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Abstract
The SNNs (spiking neural networks) show what is the nature of computer model of nervous system which is like real brain activity. 
SNNs might actually be more like brains than the traditional neural networks do because both share an architecture similarity. 
Lower energy consumption and noise- detecting performance are among their uniqueness. Still, though, current SNNs might seem 
primitive when compared to the new ones, but their potential to be more powerful and efficient in learning is unlimited. SNNs in 
many forms are used for numerous functional applications. That entails, for instance, being able to recognize visuals, to perceive 
language or to take actions. Here, the paper gives a wide view on the SNNs, zooming into their recent successes. The article begins 
with the saying that neural spiking networks take inspiration of nature exactly from the cause. Another part of the text presents 
the SNN constituent parts and elicits some SNN advantages compared to the regular neural networks. Subsequently, the text will 
summarize the latest advancements in SNN, taking into account both hardware and algorithms as well. Another part of the paper 
will be given to future of sub-national networks.

Engineering: Open Access

Keywords: SNN, Spiking Neural Network, Neural Network, DNN

1. Introduction
Machine learning which is being taken to the new height by 
the application of artificial neural networks is a new advanced 
application of artificial intelligence. However, in fact a tremendous 
difference between very sophisticated biological structures that 
govern human thinking and conceptual levels of AI remains. Let’s 
start with SNNs (spiking neural networks), a category of neural 
networks designed for this purpose. The purpose of this writing 
will be not only to explain the basic principles of SNNs but 
also include latest achievements that put SNNs to the forefront 
of computational neuroscience. SNNs (spiking neural networks) 
represent a group of artificial neural networks that emulate 
the neural functions of the brain with greater fidelity. Unlike 
conventional Artificial Neural Networks (ANNs) that employ 
continuous activation func- tions, SNNs (spiking neural networks) 
utilize discrete spikes to transmit information among neurons. This 
allows SNNs to monitor changes in biological neural systems over 
time better, which may further enhance computing power, making 
it even more robust and powerful. New advancements have been 
made in different areas such as:
• Creating new neuron models
• Ways to encode information
• Datasets for mimicking the brain

• Algorithms for improving performance
• Frameworks for both software and hardware

Another good example is the NeuCube based system which uses 
the patterns of the information to handle them more complex than 
in time and space it is possible. SNN can be used in disciplines 
like robotics, computer graphics, and natural language processing, 
alongside the others. As such research will be going on, there will 
be more astonishing outcomes in the area of SNN.

2. Understanding Spiking Neural Networks (SNNS)
A. What are SNNs?
SNNs are modelled in a similar way to how neurons in our brain 
transmit signals to each other. Neurons in the brain represent 
information by sending spikes, which are short electrical 
signals. The frequency and the exact time when spikes occur is 
used to encode information. SNNs consists of neurons that are 
interconnected with each other. Each neuron has a membrane 
potential, which is the electrical voltage of the cell membrane. 
Once the membrane potential reaches a critical threshold, the 
neuron emits a spike. The spike propagates through the network 
until it reaches subsequent neurons, which may then generate their 
own spikes.
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I. INTRODUCTION

Machine learning which is being taken to the new height
by the application of artificial neural networks is a new
advanced application of artificial intelligence. However, in fact
a tremendous difference between very sophisticated biological
structures that govern human thinking and conceptual levels of
AI remains. Let’s start with SNNs (spiking neural networks),
a category of neural networks designed for this purpose. The
purpose of this writing will be not only to explain the basic
principles of SNNs but also include latest achievements that
put SNNs to the forefront of computational neuroscience.
SNNs (spiking neural networks) represent a group of artificial
neural networks that emulate the neural functions of the brain
with greater fidelity. Unlike conventional Artificial Neural
Networks (ANNs) that employ continuous activation func-
tions, SNNs (spiking neural networks) utilize discrete spikes
to transmit information among neurons. This allows SNNs to
monitor changes in biological neural systems over time better,
which may further enhance computing power, making it even
more robust and powerful. New advancements have been made
in different areas such as:

• Creating new neuron models
• Ways to encode information
• Datasets for mimicking the brain
• Algorithms for improving performance

• Frameworks for both software and hardware
Another good example is the NeuCube based system which

uses the patterns of the information to handle them more
complex than in time and space it is possible. SNN can be used
in disciplines like robotics, computer graphics, and natural
language processing, alongside the others. As such research
will be going on, there will be more astonishing outcomes in
the area of SNN.

