to the normal direction from 
region 1 to region 2, 

 
 𝑛𝑛𝑛𝑛� = −𝑛𝑛𝑛𝑛�1→2 

We have obtained, 
 
 ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2

= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (40) 
 

By combining (39), (40), and (36), it can be concluded that,  
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ1

 
 

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ2
= ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (41) 

 
The two surface integrals in the above equation can be combined to form one, 
 −∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2 ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2 + 𝑬𝑬𝑬𝑬2 × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ   
 = ∫∞𝜕𝜕𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (42) 

 
In the given equation, the surface Γ  represents any closed surface that separates the 

currents 𝑱𝑱𝑱𝑱1, 𝑱𝑱𝑱𝑱2, or an infinite open surface that separates them, such as an infinite plane. The 
equation is then transformed into the Fourier frequency domain: 

 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2

∗ + 𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (43) 
 

In the given equations (42,43), the mutual energy flow theorem was proposed by the author 
in 2017 [19]. This theorem holds under both quasi-static and radiating electromagnetic field 
conditions, considering the situation of retarded potentials. Therefore, assuming Maxwell’s 
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there is a correction factor of 1

2
. The idea of this principle can be derived from [10, 11]. That is, 
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 𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯 = 𝑺𝑺𝑺𝑺 (49) 
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∗) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (45) 
 

 
 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −∯ (𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ  (46) 

  
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛 = −𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (47) 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛 is an action of electric field 𝑬𝑬𝑬𝑬1 to current 𝑱𝑱𝑱𝑱2. The function of action is achieved 

through ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2
∗) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ . Reaction is an action of the electric field 𝑬𝑬𝑬𝑬2 to current 𝑱𝑱𝑱𝑱1. This 

function is achieved through −∯ (𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑Γ.Γ  The above equation should be an 
extension of Newton’s third law when objects are not in contact with each other. The above 
formula means, 

 
 ∯ (𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ = ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2

∗) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ  (48) 
 

Therefore, the mutual energy flow can be calculated using any of the following pairs, 
(𝑬𝑬𝑬𝑬1,𝑯𝑯𝑯𝑯2) or (𝑬𝑬𝑬𝑬2,𝑯𝑯𝑯𝑯1). 

When the current element 𝑱𝑱𝑱𝑱1 generates a retarded field 𝑬𝑬𝑬𝑬1 reaching the current 𝑱𝑱𝑱𝑱2, 𝑱𝑱𝑱𝑱2 
precisely has a current in phase with 𝑬𝑬𝑬𝑬1. At this point, 𝑱𝑱𝑱𝑱2 generates an advanced field 𝑬𝑬𝑬𝑬2, and the 
field of 𝑬𝑬𝑬𝑬2 reaching the current 𝑱𝑱𝑱𝑱1 is exactly 180 degrees out of phase with 𝑱𝑱𝑱𝑱1. This indicates that 
the two electric fields 𝑬𝑬𝑬𝑬1,𝑬𝑬𝑬𝑬2 are synchronized. The 180-degree phase difference here is due to 
the negative sign on the right side of equation (44). When they are in sync, 𝑬𝑬𝑬𝑬1,𝑯𝑯𝑯𝑯2 have the same 
phase, and 𝑬𝑬𝑬𝑬2,𝑯𝑯𝑯𝑯1 have the same phase. 

 
4  Proof of contradic�on proves that the defini�on of 

Maxwell’s magne�c field is incorrect 
 
 
4.1  Theore�cal defini�on of magne�c field 
 
The method of definition is to seek a formula that includes a magnetic field, such as the 

Poynting vector, which is a good formula for defining a magnetic field,  
 𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯 = 𝑺𝑺𝑺𝑺 (49) 

 

If we consider the principle of half retardation and half advance in the above equation, 
there is a correction factor of 1

2
. The idea of this principle can be derived from [10, 11]. That is, 

 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1

2∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2
∗ + 𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (44) 

 
In fact, the author believes that the above equation can be broken down into:,  
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛 = ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2

∗) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (45) 
 

 
 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −∯ (𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ  (46) 

  
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛 = −𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (47) 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛 is an action of electric field 𝑬𝑬𝑬𝑬1 to current 𝑱𝑱𝑱𝑱2. The function of action is achieved 

through ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2
∗) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ . Reaction is an action of the electric field 𝑬𝑬𝑬𝑬2 to current 𝑱𝑱𝑱𝑱1. This 

function is achieved through −∯ (𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑Γ.Γ  The above equation should be an 
extension of Newton’s third law when objects are not in contact with each other. The above 
formula means, 

 
 ∯ (𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ = ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2

∗) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ  (48) 
 

Therefore, the mutual energy flow can be calculated using any of the following pairs, 
(𝑬𝑬𝑬𝑬1,𝑯𝑯𝑯𝑯2) or (𝑬𝑬𝑬𝑬2,𝑯𝑯𝑯𝑯1). 

When the current element 𝑱𝑱𝑱𝑱1 generates a retarded field 𝑬𝑬𝑬𝑬1 reaching the current 𝑱𝑱𝑱𝑱2, 𝑱𝑱𝑱𝑱2 
precisely has a current in phase with 𝑬𝑬𝑬𝑬1. At this point, 𝑱𝑱𝑱𝑱2 generates an advanced field 𝑬𝑬𝑬𝑬2, and the 
field of 𝑬𝑬𝑬𝑬2 reaching the current 𝑱𝑱𝑱𝑱1 is exactly 180 degrees out of phase with 𝑱𝑱𝑱𝑱1. This indicates that 
the two electric fields 𝑬𝑬𝑬𝑬1,𝑬𝑬𝑬𝑬2 are synchronized. The 180-degree phase difference here is due to 
the negative sign on the right side of equation (44). When they are in sync, 𝑬𝑬𝑬𝑬1,𝑯𝑯𝑯𝑯2 have the same 
phase, and 𝑬𝑬𝑬𝑬2,𝑯𝑯𝑯𝑯1 have the same phase. 

 
4  Proof of contradic�on proves that the defini�on of 

Maxwell’s magne�c field is incorrect 
 
 
4.1  Theore�cal defini�on of magne�c field 
 
The method of definition is to seek a formula that includes a magnetic field, such as the 

Poynting vector, which is a good formula for defining a magnetic field,  
 𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯 = 𝑺𝑺𝑺𝑺 (49) 

 

If we consider the principle of half retardation and half advance in the above equation, 
there is a correction factor of 1

2
. The idea of this principle can be derived from [10, 11]. That is, 

 
 −∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1

2∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2
∗ + 𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (44) 

 
In fact, the author believes that the above equation can be broken down into:,  
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛 = ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2

∗) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ = ∫𝑉𝑉𝑉𝑉2 (𝑬𝑬𝑬𝑬1 ⋅ 𝑱𝑱𝑱𝑱2∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (45) 
 

 
 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∫𝑉𝑉𝑉𝑉1 (𝑬𝑬𝑬𝑬2∗ ⋅ 𝑱𝑱𝑱𝑱1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −∯ (𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ  (46) 

  
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛 = −𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (47) 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛 is an action of electric field 𝑬𝑬𝑬𝑬1 to current 𝑱𝑱𝑱𝑱2. The function of action is achieved 

through ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2
∗) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ . Reaction is an action of the electric field 𝑬𝑬𝑬𝑬2 to current 𝑱𝑱𝑱𝑱1. This 

function is achieved through −∯ (𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑Γ.Γ  The above equation should be an 
extension of Newton’s third law when objects are not in contact with each other. The above 
formula means, 

 
 ∯ (𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ = ∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2

∗) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ  (48) 
 

Therefore, the mutual energy flow can be calculated using any of the following pairs, 
(𝑬𝑬𝑬𝑬1,𝑯𝑯𝑯𝑯2) or (𝑬𝑬𝑬𝑬2,𝑯𝑯𝑯𝑯1). 

When the current element 𝑱𝑱𝑱𝑱1 generates a retarded field 𝑬𝑬𝑬𝑬1 reaching the current 𝑱𝑱𝑱𝑱2, 𝑱𝑱𝑱𝑱2 
precisely has a current in phase with 𝑬𝑬𝑬𝑬1. At this point, 𝑱𝑱𝑱𝑱2 generates an advanced field 𝑬𝑬𝑬𝑬2, and the 
field of 𝑬𝑬𝑬𝑬2 reaching the current 𝑱𝑱𝑱𝑱1 is exactly 180 degrees out of phase with 𝑱𝑱𝑱𝑱1. This indicates that 
the two electric fields 𝑬𝑬𝑬𝑬1,𝑬𝑬𝑬𝑬2 are synchronized. The 180-degree phase difference here is due to 
the negative sign on the right side of equation (44). When they are in sync, 𝑬𝑬𝑬𝑬1,𝑯𝑯𝑯𝑯2 have the same 
phase, and 𝑬𝑬𝑬𝑬2,𝑯𝑯𝑯𝑯1 have the same phase. 