II. UNDERSTANDING SPIKING NEURAL NETWORKS
(SNNS)

A. What are SNNs?

SNNs are modelled in a similar way to how neurons in
our brain transmit signals to each other. Neurons in the
brain represent information by sending spikes, which are short
electrical signals. The frequency and the exact time when
spikes occur is used to encode information. SNNs consists of
neurons that are interconnected with each other. Each neuron
has a membrane potential, which is the electrical voltage of the
cell membrane. Once the membrane potential reaches a critical
threshold, the neuron emits a spike. The spike propagates
through the network until it reaches subsequent neurons, which
may then generate their own spikes.

Fig. 1. Spiking Neural Networks (SNN) [14]

B. How do SNNs work?

SNNs operate similarly like the brain. As the Spiking Neural
Network (SNN) receives the input, the neurons inside the
network start sending electrical signals called spikes. When
the intensity and how often they occur are determined by how
strong the input is and how the neurons are linked. The sharp
signals then move through the connections in the network, and
they have the ability to make other neurons send out signals.
This iterative process persists until the network reaches a state
of stability, characterized by a cessation of significant changes.

Figure 1: Spiking Neural Networks (SNN) [1].

Figure 2: Spiking Neurons [2].

B. How do SNNs Work?
SNNs operate similarly like the brain. As the Spiking Neural 
Network (SNN) receives the input, the neurons inside the network 
start sending electrical signals called spikes. When the intensity 
and how often they occur are determined by how strong the input 
is and how the neurons are linked. The sharp signals then move 
through the connections in the network, and they have the ability 

to make other neurons send out signals. This iterative process 
persists until the network reaches a state of stability, characterized 
by a cessation of significant changes.
 
The final result of the network is decided by how the neurons in 
it are firing.The final result of the network is decided by how the neurons

in it are firing.

Fig. 2. Spiking neurons [15]

III. ARCHITECTURES AND FRAMEWORKS OF SNN

Software encompasses a set of instructions and programs
that direct a computer on how to execute specific tasks.
Software constitutes the intangible component of a computer
system that enables the hardware to execute various functions.
There are many different ways to create SNNs, but they all
have similar goals. Some commonly used frameworks are
BindsNET, Norse, Nengo, SpykeTorch, and SNNToolBox. To
make SNNs work for general machine learning and reinforce-
ment learning tasks, BindsNET was created using PyTorch as
its foundation. Norse makes PyTorch better by adding SNNs.

TABLE I
CURRENT PYTORCH AND SNN HIDDEN LAYER COMPARISON

Nengo is constructed using Keras/TensorFlow as its foun-
dation and incorporates elements tailored for deep learning,
as well as simulation backends such as FPGAs, Loihi, and
OpenCL [2]. In simple words, SpykeTorch is a program that
helps stimulate convolutional neural networks with one spike
per neuron. It also encodes information based on the order
of spikes and can learn through a process called STDP or R-
STDP. It is based on PyTorch. Lastly, SNNToolBox is a frame-
work that helps transform regular artificial neural networks
into spiking neural networks (SNNs). It offers different ways to
code information and can be used with various simulation tools

and hardware platforms such as SpiNNaker and Loihi. It is
compatible with popular deep learning libraries like Keras/TF
and PyTorch. Many current machine learning frameworks
cannot speed up the calculation of binary spike activation and
have difficulty handling custom continuous-time differential
expressions [3].

IV. GRADIENT DESCENT USING SPARSE SPIKING

A method that makes going backwards faster by up to 100
times; they believed that using this method would also save a
similar amount of energy. Whenever we are only looking at the
neurons that are active, we can completely ignore 98% of the
neurons or 98% of the gradient calculation when performing
the back-propagation [1]. These accelerations make back prop-
agation faster, use less memory, and consume less energy from
the GPU without affecting accuracy of the test results. These
notable improvements are facilitated by the surrogate gradient,
which is utilized to estimate the derivative of the spiking
function and becomes more pronounced as the membrane
potential nears the threshold. This concentrates most of the
gradient on the active neurons.

V. DATASETS

Researchers have used the MNIST and CIFAR datasets as
trustworthy benchmarks to evaluate and contrast their artificial
neural network (ANN) models. Encoding input data as spikes
is a necessary step in the implementation of spiking neural
networks (SNN). Since event-based sensors capture informa-
tion in a manner akin to the brain’s information processing,
they have gained popularity. Examples of these sensors are
ATIS vision sensors. Many people also like to convert regular
datasets into neuromorphic form using software.