 
4  Proof of contradic�on proves that the defini�on of 

Maxwell’s magne�c field is incorrect 
 
 
4.1  Theore�cal defini�on of magne�c field 
 
The method of definition is to seek a formula that includes a magnetic field, such as the 

Poynting vector, which is a good formula for defining a magnetic field,  
 𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯 = 𝑺𝑺𝑺𝑺 (49) 

 

If we know 𝑺𝑺𝑺𝑺 and 𝑬𝑬𝑬𝑬, we can obtain 𝑯𝑯𝑯𝑯. This is obvious. However, the Poynting vector 
itself is not an easily measurable quantity, so the significance of the magnetic field defined above 
is not significant. In fact, we usually calculate the Poynting vector based on electric and magnetic 
fields. But not the opposite. Therefore, this definition of magnetic field is Ok but not very good. 
We also need to consider ease of measurement when defining a magnetic field. In addition, there 
is no dispute about the magnitude of the magnetic field value, only the phase of the magnetic field 
is disputed. Therefore, what we will focus on discussing below is the definition of the phase of the 
magnetic field. 

Consider the formula (43). This formula is derived from Maxwell’s equation and 
Poynting’s theorem. Therefore, according to Maxwell’s electromagnetic theory, it is a correct 
formula. Consider current 𝑱𝑱𝑱𝑱2  It is a straight wire antenna, or a dipole antenna. We use this 
receiving antenna to measure the magnetic field 𝑯𝑯𝑯𝑯1 . Firstly, consider the load resistance of this 
antenna,  

 𝑅𝑅𝑅𝑅2 ≫ 𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿2 (50) 
 
𝐿𝐿𝐿𝐿2 is the inductance of the secondary coil (i.e. the receiving antenna), so the above equation 
means that the load on the secondary coil is resistive. The current on the secondary coil is,  

 𝐼𝐼𝐼𝐼2 = ℰ1→2
𝑅𝑅𝑅𝑅2+𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿2

≃ ℰ1→2
𝑅𝑅𝑅𝑅2

∼ ℰ1→2 ∼ 𝐸𝐸𝐸𝐸1 (51) 
 

The symbol "∼" indicates proportionality, which is only sensitive to phase. Not sensitive 
to numerical values. The electric field we considered above on a straight wire,  

 ℰ1→2 = ∫ 𝑬𝑬𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍 = 𝐸𝐸𝐸𝐸1 ∫ 𝐸𝐸𝐸𝐸�1 ⋅ 𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍 ∼ 𝐸𝐸𝐸𝐸1 
In this case, the energy received by the secondary coil is a real number because 𝐼𝐼𝐼𝐼2 and its induced 
electromotive force ℰ1→2 maintains the same phase, so the energy provided by the mutual energy 
flow must also be real, that is, 

 
 1

2∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2
∗ + 𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ  

 
 = ∫ 𝑬𝑬𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍𝐼𝐼𝐼𝐼2∗ = ℰ1→2𝐼𝐼𝐼𝐼2∗ = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (52) 
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L2 is the inductance of the secondary coil (i.e. the receiving antenna), so the above equation means that the load on the secondary 
coil is resistive. The current on the secondary coil is, 

	

The symbol "∼" indicates proportionality, which is only sensitive to phase. Not sensitive to numerical values. The electric field we 
considered above on a straight wire, 

In this case, the energy received by the secondary coil is a real number because I2 and its induced electromotive force E1→2 maintains 
the same phase, so the energy provided by the mutual energy flow must also be real, that is,
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T , ξ2 = [E2, H2]

T, are synchronous see subsection 3.1, i.e
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If we know 𝑺𝑺𝑺𝑺 and 𝑬𝑬𝑬𝑬, we can obtain 𝑯𝑯𝑯𝑯. This is obvious. However, the Poynting vector 
itself is not an easily measurable quantity, so the significance of the magnetic field defined above 
is not significant. In fact, we usually calculate the Poynting vector based on electric and magnetic 
fields. But not the opposite. Therefore, this definition of magnetic field is Ok but not very good. 
We also need to consider ease of measurement when defining a magnetic field. In addition, there 
is no dispute about the magnitude of the magnetic field value, only the phase of the magnetic field 
is disputed. Therefore, what we will focus on discussing below is the definition of the phase of the 
magnetic field. 

Consider the formula (43). This formula is derived from Maxwell’s equation and 
Poynting’s theorem. Therefore, according to Maxwell’s electromagnetic theory, it is a correct 
formula. Consider current 𝑱𝑱𝑱𝑱2  It is a straight wire antenna, or a dipole antenna. We use this 
receiving antenna to measure the magnetic field 𝑯𝑯𝑯𝑯1 . Firstly, consider the load resistance of this 
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 𝑅𝑅𝑅𝑅2 ≫ 𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿2 (50) 
 
𝐿𝐿𝐿𝐿2 is the inductance of the secondary coil (i.e. the receiving antenna), so the above equation 
means that the load on the secondary coil is resistive. The current on the secondary coil is,  
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≃ ℰ1→2
𝑅𝑅𝑅𝑅2

∼ ℰ1→2 ∼ 𝐸𝐸𝐸𝐸1 (51) 
 

The symbol "∼" indicates proportionality, which is only sensitive to phase. Not sensitive 
to numerical values. The electric field we considered above on a straight wire,  

 ℰ1→2 = ∫ 𝑬𝑬𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍 = 𝐸𝐸𝐸𝐸1 ∫ 𝐸𝐸𝐸𝐸�1 ⋅ 𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍 ∼ 𝐸𝐸𝐸𝐸1 
In this case, the energy received by the secondary coil is a real number because 𝐼𝐼𝐼𝐼2 and its induced 
electromotive force ℰ1→2 maintains the same phase, so the energy provided by the mutual energy 
flow must also be real, that is, 
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current 𝐼𝐼𝐼𝐼2,  

 𝑬𝑬𝑬𝑬2 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨2 ∼ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝐼𝐼𝐼𝐼2𝑧̂𝑧𝑧𝑧 (55) 
 

If we know 𝑺𝑺𝑺𝑺 and 𝑬𝑬𝑬𝑬, we can obtain 𝑯𝑯𝑯𝑯. This is obvious. However, the Poynting vector 
itself is not an easily measurable quantity, so the significance of the magnetic field defined above 
is not significant. In fact, we usually calculate the Poynting vector based on electric and magnetic 
fields. But not the opposite. Therefore, this definition of magnetic field is Ok but not very good. 
We also need to consider ease of measurement when defining a magnetic field. In addition, there 
is no dispute about the magnitude of the magnetic field value, only the phase of the magnetic field 
is disputed. Therefore, what we will focus on discussing below is the definition of the phase of the 
magnetic field. 

Consider the formula (43). This formula is derived from Maxwell’s equation and 
Poynting’s theorem. Therefore, according to Maxwell’s electromagnetic theory, it is a correct 
formula. Consider current 𝑱𝑱𝑱𝑱2  It is a straight wire antenna, or a dipole antenna. We use this 
receiving antenna to measure the magnetic field 𝑯𝑯𝑯𝑯1 . Firstly, consider the load resistance of this 
antenna,  

 𝑅𝑅𝑅𝑅2 ≫ 𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿2 (50) 
 
𝐿𝐿𝐿𝐿2 is the inductance of the secondary coil (i.e. the receiving antenna), so the above equation 
means that the load on the secondary coil is resistive. The current on the secondary coil is,  

 𝐼𝐼𝐼𝐼2 = ℰ1→2
𝑅𝑅𝑅𝑅2+𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿2

≃ ℰ1→2
𝑅𝑅𝑅𝑅2

∼ ℰ1→2 ∼ 𝐸𝐸𝐸𝐸1 (51) 
 

The symbol "∼" indicates proportionality, which is only sensitive to phase. Not sensitive 
to numerical values. The electric field we considered above on a straight wire,  

 ℰ1→2 = ∫ 𝑬𝑬𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍 = 𝐸𝐸𝐸𝐸1 ∫ 𝐸𝐸𝐸𝐸�1 ⋅ 𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍 ∼ 𝐸𝐸𝐸𝐸1 
In this case, the energy received by the secondary coil is a real number because 𝐼𝐼𝐼𝐼2 and its induced 
electromotive force ℰ1→2 maintains the same phase, so the energy provided by the mutual energy 
flow must also be real, that is, 

 
 1

2∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2
∗ + 𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ  

 
 = ∫ 𝑬𝑬𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍𝐼𝐼𝐼𝐼2∗ = ℰ1→2𝐼𝐼𝐼𝐼2∗ = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (52) 

 
This means that two electromagnetic fields 𝜉𝜉𝜉𝜉1 = [𝑬𝑬𝑬𝑬1,𝑯𝑯𝑯𝑯1]𝑇𝑇𝑇𝑇  , 𝜉𝜉𝜉𝜉2 = [𝑬𝑬𝑬𝑬2,𝑯𝑯𝑯𝑯2]𝑇𝑇𝑇𝑇 , are 

synchronous see subsection 3.1, i.e 
 
 𝑯𝑯𝑯𝑯1 ∼ 𝑬𝑬𝑬𝑬2 (53) 

 
 
 𝑬𝑬𝑬𝑬1 ∼ 𝑯𝑯𝑯𝑯2 (54) 

 
𝑯𝑯𝑯𝑯1  and 𝑬𝑬𝑬𝑬2  are in phase, 𝑯𝑯𝑯𝑯2  and 𝑬𝑬𝑬𝑬1  are in phase. So we can use 𝑬𝑬𝑬𝑬2  to measure the 

magnetic field based on phase definition of 𝑯𝑯𝑯𝑯1. Further, the phase of 𝑬𝑬𝑬𝑬2 can be determined by 
current 𝐼𝐼𝐼𝐼2,  

 𝑬𝑬𝑬𝑬2 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨2 ∼ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝐼𝐼𝐼𝐼2𝑧̂𝑧𝑧𝑧 (55) 
 

If we know 𝑺𝑺𝑺𝑺 and 𝑬𝑬𝑬𝑬, we can obtain 𝑯𝑯𝑯𝑯. This is obvious. However, the Poynting vector 
itself is not an easily measurable quantity, so the significance of the magnetic field defined above 
is not significant. In fact, we usually calculate the Poynting vector based on electric and magnetic 
fields. But not the opposite. Therefore, this definition of magnetic field is Ok but not very good. 
We also need to consider ease of measurement when defining a magnetic field. In addition, there 
is no dispute about the magnitude of the magnetic field value, only the phase of the magnetic field 
is disputed. Therefore, what we will focus on discussing below is the definition of the phase of the 
magnetic field. 

Consider the formula (43). This formula is derived from Maxwell’s equation and 
Poynting’s theorem. Therefore, according to Maxwell’s electromagnetic theory, it is a correct 
formula. Consider current 𝑱𝑱𝑱𝑱2  It is a straight wire antenna, or a dipole antenna. We use this 
receiving antenna to measure the magnetic field 𝑯𝑯𝑯𝑯1 . Firstly, consider the load resistance of this 
antenna,  

 𝑅𝑅𝑅𝑅2 ≫ 𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿2 (50) 
 
𝐿𝐿𝐿𝐿2 is the inductance of the secondary coil (i.e. the receiving antenna), so the above equation 
means that the load on the secondary coil is resistive. The current on the secondary coil is,  

 𝐼𝐼𝐼𝐼2 = ℰ1→2
𝑅𝑅𝑅𝑅2+𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿2

≃ ℰ1→2
𝑅𝑅𝑅𝑅2

∼ ℰ1→2 ∼ 𝐸𝐸𝐸𝐸1 (51) 
 

The symbol "∼" indicates proportionality, which is only sensitive to phase. Not sensitive 
to numerical values. The electric field we considered above on a straight wire,  

 ℰ1→2 = ∫ 𝑬𝑬𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍 = 𝐸𝐸𝐸𝐸1 ∫ 𝐸𝐸𝐸𝐸�1 ⋅ 𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍 ∼ 𝐸𝐸𝐸𝐸1 
In this case, the energy received by the secondary coil is a real number because 𝐼𝐼𝐼𝐼2 and its induced 
electromotive force ℰ1→2 maintains the same phase, so the energy provided by the mutual energy 
flow must also be real, that is, 

 
 1

2∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2
∗ + 𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ  

 
 = ∫ 𝑬𝑬𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍𝐼𝐼𝐼𝐼2∗ = ℰ1→2𝐼𝐼𝐼𝐼2∗ = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (52) 

 
This means that two electromagnetic fields 𝜉𝜉𝜉𝜉1 = [𝑬𝑬𝑬𝑬1,𝑯𝑯𝑯𝑯1]𝑇𝑇𝑇𝑇  , 𝜉𝜉𝜉𝜉2 = [𝑬𝑬𝑬𝑬2,𝑯𝑯𝑯𝑯2]𝑇𝑇𝑇𝑇 , are 

synchronous see subsection 3.1, i.e 
 
 𝑯𝑯𝑯𝑯1 ∼ 𝑬𝑬𝑬𝑬2 (53) 

 
 
 𝑬𝑬𝑬𝑬1 ∼ 𝑯𝑯𝑯𝑯2 (54) 

 
𝑯𝑯𝑯𝑯1  and 𝑬𝑬𝑬𝑬2  are in phase, 𝑯𝑯𝑯𝑯2  and 𝑬𝑬𝑬𝑬1  are in phase. So we can use 𝑬𝑬𝑬𝑬2  to measure the 

magnetic field based on phase definition of 𝑯𝑯𝑯𝑯1. Further, the phase of 𝑬𝑬𝑬𝑬2 can be determined by 
current 𝐼𝐼𝐼𝐼2,  

 𝑬𝑬𝑬𝑬2 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨2 ∼ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝐼𝐼𝐼𝐼2𝑧̂𝑧𝑧𝑧 (55) 
 

If we know 𝑺𝑺𝑺𝑺 and 𝑬𝑬𝑬𝑬, we can obtain 𝑯𝑯𝑯𝑯. This is obvious. However, the Poynting vector 
itself is not an easily measurable quantity, so the significance of the magnetic field defined above 
is not significant. In fact, we usually calculate the Poynting vector based on electric and magnetic 
fields. But not the opposite. Therefore, this definition of magnetic field is Ok but not very good. 
We also need to consider ease of measurement when defining a magnetic field. In addition, there 
is no dispute about the magnitude of the magnetic field value, only the phase of the magnetic field 
is disputed. Therefore, what we will focus on discussing below is the definition of the phase of the 
magnetic field. 

Consider the formula (43). This formula is derived from Maxwell’s equation and 
Poynting’s theorem. Therefore, according to Maxwell’s electromagnetic theory, it is a correct 
formula. Consider current 𝑱𝑱𝑱𝑱2  It is a straight wire antenna, or a dipole antenna. We use this 
receiving antenna to measure the magnetic field 𝑯𝑯𝑯𝑯1 . Firstly, consider the load resistance of this 
antenna,  

 𝑅𝑅𝑅𝑅2 ≫ 𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿2 (50) 
 
𝐿𝐿𝐿𝐿2 is the inductance of the secondary coil (i.e. the receiving antenna), so the above equation 
means that the load on the secondary coil is resistive. The current on the secondary coil is,  

 𝐼𝐼𝐼𝐼2 = ℰ1→2
𝑅𝑅𝑅𝑅2+𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿2

≃ ℰ1→2
𝑅𝑅𝑅𝑅2

∼ ℰ1→2 ∼ 𝐸𝐸𝐸𝐸1 (51) 
 

The symbol "∼" indicates proportionality, which is only sensitive to phase. Not sensitive 
to numerical values. The electric field we considered above on a straight wire,  

 ℰ1→2 = ∫ 𝑬𝑬𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍 = 𝐸𝐸𝐸𝐸1 ∫ 𝐸𝐸𝐸𝐸�1 ⋅ 𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍 ∼ 𝐸𝐸𝐸𝐸1 
In this case, the energy received by the secondary coil is a real number because 𝐼𝐼𝐼𝐼2 and its induced 
electromotive force ℰ1→2 maintains the same phase, so the energy provided by the mutual energy 
flow must also be real, that is, 

 
 1

2∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2
∗ + 𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ  

 
 = ∫ 𝑬𝑬𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍𝐼𝐼𝐼𝐼2∗ = ℰ1→2𝐼𝐼𝐼𝐼2∗ = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (52) 

 
This means that two electromagnetic fields 𝜉𝜉𝜉𝜉1 = [𝑬𝑬𝑬𝑬1,𝑯𝑯𝑯𝑯1]𝑇𝑇𝑇𝑇  , 𝜉𝜉𝜉𝜉2 = [𝑬𝑬𝑬𝑬2,𝑯𝑯𝑯𝑯2]𝑇𝑇𝑇𝑇 , are 

synchronous see subsection 3.1, i.e 
 
 𝑯𝑯𝑯𝑯1 ∼ 𝑬𝑬𝑬𝑬2 (53) 

 
 
 𝑬𝑬𝑬𝑬1 ∼ 𝑯𝑯𝑯𝑯2 (54) 

 
𝑯𝑯𝑯𝑯1  and 𝑬𝑬𝑬𝑬2  are in phase, 𝑯𝑯𝑯𝑯2  and 𝑬𝑬𝑬𝑬1  are in phase. So we can use 𝑬𝑬𝑬𝑬2  to measure the 

magnetic field based on phase definition of 𝑯𝑯𝑯𝑯1. Further, the phase of 𝑬𝑬𝑬𝑬2 can be determined by 
current 𝐼𝐼𝐼𝐼2,  

 𝑬𝑬𝑬𝑬2 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨2 ∼ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝐼𝐼𝐼𝐼2𝑧̂𝑧𝑧𝑧 (55) 
 