A. Non-Neuromorphic Datasets

Although neuromorphic datasets are getting more popular,
they are not commonly used or following a standard format.
This means that many people still have to manually modify
normal datasets to make them compatible with spiking inputs.
However, there are other well-liked sets of information that
people often use, specifically the MNIST and CIFAR-10
databases. The MNIST dataset was used by about 26 people.
About 6% of all models, including different versions like N-
MNIST and F-MNIST, were used by approximately 33.1%.
CIFAR-10 was the second most common dataset, utilized by
around 30 people [4]. Interestingly, despite many papers using
MNIST, studies using CIFAR tended to have a larger number
of models in each study. It’s important to note that numer-
ous implementations of Spiking Neural Networks (SNNs) in
neuroengineering applications are trained and utilized with
individual patient data, rather than relying on a standardized
benchmark like implanted rhesus monkey EEG data. Due
to this, these things were not taken into account during the
calculations that were done earlier. We recommend that new
researchers use the MNIST dataset or CIFAR-10 to fully
benefit from the benchmarking network effect. But, because
these two sets of data have already been converted to a type

3.Architectures and Frameworks of SNN

Software encompasses a set of instructions and programs that 
direct a computer on how to execute specific tasks. Software 
constitutes the intangible component of a computer system that 
enables the hardware to execute various functions. There are many 

different ways to create SNNs, but they all have similar goals. 
Some commonly used frameworks are BindsNET, Norse, Nengo, 
SpykeTorch, and SNNToolBox. To make SNNs work for general 
machine learning and reinforce- ment learning tasks, BindsNET 
was created using PyTorch as its foundation. Norse makes PyTorch 
better by adding SNNs.
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Table I: Current Pytorch and SNN Hidden Layer Comparison

Nengo is constructed using Keras/TensorFlow as its foun- dation 
and incorporates elements tailored for deep learning, as well as 
simulation backends such as FPGAs, Loihi, and OpenCL [3]. 
In simple words, SpykeTorch is a program that helps stimulate 
convolutional neural networks with one spike per neuron. It also 
encodes information based on the order of spikes and can learn 
through a process called STDP or R- STDP. It is based on PyTorch. 
Lastly, SNNToolBox is a frame- work that helps transform regular 
artificial neural networks into spiking neural networks (SNNs). 
It offers different ways to code information and can be used 
with various simulation tools and hardware platforms such as 
SpiNNaker and Loihi. It is compatible with popular deep learning 
libraries like Keras/TF and PyTorch. Many current machine 
learning frameworks cannot speed up the calculation of binary 
spike activation and have difficulty handling custom continuous-
time differential expressions [4].

4. Gradient Descent Using Sparse Spiking
A method that makes going backwards faster by up to 100 times; 
they believed that using this method would also save a similar 
amount of energy. Whenever we are only looking at the neurons 
that are active, we can completely ignore 98% of the neurons 
or 98% of the gradient calculation when performing the back-
propagation [5]. These accelerations make back prop- agation 
faster, use less memory, and consume less energy from the GPU 
without affecting accuracy of the test results. These notable 
improvements are facilitated by the surrogate gradient, which 
is utilized to estimate the derivative of the spiking function and 
becomes more pronounced as the membrane potential nears the 
threshold. This concentrates most of the gradient on the active 
neurons.

5. Datasets
Researchers have used the MNIST and CIFAR datasets as 
trustworthy benchmarks to evaluate and contrast their artificial 
neural network (ANN) models. Encoding input data as spikes is 
a necessary step in the implementation of spiking neural networks 
(SNN). Since event-based sensors capture informa- tion in a 
manner akin to the brain’s information processing, they have 
gained popularity. Examples of these sensors are ATIS vision 
sensors. Many people also like to convert regular datasets into 
neuromorphic form using software.

A. Non-Neuromorphic Datasets
Although neuromorphic datasets are getting more popular, they 
are not commonly used or following a standard format. This 
means that many people still have to manually modify normal 
datasets to make them compatible with spiking inputs. However, 
there are other well-liked sets of information that people often use, 
specifically the MNIST and CIFAR-10 databases. The MNIST 
dataset was used by about 26 people. About 6% of all models, 
including different versions like N- MNIST and F-MNIST, were 
used by approximately 33.1%. CIFAR-10 was the second most 
common dataset, utilized by around 30 people [6]. Interestingly, 
despite many papers using MNIST, studies using CIFAR tended 
to have a larger number of models in each study. It’s important to 
note that numer- ous implementations of Spiking Neural Networks 
(SNNs) in neuroengineering applications are trained and utilized 
with individual patient data, rather than relying on a standardized 
benchmark like implanted rhesus monkey EEG data. Due to this, 
these things were not taken into account during the calculations 
that were done earlier. We recommend that new researchers 
use the MNIST dataset or CIFAR-10 to fully benefit from the 
benchmarking network effect. But, because these two sets of data 
have already been converted to a type of input that works like our 
brain, We suggest using the N- MNIST or DVS Gestures datasets 
that are easy to find and will give consistent results for everyone 
in the field.