If we know 𝑺𝑺𝑺𝑺 and 𝑬𝑬𝑬𝑬, we can obtain 𝑯𝑯𝑯𝑯. This is obvious. However, the Poynting vector 
itself is not an easily measurable quantity, so the significance of the magnetic field defined above 
is not significant. In fact, we usually calculate the Poynting vector based on electric and magnetic 
fields. But not the opposite. Therefore, this definition of magnetic field is Ok but not very good. 
We also need to consider ease of measurement when defining a magnetic field. In addition, there 
is no dispute about the magnitude of the magnetic field value, only the phase of the magnetic field 
is disputed. Therefore, what we will focus on discussing below is the definition of the phase of the 
magnetic field. 
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2∯ (𝑬𝑬𝑬𝑬1 × 𝑯𝑯𝑯𝑯2
∗ + 𝑬𝑬𝑬𝑬2∗ × 𝑯𝑯𝑯𝑯1) ⋅ 𝑛𝑛𝑛𝑛�1→2𝑑𝑑𝑑𝑑ΓΓ  

 
 = ∫ 𝑬𝑬𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑𝒍𝒍𝒍𝒍𝐼𝐼𝐼𝐼2∗ = ℰ1→2𝐼𝐼𝐼𝐼2∗ = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (52) 

 
This means that two electromagnetic fields 𝜉𝜉𝜉𝜉1 = [𝑬𝑬𝑬𝑬1,𝑯𝑯𝑯𝑯1]𝑇𝑇𝑇𝑇  , 𝜉𝜉𝜉𝜉2 = [𝑬𝑬𝑬𝑬2,𝑯𝑯𝑯𝑯2]𝑇𝑇𝑇𝑇 , are 

synchronous see subsection 3.1, i.e 
 
 𝑯𝑯𝑯𝑯1 ∼ 𝑬𝑬𝑬𝑬2 (53) 

 
 
 𝑬𝑬𝑬𝑬1 ∼ 𝑯𝑯𝑯𝑯2 (54) 
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magnetic field based on phase definition of 𝑯𝑯𝑯𝑯1. Further, the phase of 𝑬𝑬𝑬𝑬2 can be determined by 
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 𝑬𝑬𝑬𝑬2 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨2 ∼ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝐼𝐼𝐼𝐼2𝑧̂𝑧𝑧𝑧 (55) 
 

So we can adjust the current 𝐼𝐼𝐼𝐼2 to define and measure the phase of magnetic fields 𝑯𝑯𝑯𝑯1. 
Below, we will use two examples to illustrate the definition and measurement of magnetic field 
phase. 

 
4.2  Measuring the magne�c field of a long straight wire 
 
 
 
 
 

 
 

Figure  1: We need to measure the magnetic field of straight wire 1 (red). Measure with another 
straight wire 2 (blue), a transformer is composed of two parallel wires. 

  
Consider using a long straight wire 2 (blue) to measure the magnetic field of another long 

straight wire 1 (red). The working principle of two long straight wires is similar to that of a 
transformer. The first long straight wire is the primary coil 1. The second long straight wire is 
secondary coil 2. Transformers operate under quasi-static magnetic conditions. Assuming that both 
the primary and secondary coils are straight wires, assuming that both wires are along the z-axis. 
See Figure 1. Assuming the secondary is connected to a large load resistance, and the primary is 
connected to an AC current source. The primary current is,  

 𝐼𝐼𝐼𝐼1𝑧̂𝑧𝑧𝑧 = 𝐼𝐼𝐼𝐼10exp(𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑑𝑑𝑑𝑑)𝑧̂𝑧𝑧𝑧 (56) 
 

Assuming the wire is relatively long, therefore the electrostatic field 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 = −∇𝜙𝜙𝜙𝜙 can be 
ignored. The electric field is an induced electric field,  

 𝑬𝑬𝑬𝑬1 = 𝑬𝑬𝑬𝑬1𝑖𝑖𝑖𝑖 = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨1 ∼ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝐼𝐼𝐼𝐼1𝑧̂𝑧𝑧𝑧 (57) 

 
For this situation, we know the magnetic field, which can be determined by Ampere’s 

circuital law. Therefore, we know the magnetic field, 
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Consider using a long straight wire 2 (blue) to measure the magnetic field of another long straight wire 1 (red). The working 
principle of two long straight wires is similar to that of a transformer. The first long straight wire is the primary coil 1. The second 
long straight wire is secondary coil 2. Transformers operate under quasi-static magnetic conditions. Assuming that both the primary 
and secondary coils are straight wires, assuming that both wires are along the z-axis. See Figure 1. Assuming the secondary is 
connected to a large load resistance, and the primary is connected to an AC current source. The primary current is, 
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Assuming the wire is relatively long, therefore the electrostatic field Es = - ∇ϕ can be ignored. The electric field is an induced electric 
field, 

For this situation, we know the magnetic field, which can be determined by Ampere’s circuital law. Therefore, we know the magnetic 
field,

Assuming H1 is unknown, we measured the magnetic field H1 using the method described in the previous section, and the current 
of the secondary coil is,

ε1→2 is the induced electromotive force generated by the primary coil current on the secondary coil. The above equation indicates the 
induced current I2 on the secondary coil depends on the induced electromotive force generated by the primary coil on the secondary 
coil ε1→2. Because the secondary coil is a straight wire, the induced electromotive force and the electric field E1 of the primary coil 
is consistent. Considering current I2 along the direction of ẑ, consider (57) 

Then using I2 calculate induced electric field E2

Consider E2 The direction is in (-ẑ), so E2 The size of is,

According to the methods of measurement and definition of the magnetic field mentioned earlier (53), the phase of H1 is consistent 
with the phase of the electric field E2.

This implies that the phase of the measured magnetic field is consistent with the current I1. This indicates that our newly defined 
magnetic field is consistent with the traditional definition (58). In other words, under quasi-static conditions, we encounter no issues. 
Everything is normal.
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For this situation, we know the magnetic field, which can be determined by Ampere’s 

circuital law. Therefore, we know the magnetic field, 
  𝑯𝑯𝑯𝑯1 = 1

2𝜋𝜋𝜋𝜋𝑟𝑟𝑟𝑟
𝜃𝜃𝜃𝜃� ∼ 𝐼𝐼𝐼𝐼1𝑦𝑦𝑦𝑦� (58) 

 
Assuming 𝑯𝑯𝑯𝑯1  is unknown, we measured the magnetic field 𝐻𝐻𝐻𝐻1  using the method 

described in the previous section, and the current of the secondary coil is, 
 
 𝐼𝐼𝐼𝐼2 = ℰ1→2

𝑅𝑅𝑅𝑅2+𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝐿𝐿𝐿𝐿2
≃ ℰ1→2

𝑅𝑅𝑅𝑅2
∼ ℰ1→2 ∼ 𝑬𝑬𝑬𝑬1 ⋅ 𝑧̂𝑧𝑧𝑧 (59) 

 
ℰ1→2  is the induced electromotive force generated by the primary coil current on the 

secondary coil. The above equation indicates the induced current 𝐼𝐼𝐼𝐼2 on the secondary coil depends 
on the induced electromotive force generated by the primary coil on the secondary coil ℰ1→2. 
Because the secondary coil is a straight wire, the induced electromotive force and the electric field 
𝐸𝐸𝐸𝐸1 of the primary coil is consistent. Considering current 𝐼𝐼𝐼𝐼2 along the direction of 𝑧̂𝑧𝑧𝑧, consider (57)  

 𝐼𝐼𝐼𝐼2 ∼ −𝑗𝑗𝑗𝑗𝐼𝐼𝐼𝐼1 (60) 
 

Then using 𝐼𝐼𝐼𝐼2 calculate induced electric field 𝑬𝑬𝑬𝑬2 
 
 𝑬𝑬𝑬𝑬2 = 𝑬𝑬𝑬𝑬2𝑖𝑖𝑖𝑖 = −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝑨𝑨𝑨𝑨2 

 
 ∼ −𝑗𝑗𝑗𝑗𝜔𝜔𝜔𝜔𝐼𝐼𝐼𝐼2𝑧̂𝑧𝑧𝑧 ∼ 𝑗𝑗𝑗𝑗𝐼𝐼𝐼𝐼2(−𝑧̂𝑧𝑧𝑧) (61) 

 
Consider 𝑬𝑬𝑬𝑬2 The direction is in (−𝑧̂𝑧𝑧𝑧), so 𝑬𝑬𝑬𝑬2 The size of is, 
 
 𝐸𝐸𝐸𝐸2 ∼ 𝑗𝑗𝑗𝑗𝐼𝐼𝐼𝐼2 (62) 

 
According to the methods of measurement and definition of the magnetic field mentioned 

earlier (53), the phase of 𝐻𝐻𝐻𝐻1 is consistent with the phase of the electric field 𝐸𝐸𝐸𝐸2. 
.  
 𝐻𝐻𝐻𝐻1 ∼ 𝐸𝐸𝐸𝐸2 ∼ 𝑗𝑗𝑗𝑗𝐼𝐼𝐼𝐼2 (63) 

 
Consider (60),  
 𝐻𝐻𝐻𝐻1 ∼ 𝑗𝑗𝑗𝑗(−𝑗𝑗𝑗𝑗𝐼𝐼𝐼𝐼1) = 𝐼𝐼𝐼𝐼1 (64) 

 
This implies that the phase of the measured magnetic field is consistent with the current 𝐼𝐼𝐼𝐼1. 

This indicates that our newly defined magnetic field is consistent with the traditional definition 
(58). In other words, under quasi-static conditions, we encounter no issues. Everything is normal. 

 
4.3  Planar electromagne�c waves 
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Figure  2: Use a dipole antenna to receive plane waves. 
  
Assuming there is a plane wave propagating in the 𝑥𝑥𝑥𝑥 direction. That is,  
 𝑬𝑬𝑬𝑬1 = 𝑗𝑗𝑗𝑗𝐸𝐸𝐸𝐸10exp(−𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥)(−𝑧̂𝑧𝑧𝑧) (65) 

 
The preceding 𝑗𝑗𝑗𝑗 and the subsequent −𝑧̂𝑧𝑧𝑧 are introduced for convenience. According to 

Maxwell’s electromagnetic theory, the magnetic field is defined as， 
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Figure 2: Use a Dipole Antenna to Receive Plane Waves
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Assuming there is a plane wave propagating in the x direction. That is, 

The preceding j and the subsequent -ẑ are introduced for convenience. According to Maxwell’s electromagnetic theory, the magnetic 
field is defined as,

The above equation indicates that the magnetic field and electromagnetic phase calculated according to Maxwell’s definition are in 
phase. The measurement occurs at x = L, therefore, 

The antenna is measured using current elements, 

Considering the same reasons as (59),

From this current element, the electric field can be calculated,

Electric field E2 The size of is,

According to (53),

Hence, there is, 

Consider (69), 

We know that for the magnitude of a plane wave magnetic field and the electromagnetic difference of one wave impedance η, there 
is, 

So we conclude that the magnetic field is,

Compared with the electric field (67), it is found that the phase of the magnetic field between the magnetic field H1 and electric field 
E1 is maintained at 90 degrees.

This is how we use current I2 to measure the magnetic field. Comparing the formulas (76) and (65), we know that the phase difference 
between the magnetic and electric fields of electromagnetic waves is 90 degrees. This contradicts the in-phase relationship with the 
phase of electromagnetic waves obtained according to Maxwell’s electromagnetic theory, as compared in equations (65, 66). This 
constitutes a contradiction. Therefore, we use proof by contradiction to demonstrate the error in Maxwell’s electromagnetic theory.

This indicates that our electromagnetic field theory tells students that there is a problem with the phase difference between the 
electric and magnetic fields of electromagnetic waves. In this example, we have proven the inaccuracy of Maxwell’s electromagnetic 
theory using the proof by contradiction method. Below is the author’s revision of the definition of magnetic field.

5. Revisions to the Definition of Magnetic Fields
5.1 Maxwell’s Equation
If the magnetic field is defined incorrectly, it does not mean that the Maxwell equation must be completely negated. The Maxwell 
equation can still be used. It should just be rewritten as, 
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After this correction,                   maintain the same phase. Therefore, the magnetic field defined by the author is based on the principle 
of field retardation, unlike Maxwell’s electromagnetic theory, which is defined based on the retardation of potentials.

5.2 Measurement of Magnetic Field
For the measurement of the magnetic field, it is still done according to the subsection 4.1. Regarding the far-field of the magnetic 
field, a dipole antenna is placed in a direction perpendicular to the magnetic field, and the dipole antenna is loaded with a resistive 
load, i.e., connected to a relatively large load resistor. The current I2 of the dipole antenna is measured, and this current is used to 
calculate the electric field E2 generated by this current. The E2 has the same phase as the magnetic field H1. This provides the phase 
information of the magnetic field H1.

5.3 Examples of Electromagnetic Waves
Consider electromagnetic waves, 
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We know that for the magnitude of a plane wave magnetic field and the electromagnetic 

difference of one wave impedance 𝜂𝜂𝜂𝜂, there is,  
 𝑯𝑯𝑯𝑯1 = 1

𝜂𝜂𝜂𝜂
𝐸𝐸𝐸𝐸10exp(−𝑗𝑗𝑗𝑗𝐿𝐿𝐿𝐿)𝑦𝑦𝑦𝑦� (75) 

 
So we conclude that the magnetic field is, 
 
 𝑯𝑯𝑯𝑯1 = 1

𝜂𝜂𝜂𝜂
𝐸𝐸𝐸𝐸10exp(−𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥)𝑦𝑦𝑦𝑦� (76) 

 
Compared with the electric field (67), it is found that the phase of the magnetic field 
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5  Revisions to the defini�on of magne�c fields 
 
 
5.1  Maxwell’s equa�on 
 
If the magnetic field is defined incorrectly, it does not mean that the Maxwell equation 
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 ∇ ⋅ 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = −𝜌𝜌𝜌𝜌/𝜖𝜖𝜖𝜖0 (77) 
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𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
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 ∇ × 𝑯𝑯𝑯𝑯𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑱𝑱𝑱𝑱 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
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From this, the solution for the retarded potential can also be obtained 
 
 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
[𝑱𝑱𝑱𝑱]
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (81) 

  
 𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
[𝜌𝜌𝜌𝜌]
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (82) 

 
Square brackets mean retardation, for example, 
 
 [𝑓𝑓𝑓𝑓] ≜ [𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑)] ≜ 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑 − 𝑗𝑗𝑗𝑗/𝐴𝐴𝐴𝐴) (83) 

 
We can obtained, 
 
 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) − ∇𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) (84) 

 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟) = ∇ × 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (85) 
 

Above, we solved 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)

，𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟) , there is still some difference between 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟) , 
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟)  and 𝑬𝑬𝑬𝑬, 𝑩𝑩𝑩𝑩. 
We already know the induced electric field,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 = 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (86) 

 
As for the static electric field 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 The author will consider it in another article. But the 

correction of the magnetic field is [28, 29, 30, 31, 32, 33], 
 
 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛

(𝑟𝑟𝑟𝑟) ≜ 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)  (87) 

  
 𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓

(𝑟𝑟𝑟𝑟) ≜ (−𝑗𝑗𝑗𝑗)𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)  (88) 

 
After this correction, 𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓

(𝑟𝑟𝑟𝑟) and 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛
(𝑟𝑟𝑟𝑟) maintain the same phase. Therefore, the magnetic 

field defined by the author is based on the principle of field retardation, unlike Maxwell’s 
electromagnetic theory, which is defined based on the retardation of potentials. 

 
5.2  Measurement of magne�c field 
 
For the measurement of the magnetic field, it is still done according to the subsection 4.1. 

Regarding the far-field of the magnetic field, a dipole antenna is placed in a direction perpendicular 
to the magnetic field, and the dipole antenna is loaded with a resistive load, i.e., connected to a 
relatively large load resistor. The current 𝐼𝐼𝐼𝐼2 of the dipole antenna is measured, and this current is 
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 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
[𝑱𝑱𝑱𝑱]
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (81) 

  
 𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
[𝜌𝜌𝜌𝜌]
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (82) 

 
Square brackets mean retardation, for example, 
 
 [𝑓𝑓𝑓𝑓] ≜ [𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑)] ≜ 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑 − 𝑗𝑗𝑗𝑗/𝐴𝐴𝐴𝐴) (83) 

 
We can obtained, 
 
 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) − ∇𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) (84) 

 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟) = ∇ × 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (85) 
 

Above, we solved 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)

，𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟) , there is still some difference between 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟) , 
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟)  and 𝑬𝑬𝑬𝑬, 𝑩𝑩𝑩𝑩. 
We already know the induced electric field,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 = 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (86) 

 
As for the static electric field 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 The author will consider it in another article. But the 

correction of the magnetic field is [28, 29, 30, 31, 32, 33], 
 
 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛

(𝑟𝑟𝑟𝑟) ≜ 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)  (87) 

  
 𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓

(𝑟𝑟𝑟𝑟) ≜ (−𝑗𝑗𝑗𝑗)𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)  (88) 

 
After this correction, 𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓

(𝑟𝑟𝑟𝑟) and 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛
(𝑟𝑟𝑟𝑟) maintain the same phase. Therefore, the magnetic 

field defined by the author is based on the principle of field retardation, unlike Maxwell’s 
electromagnetic theory, which is defined based on the retardation of potentials. 

 
5.2  Measurement of magne�c field 
 
For the measurement of the magnetic field, it is still done according to the subsection 4.1. 

Regarding the far-field of the magnetic field, a dipole antenna is placed in a direction perpendicular 
to the magnetic field, and the dipole antenna is loaded with a resistive load, i.e., connected to a 
relatively large load resistor. The current 𝐼𝐼𝐼𝐼2 of the dipole antenna is measured, and this current is 

  
 ∇ × 𝑯𝑯𝑯𝑯𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑱𝑱𝑱𝑱 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜖𝜖𝜖𝜖0𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (80) 

 
From this, the solution for the retarded potential can also be obtained 
 
 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
[𝑱𝑱𝑱𝑱]
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (81) 

  
 𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
[𝜌𝜌𝜌𝜌]
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (82) 

 
Square brackets mean retardation, for example, 
 
 [𝑓𝑓𝑓𝑓] ≜ [𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑)] ≜ 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑 − 𝑗𝑗𝑗𝑗/𝐴𝐴𝐴𝐴) (83) 

 
We can obtained, 
 
 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) − ∇𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) (84) 

 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟) = ∇ × 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (85) 
 

Above, we solved 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)

，𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟) , there is still some difference between 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟) , 
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟)  and 𝑬𝑬𝑬𝑬, 𝑩𝑩𝑩𝑩. 
We already know the induced electric field,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 = 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (86) 

 
As for the static electric field 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 The author will consider it in another article. But the 

correction of the magnetic field is [28, 29, 30, 31, 32, 33], 
 
 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛

(𝑟𝑟𝑟𝑟) ≜ 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)  (87) 

  
 𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓

(𝑟𝑟𝑟𝑟) ≜ (−𝑗𝑗𝑗𝑗)𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)  (88) 

 
After this correction, 𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓

(𝑟𝑟𝑟𝑟) and 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛
(𝑟𝑟𝑟𝑟) maintain the same phase. Therefore, the magnetic 

field defined by the author is based on the principle of field retardation, unlike Maxwell’s 
electromagnetic theory, which is defined based on the retardation of potentials. 