6. Recent Developments
6.1 A. Topology Structures
A key part of spiking neural networks (SNNs) is a layer that is 
fully connected, recurrent, and convolutional. This layer exhibits 
resemblances to the layers commonly found in DNNs (deep neural 
networks). The various types of neu- ral networks include MLPs 
(multi-layer perceptrons), RNNs (recurrent neural networks), and 
CNNs (convolutional neural networks). CNNs are frequently 
employed for tasks involving two-dimensional data, such as 
images. In contrast, MLPs and RNNs are primarily utilized for 
handling one-dimensional data, such as text or time series data. 
By including repeated connections, RNNs can be considered 
as upgrades to MLPs. This makes them particularly skilled at 
handling time-related aspects

New Frontiers
Currently, spiking neural networks are not as complicated as the 
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networks found in living beings. The brain has different levels 
of connections. To understand how complex network systems 
work, researchers use multipoint minimum motif networks 
as the fundamental building blocks of their analysis. Figure 4 
demonstrates how different basic patterns can be grouped into 13 
categories. This is based on the 3-point pattern and does not consider 
the different types of nodes, such as different types of neurons [7]. 
Networks that are similar to each other have consistent and stable 
patterns in how their motifs are distributed. However, networks 

that are specifically designed for a certain purpose have noticeable 
variations in their patterns. We can learn more about how complex 
biolog- ical networks work by looking at the different patterns 
and connections found in those networks. Including restrictions 
in the design of network structures or search methods can be done 
by using the evaluated motif distributions. This method helps to 
get new structures that are easier to understand and more likely to 
exist in biology.

of input that works like our brain, We suggest using the N-
MNIST or DVS Gestures datasets that are easy to find and
will give consistent results for everyone in the field.

VI. RECENT DEVELOPMENTS

A. Topology Structures

A key part of spiking neural networks (SNNs) is a layer
that is fully connected, recurrent, and convolutional. This
layer exhibits resemblances to the layers commonly found
in DNNs (deep neural networks). The various types of neu-
ral networks include MLPs (multi-layer perceptrons), RNNs
(recurrent neural networks), and CNNs (convolutional neural
networks). CNNs are frequently employed for tasks involving
two-dimensional data, such as images. In contrast, MLPs and
RNNs are primarily utilized for handling one-dimensional
data, such as text or time series data. By including repeated
connections, RNNs can be considered as upgrades to MLPs.
This makes them particularly skilled at handling time-related
aspects.

New Frontiers:

Currently, spiking neural networks are not as complicated as
the networks found in living beings. The brain has different
levels of connections. To understand how complex network
systems work, researchers use multipoint minimum motif
networks as the fundamental building blocks of their analysis.
Figure 4 demonstrates how different basic patterns can be
grouped into 13 categories. This is based on the 3-point pattern
and does not consider the different types of nodes, such as
different types of neurons [10]. Networks that are similar to
each other have consistent and stable patterns in how their
motifs are distributed. However, networks that are specifically
designed for a certain purpose have noticeable variations in
their patterns. We can learn more about how complex biolog-
ical networks work by looking at the different patterns and
connections found in those networks. Including restrictions in
the design of network structures or search methods can be
done by using the evaluated motif distributions. This method
helps to get new structures that are easier to understand and
more likely to exist in biology.

Fig. 3. The SNNs motif topology, multi-scale synaptic plasticity, etc [16]

Furthermore, recent methodologies have developed sophis-
ticated modeling frameworks that integrate graph neural net-
works with spiking neural networks. This fusion allows SNNs
to effectively process inputs characterized by graph structures.