 
5.2  Measurement of magne�c field 
 
For the measurement of the magnetic field, it is still done according to the subsection 4.1. 

Regarding the far-field of the magnetic field, a dipole antenna is placed in a direction perpendicular 
to the magnetic field, and the dipole antenna is loaded with a resistive load, i.e., connected to a 
relatively large load resistor. The current 𝐼𝐼𝐼𝐼2 of the dipole antenna is measured, and this current is 

  
 ∇ × 𝑯𝑯𝑯𝑯𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑱𝑱𝑱𝑱 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜖𝜖𝜖𝜖0𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (80) 

 
From this, the solution for the retarded potential can also be obtained 
 
 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
[𝑱𝑱𝑱𝑱]
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (81) 

  
 𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
[𝜌𝜌𝜌𝜌]
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (82) 

 
Square brackets mean retardation, for example, 
 
 [𝑓𝑓𝑓𝑓] ≜ [𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑)] ≜ 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑 − 𝑗𝑗𝑗𝑗/𝐴𝐴𝐴𝐴) (83) 

 
We can obtained, 
 
 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) − ∇𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) (84) 

 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟) = ∇ × 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (85) 
 

Above, we solved 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)

，𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟) , there is still some difference between 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟) , 
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟)  and 𝑬𝑬𝑬𝑬, 𝑩𝑩𝑩𝑩. 
We already know the induced electric field,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 = 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (86) 

 
As for the static electric field 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 The author will consider it in another article. But the 

correction of the magnetic field is [28, 29, 30, 31, 32, 33], 
 
 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛

(𝑟𝑟𝑟𝑟) ≜ 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)  (87) 

  
 𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓

(𝑟𝑟𝑟𝑟) ≜ (−𝑗𝑗𝑗𝑗)𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)  (88) 

 
After this correction, 𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓

(𝑟𝑟𝑟𝑟) and 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛
(𝑟𝑟𝑟𝑟) maintain the same phase. Therefore, the magnetic 

field defined by the author is based on the principle of field retardation, unlike Maxwell’s 
electromagnetic theory, which is defined based on the retardation of potentials. 

 
5.2  Measurement of magne�c field 
 
For the measurement of the magnetic field, it is still done according to the subsection 4.1. 

Regarding the far-field of the magnetic field, a dipole antenna is placed in a direction perpendicular 
to the magnetic field, and the dipole antenna is loaded with a resistive load, i.e., connected to a 
relatively large load resistor. The current 𝐼𝐼𝐼𝐼2 of the dipole antenna is measured, and this current is 

  
 ∇ × 𝑯𝑯𝑯𝑯𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑱𝑱𝑱𝑱 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜖𝜖𝜖𝜖0𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (80) 

 
From this, the solution for the retarded potential can also be obtained 
 
 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
[𝑱𝑱𝑱𝑱]
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (81) 

  
 𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
[𝜌𝜌𝜌𝜌]
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (82) 

 
Square brackets mean retardation, for example, 
 
 [𝑓𝑓𝑓𝑓] ≜ [𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑)] ≜ 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑 − 𝑗𝑗𝑗𝑗/𝐴𝐴𝐴𝐴) (83) 

 
We can obtained, 
 
 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) − ∇𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) (84) 

 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟) = ∇ × 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (85) 
 

Above, we solved 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)

，𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟) , there is still some difference between 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟) , 
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟)  and 𝑬𝑬𝑬𝑬, 𝑩𝑩𝑩𝑩. 
We already know the induced electric field,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 = 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (86) 

 
As for the static electric field 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 The author will consider it in another article. But the 

correction of the magnetic field is [28, 29, 30, 31, 32, 33], 
 
 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛

(𝑟𝑟𝑟𝑟) ≜ 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)  (87) 

  
 𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓

(𝑟𝑟𝑟𝑟) ≜ (−𝑗𝑗𝑗𝑗)𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)  (88) 

 
After this correction, 𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓

(𝑟𝑟𝑟𝑟) and 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛
(𝑟𝑟𝑟𝑟) maintain the same phase. Therefore, the magnetic 

field defined by the author is based on the principle of field retardation, unlike Maxwell’s 
electromagnetic theory, which is defined based on the retardation of potentials. 

 
5.2  Measurement of magne�c field 
 
For the measurement of the magnetic field, it is still done according to the subsection 4.1. 

Regarding the far-field of the magnetic field, a dipole antenna is placed in a direction perpendicular 
to the magnetic field, and the dipole antenna is loaded with a resistive load, i.e., connected to a 
relatively large load resistor. The current 𝐼𝐼𝐼𝐼2 of the dipole antenna is measured, and this current is 

  
 ∇ × 𝑯𝑯𝑯𝑯𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑱𝑱𝑱𝑱 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜖𝜖𝜖𝜖0𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (80) 

 
From this, the solution for the retarded potential can also be obtained 
 
 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
[𝑱𝑱𝑱𝑱]
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (81) 

  
 𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
[𝜌𝜌𝜌𝜌]
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (82) 

 
Square brackets mean retardation, for example, 
 
 [𝑓𝑓𝑓𝑓] ≜ [𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑)] ≜ 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑 − 𝑗𝑗𝑗𝑗/𝐴𝐴𝐴𝐴) (83) 

 
We can obtained, 
 
 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) − ∇𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) (84) 

 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟) = ∇ × 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (85) 
 

Above, we solved 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)

，𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟) , there is still some difference between 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟) , 
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟)  and 𝑬𝑬𝑬𝑬, 𝑩𝑩𝑩𝑩. 
We already know the induced electric field,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 = 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (86) 

 
As for the static electric field 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 The author will consider it in another article. But the 

correction of the magnetic field is [28, 29, 30, 31, 32, 33], 
 
 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛

(𝑟𝑟𝑟𝑟) ≜ 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)  (87) 

  
 𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓

(𝑟𝑟𝑟𝑟) ≜ (−𝑗𝑗𝑗𝑗)𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)  (88) 

 
After this correction, 𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓

(𝑟𝑟𝑟𝑟) and 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛
(𝑟𝑟𝑟𝑟) maintain the same phase. Therefore, the magnetic 

field defined by the author is based on the principle of field retardation, unlike Maxwell’s 
electromagnetic theory, which is defined based on the retardation of potentials. 

 
5.2  Measurement of magne�c field 
 
For the measurement of the magnetic field, it is still done according to the subsection 4.1. 

Regarding the far-field of the magnetic field, a dipole antenna is placed in a direction perpendicular 
to the magnetic field, and the dipole antenna is loaded with a resistive load, i.e., connected to a 
relatively large load resistor. The current 𝐼𝐼𝐼𝐼2 of the dipole antenna is measured, and this current is 

  
 ∇ × 𝑯𝑯𝑯𝑯𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑱𝑱𝑱𝑱 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
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From this, the solution for the retarded potential can also be obtained 
 
 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
[𝑱𝑱𝑱𝑱]
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (81) 

  
 𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
[𝜌𝜌𝜌𝜌]
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (82) 

 
Square brackets mean retardation, for example, 
 
 [𝑓𝑓𝑓𝑓] ≜ [𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑)] ≜ 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑 − 𝑗𝑗𝑗𝑗/𝐴𝐴𝐴𝐴) (83) 

 
We can obtained, 
 
 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) − ∇𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) (84) 

 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟) = ∇ × 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (85) 
 

Above, we solved 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)

，𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟) , there is still some difference between 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟) , 
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟)  and 𝑬𝑬𝑬𝑬, 𝑩𝑩𝑩𝑩. 
We already know the induced electric field,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 = 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (86) 

 
As for the static electric field 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 The author will consider it in another article. But the 

correction of the magnetic field is [28, 29, 30, 31, 32, 33], 
 
 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛

(𝑟𝑟𝑟𝑟) ≜ 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)  (87) 

  
 𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓

(𝑟𝑟𝑟𝑟) ≜ (−𝑗𝑗𝑗𝑗)𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)  (88) 

 
After this correction, 𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓

(𝑟𝑟𝑟𝑟) and 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛
(𝑟𝑟𝑟𝑟) maintain the same phase. Therefore, the magnetic 

field defined by the author is based on the principle of field retardation, unlike Maxwell’s 
electromagnetic theory, which is defined based on the retardation of potentials. 

 
5.2  Measurement of magne�c field 
 
For the measurement of the magnetic field, it is still done according to the subsection 4.1. 

Regarding the far-field of the magnetic field, a dipole antenna is placed in a direction perpendicular 
to the magnetic field, and the dipole antenna is loaded with a resistive load, i.e., connected to a 
relatively large load resistor. The current 𝐼𝐼𝐼𝐼2 of the dipole antenna is measured, and this current is 

  
 ∇ × 𝑯𝑯𝑯𝑯𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑱𝑱𝑱𝑱 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜖𝜖𝜖𝜖0𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (80) 

 
From this, the solution for the retarded potential can also be obtained 
 
 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
[𝑱𝑱𝑱𝑱]
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (81) 

  
 𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
[𝜌𝜌𝜌𝜌]
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (82) 

 
Square brackets mean retardation, for example, 
 
 [𝑓𝑓𝑓𝑓] ≜ [𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑)] ≜ 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑 − 𝑗𝑗𝑗𝑗/𝐴𝐴𝐴𝐴) (83) 

 
We can obtained, 
 
 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) − ∇𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) (84) 

 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟) = ∇ × 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (85) 
 

Above, we solved 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)

，𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟) , there is still some difference between 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟) , 
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟)  and 𝑬𝑬𝑬𝑬, 𝑩𝑩𝑩𝑩. 
We already know the induced electric field,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 = 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (86) 

 
As for the static electric field 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 The author will consider it in another article. But the 

correction of the magnetic field is [28, 29, 30, 31, 32, 33], 
 
 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛

(𝑟𝑟𝑟𝑟) ≜ 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)  (87) 

  
 𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓

(𝑟𝑟𝑟𝑟) ≜ (−𝑗𝑗𝑗𝑗)𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)  (88) 

 
After this correction, 𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓

(𝑟𝑟𝑟𝑟) and 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛
(𝑟𝑟𝑟𝑟) maintain the same phase. Therefore, the magnetic 

field defined by the author is based on the principle of field retardation, unlike Maxwell’s 
electromagnetic theory, which is defined based on the retardation of potentials. 

 
5.2  Measurement of magne�c field 
 
For the measurement of the magnetic field, it is still done according to the subsection 4.1. 

Regarding the far-field of the magnetic field, a dipole antenna is placed in a direction perpendicular 
to the magnetic field, and the dipole antenna is loaded with a resistive load, i.e., connected to a 
relatively large load resistor. The current 𝐼𝐼𝐼𝐼2 of the dipole antenna is measured, and this current is 

  
 ∇ × 𝑯𝑯𝑯𝑯𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑱𝑱𝑱𝑱 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜖𝜖𝜖𝜖0𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (80) 

 
From this, the solution for the retarded potential can also be obtained 
 
 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
[𝑱𝑱𝑱𝑱]
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (81) 

  
 𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
[𝜌𝜌𝜌𝜌]
𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (82) 

 
Square brackets mean retardation, for example, 
 
 [𝑓𝑓𝑓𝑓] ≜ [𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑)] ≜ 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑 − 𝑗𝑗𝑗𝑗/𝐴𝐴𝐴𝐴) (83) 

 
We can obtained, 
 
 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) − ∇𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) (84) 

 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟) = ∇ × 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (85) 
 

Above, we solved 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)

，𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟) , there is still some difference between 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟) , 
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟)  and 𝑬𝑬𝑬𝑬, 𝑩𝑩𝑩𝑩. 
We already know the induced electric field,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 = 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (86) 

 
As for the static electric field 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 The author will consider it in another article. But the 

correction of the magnetic field is [28, 29, 30, 31, 32, 33], 
 
 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛

(𝑟𝑟𝑟𝑟) ≜ 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)  (87) 

  
 𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓

(𝑟𝑟𝑟𝑟) ≜ (−𝑗𝑗𝑗𝑗)𝑩𝑩𝑩𝑩𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
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(𝑟𝑟𝑟𝑟) and 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛
(𝑟𝑟𝑟𝑟) maintain the same phase. Therefore, the magnetic 

field defined by the author is based on the principle of field retardation, unlike Maxwell’s 
electromagnetic theory, which is defined based on the retardation of potentials. 

 
5.2  Measurement of magne�c field 
 
For the measurement of the magnetic field, it is still done according to the subsection 4.1. 

Regarding the far-field of the magnetic field, a dipole antenna is placed in a direction perpendicular 
to the magnetic field, and the dipole antenna is loaded with a resistive load, i.e., connected to a 
relatively large load resistor. The current 𝐼𝐼𝐼𝐼2 of the dipole antenna is measured, and this current is 
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From this, the solution for the retarded potential can also be obtained 
 
 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) = 𝜇𝜇𝜇𝜇0

4𝜋𝜋𝜋𝜋 ∫𝑉𝑉𝑉𝑉
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Square brackets mean retardation, for example, 
 
 [𝑓𝑓𝑓𝑓] ≜ [𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑)] ≜ 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙′, 𝑑𝑑𝑑𝑑 − 𝑗𝑗𝑗𝑗/𝐴𝐴𝐴𝐴) (83) 

 
We can obtained, 
 
 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) − ∇𝜙𝜙𝜙𝜙(𝑟𝑟𝑟𝑟) (84) 

 
 
 𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(𝑟𝑟𝑟𝑟) = ∇ × 𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (85) 
 

Above, we solved 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑟𝑟)
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(𝑟𝑟𝑟𝑟)  and 𝑬𝑬𝑬𝑬, 𝑩𝑩𝑩𝑩. 
We already know the induced electric field,  
 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 = 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑨𝑨𝑨𝑨(𝑟𝑟𝑟𝑟) (86) 

 
As for the static electric field 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 The author will consider it in another article. But the 

correction of the magnetic field is [28, 29, 30, 31, 32, 33], 
 
 𝑩𝑩𝑩𝑩𝑛𝑛𝑛𝑛
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field defined by the author is based on the principle of field retardation, unlike Maxwell’s 
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5.2  Measurement of magne�c field 
 
For the measurement of the magnetic field, it is still done according to the subsection 4.1. 

Regarding the far-field of the magnetic field, a dipole antenna is placed in a direction perpendicular 
to the magnetic field, and the dipole antenna is loaded with a resistive load, i.e., connected to a 
relatively large load resistor. The current 𝐼𝐼𝐼𝐼2 of the dipole antenna is measured, and this current is 
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(𝑟𝑟𝑟𝑟) , 
𝑩𝑩𝑩𝑩𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
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 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖 = 𝑬𝑬𝑬𝑬𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
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As for the static electric field 𝑬𝑬𝑬𝑬𝑠𝑠𝑠𝑠 The author will consider it in another article. But the 
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field defined by the author is based on the principle of field retardation, unlike Maxwell’s 
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5.2  Measurement of magne�c field 
 
For the measurement of the magnetic field, it is still done according to the subsection 4.1. 

Regarding the far-field of the magnetic field, a dipole antenna is placed in a direction perpendicular 
to the magnetic field, and the dipole antenna is loaded with a resistive load, i.e., connected to a 
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5.2  Measurement of magne�c field 
 
For the measurement of the magnetic field, it is still done according to the subsection 4.1. 

Regarding the far-field of the magnetic field, a dipole antenna is placed in a direction perpendicular 
to the magnetic field, and the dipole antenna is loaded with a resistive load, i.e., connected to a 
relatively large load resistor. The current 𝐼𝐼𝐼𝐼2 of the dipole antenna is measured, and this current is 

As for the static electric field Es The author will consider it in another article. But the correction of the magnetic field is [28, 29, 30, 
31, 32, 33],

used to calculate the electric field 𝑬𝑬𝑬𝑬2 generated by this current. The 𝑬𝑬𝑬𝑬2 has the same phase as the 
magnetic field 𝑯𝑯𝑯𝑯1. This provides the phase information of the magnetic field 𝑯𝑯𝑯𝑯1. 

 
5.3  Examples of electromagne�c waves 
 
Consider electromagnetic waves,  
 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑗𝑗𝑗𝑗𝐸𝐸𝐸𝐸0exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥)(−𝑧̂𝑧𝑧𝑧) (89) 

  
 𝑯𝑯𝑯𝑯𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑗𝑗𝑗𝑗𝐸𝐸𝐸𝐸0

𝜂𝜂𝜂𝜂
exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥)(𝑦𝑦𝑦𝑦�) (90) 
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 𝑯𝑯𝑯𝑯 = (−𝑗𝑗𝑗𝑗)𝑯𝑯𝑯𝑯𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐸𝐸𝐸𝐸0

𝜂𝜂𝜂𝜂
exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥)(𝑦𝑦𝑦𝑦�) (92) 

  
 𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯∗ = (𝑗𝑗𝑗𝑗𝐸𝐸𝐸𝐸0exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥)(−𝑧̂𝑧𝑧𝑧)) × (𝐸𝐸𝐸𝐸0
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 = 𝑗𝑗𝑗𝑗 𝐸𝐸𝐸𝐸0𝐸𝐸𝐸𝐸0

∗

𝜂𝜂𝜂𝜂
 (93) 

  
 ℜ(𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯∗) = 0 (94) 

 This indicates that electromagnetic waves are reactive power waves. 
 