B. Optimization Algorithms

Artificial neural networks (ANNs) are taught using specific
sets of information to make the network work as efficiently
as possible. In this process, it is important to use optimiza-
tion methods. The basis of modern optimization theory for
deep neural networks is a method called gradient-based error
backpropagation. This method is widely used in real-world
applications. Conversely, the field of spiking neural networks
(SNNs) lacks a universally agreed-upon fundamental optimiza-
tion method. Task performance and biological plausibility have
different focuses. The way optimization algorithms work is
affected by different ways of representing neurons, encoding
information, and the structure of the network. There are two
main types of research on improving algorithms for SNNs. The
first type doesn’t care about how quickly things are done on a
computer. Instead, it focuses on using complex models of the
brain that are realistic in terms of how the brain works. This
helps us learn more about the biological system. The second
type focuses on making computers faster by only keeping
a few important features and using strange ways to make
them work better. The algorithms in the first group attempt to
find similarities with what we already know about how living
things work. This paper further classifies plasticity optimiza-
tion into small scale, medium scale, and large scale categories.
Macro-scale plasticity frequently depends on supervised global
algorithms, whereas meso and micro-scale plasticity usually
make use of self-organizing unsupervised local algorithms.
STDP (spike-timing-dependent plasticity) and STP (short-
term plasticity) are mechanisms by which individual neurons
or synaptic sites can adjust in response to learning stimuli.
Reward-STDP, Dale’s rule, and other terms are also part of
this microscale plasticity.

These algorithms have demonstrated high accuracy in sim-
ple sorting with the pictures. For instance, Diehl [2015] made
use of STDP to teach and through which they were able to
achieve 95% accuracy on the MNIST dataset. By integrating
plasticity mechanisms like symmetric STDP and dopamine
modifications, the precision was enhanced to 96.7%. [12].
In the article [Kheradpisheh, 2018], author was capable of
distinguishing images from the MNIST dataset using multi-
layer convolution, STDP, and information delay techniques.
They achieved the accuracy of 98.40% [9]. Moreover, the
enhancement of multi-layer spiking convolutional networks
was proposed through optimization via STDP and Reward-
STDP algorithms. Meso-scale plasticity refers to the inter-
actions and behaviors exhibited among various synapses and
neurons. It consists of lateral inhibition, self-backpropagation,
homeostatic circuit control among others. Zhang [2018a] came
up with an approach to keep each node’s data incoming and
outgoing stable. [11]

It uses neural homeostasis to optimize the process. Macro-
scale plasticity is a method that looks at the big picture when
dealing with how credit is distributed worldwide. However,
unlike natural networks, there is no agreed-upon universal
method for assigning credit that is as effective as backpropaga-

Figure 3: The SNNs Motif Topology, Multi-Scale Synaptic Plasticity, etc [8].

Furthermore, recent methodologies have developed sophis- ticated 
modeling frameworks that integrate graph neural net- works with 
spiking neural networks. This fusion allows SNNs to effectively 
process inputs characterized by graph structures.

6.2 B. Optimization Algorithms
Artificial neural networks (ANNs) are taught using specific sets of 
information to make the network work as efficiently as possible. 
In this process, it is important to use optimiza- tion methods. The 
basis of modern optimization theory for deep neural networks is a 
method called gradient-based error backpropagation. This method 
is widely used in real-world applications. Conversely, the field 
of spiking neural networks (SNNs) lacks a universally agreed-
upon fundamental optimiza- tion method. Task performance and 
biological plausibility have different focuses. The way optimization 
algorithms work is affected by different ways of representing 
neurons, encoding information, and the structure of the network. 
There are two main types of research on improving algorithms for 
SNNs. The first type doesn’t care about how quickly things are 
done on a computer. Instead, it focuses on using complex models 
of the brain that are realistic in terms of how the brain works. 
This helps us learn more about the biological system. The second 
type focuses on making computers faster by only keeping a few 
important features and using strange ways to make them work 
better. The algorithms in the first group attempt to find similarities 
with what we already know about how living things work. This 
paper further classifies plasticity optimiza- tion into small scale, 
medium scale, and large scale categories. Macro-scale plasticity 
frequently depends on supervised global algorithms, whereas meso 
and micro-scale plasticity usually make use of self-organizing 

unsupervised local algorithms. STDP (spike-timing-dependent 
plasticity) and STP (short- term plasticity) are mechanisms by 
which individual neurons or synaptic sites can adjust in response 
to learning stimuli. Reward-STDP, Dale’s rule, and other terms are 
also part of this microscale plasticity.

These algorithms have demonstrated high accuracy in sim- ple 
sorting with the pictures. For instance, Diehl [2015] made use 
of STDP to teach and through which they were able to achieve 
95% accuracy on the MNIST dataset. By integrating plasticity 
mechanisms like symmetric STDP and dopamine modifications, 
the precision was enhanced to 96.7%. [9]. In the article 
[Kheradpisheh, 2018], author was capable of distinguishing images 
from the MNIST dataset using multi- layer convolution, STDP, 
and information delay techniques. They achieved the accuracy of 
98.40% [10]. Moreover, the enhancement of multi-layer spiking 
convolutional networks was proposed through optimization via 
STDP and Reward- STDP algorithms. Meso-scale plasticity refers 
to the inter- actions and behaviors exhibited among various synapses 
and neurons. It consists of lateral inhibition, self-backpropagation, 
homeostatic circuit control among others. Zhang [2018a] came up 
with an approach to keep each node’s data incoming and outgoing 
stable [11].

It uses neural homeostasis to optimize the process. Macro- scale 
plasticity is a method that looks at the big picture when dealing 
with how credit is distributed worldwide. However, unlike 
natural networks, there is no agreed-upon universal method for 
assigning credit that is as effective as backpropaga-tion. The way 
information is sent between synapses helps fig- ure out if it is 
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going forward or backward. The weight transport problem is when 
the brain doesn’t have a way to use forward weights while going 
backwards. Many new algorithms have been created to improve 
the way backpropagation works. The objective of algorithms 
like feedback alignment, direct random target propagation, and 
target propagation is to emulate the functioning of our brains 
more closely while consuming less energy than traditional 
backpropagation. These methods use random matrices to transfer 
gradients directly in the backward process, solving the problem of 
moving weights. They bring new ideas, like BRP, to help improve 
the overall efficiency of SNNs. The second set of algorithms often 
uses different variations of a technique called backpropagation 
(BP), such as pseudo-BP and SNNs, that have been adjusted to 
work with deep neural networks (DNNs), in order to optimize 
a type of neural network called SNN. Using gradient-based BP 
directly is challenging because it is not possible to differentiate 
spike signals. By using specific values for the non-smooth parts of 
spiking neurons, pseudo-BP fixes this issue. Pseudo- BP performs 
and learns at a similar level to DNNs trained using regular BP 
on smaller datasets. The idea underlying the transformation from 
Deep Neural Networks (DNNs) to Spiking Neural Networks 
(SNNs) revolves around utilizing the average firing frequency 
of neurons in SNNs to approximate the outputs produced by the 
Rectified Linear Unit (ReLU) function in DNNs. This is achieved 
through a distinct method called rate encoding. The first DNNs 
are trained using BP, and then special methods are used to turn 
them into SNNs. DNNs that have been converted to SNNs can 
be used for big networks and datasets. They perform very similar 
to DNNs with only a small difference in performance. Examples 
include Rueckauer’s enhanced iterations of GoogLeNet and VGG-
16 models. According to Sengupta’s findings, VGG-16 achieved 
an accuracy of 69.96% on ImageNet dataset, experiencing a slight 
loss of 0.56% in conversion precision. Hu subsequently utilized 
advanced ResNet-50 model, attaining an accuracy rate of 72.75% 
[12].

New Frontiers
The main goal in improving spiking neural networks (SNNs) is 
to make them more realistic and efficient. Not many ways can 
train really big deep SNNs directly, unlike deep neural networks 
(DNNs). We need to further investigate problems with deep 
network training, such as when gradients become very small 
and disappear, the significant amount of resources required for 
training, and when the network does not converge. Lately, we 
have been using techniques from the area of DNNs, such as batch 
normalization and residual learning, to train deep SNNs directly 
through pseudo-BP. This plan has given us good results and could 
lead to better optimization in the future for deep SNNs. Moreover, 
the methods currently employed to convert DNNs into SNNs take 
a long time to simulate. The range of activation values is drastically 
reduced during the conversion process, which compresses the 
model. The concept of DNNs (deep neural networks) is similar 
to that of BNNs (binary neural networks). However, we do not 
fully understand the relationship and differences between BNNs 
and SNNs, as well as how the additional temporal dimension in 
SNNs can potentially impact their performance. SNNs might be 
easier to compress because they have a certain way of firing called 
threshold firing. To make SNNs work even faster, it is important to 
study how they can be used with compression methods like weight 
quantization and pruning [2].