5.4  Discussion 
 
In middle school and university textbooks, we often hear that electromagnetic waves are 

converted into each other, with electric fields producing magnetic fields and magnetic fields 
producing electric fields. This is a continuous process of transformation. Since it is an electric field 
that generates a magnetic field, and a magnetic field that generates an electric field, of course, the 
magnetic field should be at its maximum change (when the electric field is zero). Similarly, when 
the magnetic field is zero, the electric field is maximum. In this way, the electric and magnetic 
fields actually maintain a phase difference of 90 degrees. This is very natural. However, the electric 
and magnetic fields obtained by solving Maxwell’s equations are in phase, and it is difficult for us 
to explain to students why. It is often heard that electric and magnetic fields move independently, 
rather than electric fields producing magnetic fields. Magnetic fields produce electric fields. Now 
the author explains that the phase difference between electric and magnetic fields is indeed 90 
degrees. We can easily explain this issue to the students. 

The electric and magnetic fields remain at 90 degrees, so electromagnetic waves are 
reactive power waves, which will have a huge impact on the entire modern physics. It means that 
this wave, not just an electromagnetic wave, can be an electron wave that satisfies the Schrodinger 
equation or Dirac equation, and should be of reactive power. In quantum mechanics, we often say 
that waves are probabilistic. The concepts of reactive power wave and probability wave are very 
similar. It can be seen as an event. All represent that this wave does not transmit energy. The waves 

We already know the induced electric field,
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the author explains that the phase difference between electric and magnetic fields is indeed 90 
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 This indicates that electromagnetic waves are reactive power waves.

5.4 Discussion
In middle school and university textbooks, we often hear that electromagnetic waves are converted into each other, with electric fields 
producing magnetic fields and magnetic fields producing electric fields. This is a continuous process of transformation. Since it is an 
electric field that generates a magnetic field, and a magnetic field that generates an electric field, of course, the magnetic field should 
be at its maximum change (when the electric field is zero). Similarly, when the magnetic field is zero, the electric field is maximum. In 
this way, the electric and magnetic fields actually maintain a phase difference of 90 degrees. This is very natural. However, the electric 
and magnetic fields obtained by solving Maxwell’s equations are in phase, and it is difficult for us to explain to students why. It is 
often heard that electric and magnetic fields move independently, rather than electric fields producing magnetic fields. Magnetic fields 
produce electric fields. Now the author explains that the phase difference between electric and magnetic fields is indeed 90 degrees. We 
can easily explain this issue to the students.

The electric and magnetic fields remain at 90 degrees, so electromagnetic waves are reactive power waves, which will have a huge 
impact on the entire modern physics. It means that this wave, not just an electromagnetic wave, can be an electron wave that satisfies 
the Schrodinger equation or Dirac equation, and should be of reactive power. In quantum mechanics, we often say that waves are 
probabilistic. The concepts of reactive power wave and probability wave are very similar. It can be seen as an event. All represent that 
this wave does not transmit energy. The waves in classical Maxwell’s electromagnetic theory are active power waves, which are waves 
that transfer energy and are completely different from probability waves in quantum mechanics.

Probability waves are certainly not waves that transmit energy. Since waves do not transmit energy, energy is transmitted by particles. 
There will be no problem. In quantum mechanics, if a wave is of reactive power, then the wave does not need to collapse. The purpose 
of wave collapse is to concentrate the energy of the wave onto the absorber or onto an eigenvalue. If the wave is of reactive power, this 
collapse is unnecessary. Therefore, we can omit the concept of wave collapse in quantum mechanics. In addition, we also need to make 
appropriate modifications to quantum mechanics, transforming it into reactive power waves.

In the author’s electric field theory, the self energy flow, that is, the energy flow of waves, or the Poynting vector, are all reactive power. 
They do not transmit energy. Electromagnetic energy is transmitted by mutual energy flow. Mutual energy flow has the shape and 
properties of photons, so it is actually photons. In other waves, such as electron waves, it is also easy to construct mutual energy flows 
[20]. Therefore, the author can confidently say that all particles are a mutual energy flow of some kind of wave.

6. Summary 
This article uses the proof by contradiction to prove that Maxwell’s electromagnetic theory has loopholes, i.e. bugs. This vulnerability 
lies in the definition of magnetic fields. Maxwell defined the magnetic field B using the curl of vector potential A, which is only feasible 
under quasi-static conditions. For radiated electromagnetic fields, that is, considering a retarded electromagnetic field, the curl of the 
vector potential is no longer the magnetic field. We use the proof by contradiction to prove this point. We assume that Maxwell’s 
electromagnetic theory is correct, and thus derive the theorem of mutual energy flow. We define and measure magnetic fields based on 
mutual energy flow. The magnetic field and electric field defined or measured in this way always maintain a 90 degree phase difference, 
whether under quasi-static or radiated electromagnetic field conditions. The magnetic field obtained in this way is consistent with 
classical electromagnetic theory under quasi-static conditions, while the results under radiated electromagnetic field conditions conflict 
with Maxwell’s electromagnetic theory, which proves that Maxwell’s electromagnetic theory is problematic. The author found that the 
problem lies in the definition of magnetic field. Since the magnetic field obtained by Maxwell’s method is problematic, the author has 
made corrections to the magnetic field obtained according to Maxwell’s electromagnetic theory. The revised principle is based on field 
retardation rather than potential retardation.
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used to calculate the electric field 𝑬𝑬𝑬𝑬2 generated by this current. The 𝑬𝑬𝑬𝑬2 has the same phase as the 
magnetic field 𝑯𝑯𝑯𝑯1. This provides the phase information of the magnetic field 𝑯𝑯𝑯𝑯1. 

 
5.3  Examples of electromagne�c waves 
 
Consider electromagnetic waves,  
 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑗𝑗𝑗𝑗𝐸𝐸𝐸𝐸0exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥)(−𝑧̂𝑧𝑧𝑧) (89) 

  
 𝑯𝑯𝑯𝑯𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑗𝑗𝑗𝑗𝐸𝐸𝐸𝐸0

𝜂𝜂𝜂𝜂
exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥)(𝑦𝑦𝑦𝑦�) (90) 

 
After correction,  
 𝑬𝑬𝑬𝑬 = 𝑬𝑬𝑬𝑬𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑗𝑗𝑗𝑗𝐸𝐸𝐸𝐸0exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥)(−𝑧̂𝑧𝑧𝑧) (91) 

  
 𝑯𝑯𝑯𝑯 = (−𝑗𝑗𝑗𝑗)𝑯𝑯𝑯𝑯𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐸𝐸𝐸𝐸0

𝜂𝜂𝜂𝜂
exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥)(𝑦𝑦𝑦𝑦�) (92) 

  
 𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯∗ = (𝑗𝑗𝑗𝑗𝐸𝐸𝐸𝐸0exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥)(−𝑧̂𝑧𝑧𝑧)) × (𝐸𝐸𝐸𝐸0

𝜂𝜂𝜂𝜂
exp(−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥)(𝑦𝑦𝑦𝑦�))∗ 

 
 = 𝑗𝑗𝑗𝑗 𝐸𝐸𝐸𝐸0𝐸𝐸𝐸𝐸0

∗

𝜂𝜂𝜂𝜂
 (93) 

  
 ℜ(𝑬𝑬𝑬𝑬 × 𝑯𝑯𝑯𝑯∗) = 0 (94) 

 This indicates that electromagnetic waves are reactive power waves. 
 
5.4  Discussion 
 
In middle school and university textbooks, we often hear that electromagnetic waves are 

converted into each other, with electric fields producing magnetic fields and magnetic fields 
producing electric fields. This is a continuous process of transformation. Since it is an electric field 
that generates a magnetic field, and a magnetic field that generates an electric field, of course, the 
magnetic field should be at its maximum change (when the electric field is zero). Similarly, when 
the magnetic field is zero, the electric field is maximum. In this way, the electric and magnetic 
fields actually maintain a phase difference of 90 degrees. This is very natural. However, the electric 
and magnetic fields obtained by solving Maxwell’s equations are in phase, and it is difficult for us 
to explain to students why. It is often heard that electric and magnetic fields move independently, 
rather than electric fields producing magnetic fields. Magnetic fields produce electric fields. Now 
the author explains that the phase difference between electric and magnetic fields is indeed 90 
degrees. We can easily explain this issue to the students. 

The electric and magnetic fields remain at 90 degrees, so electromagnetic waves are 
reactive power waves, which will have a huge impact on the entire modern physics. It means that 
this wave, not just an electromagnetic wave, can be an electron wave that satisfies the Schrodinger 
equation or Dirac equation, and should be of reactive power. In quantum mechanics, we often say 
that waves are probabilistic. The concepts of reactive power wave and probability wave are very 
similar. It can be seen as an event. All represent that this wave does not transmit energy. The waves 
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