6.3 C. Software Frameworks
The SNNs’ software framework is a computer program that helps 
with fast simulation, creating models of networks, and training 
algorithms. Software frameworks make it easier for people to 
start working in a specific area and help in building big projects 
involving SNNs. They provide useful support for the scientific 
research of SNNs. There are many different software frameworks 
because research goals and strategies for development are different.

tion. The way information is sent between synapses helps fig-
ure out if it is going forward or backward. The weight transport
problem is when the brain doesn’t have a way to use forward
weights while going backwards. Many new algorithms have
been created to improve the way backpropagation works. The
objective of algorithms like feedback alignment, direct random
target propagation, and target propagation is to emulate the
functioning of our brains more closely while consuming less
energy than traditional backpropagation. These methods use
random matrices to transfer gradients directly in the backward
process, solving the problem of moving weights. They bring
new ideas, like BRP, to help improve the overall efficiency
of SNNs. The second set of algorithms often uses different
variations of a technique called backpropagation (BP), such
as pseudo-BP and SNNs, that have been adjusted to work
with deep neural networks (DNNs), in order to optimize a
type of neural network called SNN. Using gradient-based BP
directly is challenging because it is not possible to differentiate
spike signals. By using specific values for the non-smooth
parts of spiking neurons, pseudo-BP fixes this issue. Pseudo-
BP performs and learns at a similar level to DNNs trained
using regular BP on smaller datasets. The idea underlying
the transformation from Deep Neural Networks (DNNs) to
Spiking Neural Networks (SNNs) revolves around utilizing the
average firing frequency of neurons in SNNs to approximate
the outputs produced by the Rectified Linear Unit (ReLU)
function in DNNs. This is achieved through a distinct method
called rate encoding. The first DNNs are trained using BP,
and then special methods are used to turn them into SNNs.
DNNs that have been converted to SNNs can be used for big
networks and datasets. They perform very similar to DNNs
with only a small difference in performance. Examples include
Rueckauer’s enhanced iterations of GoogLeNet and VGG-16
models. According to Sengupta’s findings, VGG-16 achieved
an accuracy of 69.96% on ImageNet dataset, experiencing a
slight loss of 0.56% in conversion precision. Hu subsequently
utilized advanced ResNet-50 model, attaining an accuracy rate
of 72.75% [13].

New Frontiers:

The main goal in improving spiking neural networks
(SNNs) is to make them more realistic and efficient. Not
many ways can train really big deep SNNs directly, unlike
deep neural networks (DNNs). We need to further investigate
problems with deep network training, such as when gradients
become very small and disappear, the significant amount of
resources required for training, and when the network does not
converge. Lately, we have been using techniques from the area
of DNNs, such as batch normalization and residual learning,
to train deep SNNs directly through pseudo-BP. This plan has
given us good results and could lead to better optimization in
the future for deep SNNs. Moreover, the methods currently
employed to convert DNNs into SNNs take a long time to
simulate. The range of activation values is drastically reduced
during the conversion process, which compresses the model.
The concept of DNNs (deep neural networks) is similar to that

of BNNs (binary neural networks). However, we do not fully
understand the relationship and differences between BNNs and
SNNs, as well as how the additional temporal dimension in
SNNs can potentially impact their performance. SNNs might
be easier to compress because they have a certain way of firing
called threshold firing. To make SNNs work even faster, it is
important to study how they can be used with compression
methods like weight quantization and pruning [15].

C. Software Frameworks

The SNNs’ software framework is a computer program that
helps with fast simulation, creating models of networks, and
training algorithms. Software frameworks make it easier for
people to start working in a specific area and help in building
big projects involving SNNs. They provide useful support
for the scientific research of SNNs. There are many different
software frameworks because research goals and strategies for
development are different.

Fig. 4. SNN based Software working process [17]

We have been able to create smaller computer models that
imitate how the brain works. These models are made using
specific computer programs and are mainly used to study liv-
ing things. There are two popular software frameworks called
Neuron and Nest that are used to support many programming
languages, like Python and C++. These frameworks also have
visual interfaces [5]. They also support the use of models
with complex structures or details about how neurons work,
like H-H, LIF, and Izhikevich. Other frameworks can help
with different tasks, work with many types of neurons, and
support different ways that neurons can change and learn.
Bindsnet, Brain2, Spyketorch, SpikingJelly, CogSNN, etc.,
are software tools created in Python that help with building
networks of neurons. They are designed to be good at handling
multiple neurons working together and can be used for tasks
that involve recognizing complex patterns. In simple terms,
CogSNN (a type of computer program) is good at helping
with specific sets of data that are related to the brain, like
N-MNIST, DVS-CIFAR10, and DvsGesture [6].

New Frontiers:

The software frameworks for SNN are still under devel-
opment and not completely finished. PyTorch is utilized for
constructing and training neural networks, serving as one of
the most widely used frameworks for educating about Deep

Figure 4: SNN Based Software Working Process [12].



Volume 2 | Issue 3 | 6Eng OA, 2024

We have been able to create smaller computer models that imitate 
how the brain works. These models are made using specific 
computer programs and are mainly used to study liv- ing things. 
There are two popular software frameworks called Neuron and 
Nest that are used to support many programming languages, like 
Python and C++. These frameworks also have visual interfaces 
[13]. They also support the use of models with complex structures 
or details about how neurons work, like H-H, LIF, and Izhikevich. 
Other frameworks can help with different tasks, work with many 
types of neurons, and support different ways that neurons can 
change and learn. Bindsnet, Brain2, Spyketorch, SpikingJelly, 
CogSNN, etc., are software tools created in Python that help with 
building networks of neurons. They are designed to be good at 
handling multiple neurons working together and can be used for 
tasks that involve recognizing complex patterns. In simple terms, 
CogSNN (a type of computer program) is good at helping with 
specific sets of data that are related to the brain, like N-MNIST, 
DVS-CIFAR10, and DvsGesture [14].

New Frontiers
The software frameworks for SNN are still under devel- opment 
and not completely finished. PyTorch is utilized for constructing 
and training neural networks, serving as one of the most widely 
used frameworks for educating about Deep Neural Networks 
(DNNs). A person new to this can easily create and instruct deep 
neural networks (DNNs) because of the easy-to-use programming 
interface and the streamlined data processing method. This greatly 
enhances the area of DNNs. But, right now, there are only a small 
number of frameworks that can help with making and training 
big SNNs. Programmers need to have coding skills to make big 
SNNs. So, in order to move forward in this field, we have to create 
programming frameworks that are user-friendly and can effectively 
handle big SNNs.

6.4 D. Hardware Frameworks
The growth of related applications to more expansive real- world 
settings is made possible by the development of SNN software 
frameworks. This benefits areas demanding small size, low energy, 
and parallel computing, like robotics, pattern recognition, and 
high-speed cameras. Neuromorphic chips like TrueNorth, Loihi, 
and Tianjic support SNNs with low energy consumption. These 
chips have multiple cores working concurrently, each with its own 
storage, enabling high par- allelism. For facilitating brain-inspired 
affective computing, IBM’s TrueNorth, for instance, features 1 
million neurons, 256 million synapses, and 4096 cores. Intel’s 
Loihi enhances olfactory sensitivity with its 8 billion synapses 
and 8 million neurons. Stanford’s Neurogrid provides real-time 
processing assistance for both high-performance computers and 
robot cir- cuits that resemble brains [15]. Tsinghua University’s 
Tianjic is a hybrid chip supporting both DNNs and SNNs, 
demonstrated in applications like speech recognition and obstacle 
avoidance on self-driving bicycles.

New Frontiers
Neuromorphic chips have become a popular topic of re- search 
for over 10 years because they offer a different way of computing 

compared to traditional digital circuits, which can be slow. These 
chips have had some successful out- comes. Neuromorphic circuits 
are able to perform tasks with high parallelism and use very little 
power. They are a good choice for event-driven computation in 
SNNs because they are designed to work like the brain. Bringing 
together various useful technologies in computer chips is an 
important area of research that requires careful examination. These 
things can work together:
• Combining two different methods, DNNs and SNNs, makes 
things better.
• Using low-quality memristors and high-quality digital circuits 
together for calculations.
• Making a computer chip that is good at learning on its own but 
not so good at big-picture learning.

7. Conclusion
In this paper, We have reviewed the main concepts and latest 
methods to improve memory and save energy in spiking neural 
networks (SNNs), while maintaining good performance. This 
research has reviewed a list of the most common tests being made 
by the individuals who are learning about SNNs, in addition to their 
overall performances. In addition, it evaluates new breakthroughs 
and innovations in SNNs reattuning as well. SNNs will be one of 
the most significant innovations in the future devices like serious 
wearables and brain-machine interfaces, which have limited power 
and storage volume. As we continue to delve into SNNs (spiking 
neural networks), the third generation of neural networks, we gain 
deeper understandings of the working of brain and how we can 
emulate it to create advanced machines. Another plus will be a 
better outcome of neural networks that will tune at the same time 
with lower consumption of energy [16,17].
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