
Volume 2 | Issue 3 | 1Eng OA, 2024

Understanding SNN and its Recent Advancements
Research Article

 Fabiha Anan* and Kayes Mohammad Bin Hoque

Department of CSE Brac University *Corresponding Author
Fabiha Anan, Department of CSE Brac University.

Submitted: 2024, Jun 01; Accepted: 2024, Jul 03; Published: 2024, Jul 08

Citation: Anan, F., Hoque, K. M. B. (2024). Understanding SNN and its Recent Advancements. Eng OA, 2(3), 01-07.

Abstract
The SNNs (spiking neural networks) show what is the nature of computer model of nervous system which is like real brain activity.
SNNs might actually be more like brains than the traditional neural networks do because both share an architecture similarity.
Lower energy consumption and noise- detecting performance are among their uniqueness. Still, though, current SNNs might seem
primitive when compared to the new ones, but their potential to be more powerful and efficient in learning is unlimited. SNNs in
many forms are used for numerous functional applications. That entails, for instance, being able to recognize visuals, to perceive
language or to take actions. Here, the paper gives a wide view on the SNNs, zooming into their recent successes. The article begins
with the saying that neural spiking networks take inspiration of nature exactly from the cause. Another part of the text presents
the SNN constituent parts and elicits some SNN advantages compared to the regular neural networks. Subsequently, the text will
summarize the latest advancements in SNN, taking into account both hardware and algorithms as well. Another part of the paper
will be given to future of sub-national networks.

Engineering: Open Access

Keywords: SNN, Spiking Neural Network, Neural Network, DNN

1. Introduction
Machine learning which is being taken to the new height by
the application of artificial neural networks is a new advanced
application of artificial intelligence. However, in fact a tremendous
difference between very sophisticated biological structures that
govern human thinking and conceptual levels of AI remains. Let’s
start with SNNs (spiking neural networks), a category of neural
networks designed for this purpose. The purpose of this writing
will be not only to explain the basic principles of SNNs but
also include latest achievements that put SNNs to the forefront
of computational neuroscience. SNNs (spiking neural networks)
represent a group of artificial neural networks that emulate
the neural functions of the brain with greater fidelity. Unlike
conventional Artificial Neural Networks (ANNs) that employ
continuous activation func- tions, SNNs (spiking neural networks)
utilize discrete spikes to transmit information among neurons. This
allows SNNs to monitor changes in biological neural systems over
time better, which may further enhance computing power, making
it even more robust and powerful. New advancements have been
made in different areas such as:
• Creating new neuron models
• Ways to encode information
• Datasets for mimicking the brain

• Algorithms for improving performance
• Frameworks for both software and hardware

Another good example is the NeuCube based system which uses
the patterns of the information to handle them more complex than
in time and space it is possible. SNN can be used in disciplines
like robotics, computer graphics, and natural language processing,
alongside the others. As such research will be going on, there will
be more astonishing outcomes in the area of SNN.

2. Understanding Spiking Neural Networks (SNNS)
A. What are SNNs?
SNNs are modelled in a similar way to how neurons in our brain
transmit signals to each other. Neurons in the brain represent
information by sending spikes, which are short electrical
signals. The frequency and the exact time when spikes occur is
used to encode information. SNNs consists of neurons that are
interconnected with each other. Each neuron has a membrane
potential, which is the electrical voltage of the cell membrane.
Once the membrane potential reaches a critical threshold, the
neuron emits a spike. The spike propagates through the network
until it reaches subsequent neurons, which may then generate their
own spikes.

Volume 2 | Issue 3 | 2Eng OA, 2024

Understanding SNN and Its Recent Advancements
Fabiha Anan

Department of CSE
Brac University

fabiha.anan@g.bracu.ac.bd

Kayes Mohammad Bin Hoque
Department of CSE

Brac University
mohammad.bin.hoque@g.bracu.ac.bd

Abstract—The SNNs (spiking neural networks) show what is
the nature of computer model of nervous system which is like
real brain activity. SNNs might actually be more like brains
than the traditional neural networks do because both share an
architecture similarity. Lower energy consumption and noise-
detecting performance are among their uniqueness. Still, though,
current SNNs might seem primitive when compared to the new
ones, but their potential to be more powerful and efficient in
learning is unlimited. SNNs in many forms are used for numerous
functional applications. That entails, for instance, being able to
recognize visuals, to perceive language or to take actions. Here,
the paper gives a wide view on the SNNs, zooming into their
recent successes. The article begins with the saying that neural
spiking networks take inspiration of nature exactly from the
cause. Another part of the text presents the SNN constituent
parts and elicits some SNN advantages compared to the regular
neural networks. Subsequently, the text will summarize the latest
advancements in SNN, taking into account both hardware and
algorithms as well. Another part of the paper will be given to
future of sub-national networks.

Keywords: SNN, Spiking neural network, neural network,
DNN.

I. INTRODUCTION

Machine learning which is being taken to the new height
by the application of artificial neural networks is a new
advanced application of artificial intelligence. However, in fact
a tremendous difference between very sophisticated biological
structures that govern human thinking and conceptual levels of
AI remains. Let’s start with SNNs (spiking neural networks),
a category of neural networks designed for this purpose. The
purpose of this writing will be not only to explain the basic
principles of SNNs but also include latest achievements that
put SNNs to the forefront of computational neuroscience.
SNNs (spiking neural networks) represent a group of artificial
neural networks that emulate the neural functions of the brain
with greater fidelity. Unlike conventional Artificial Neural
Networks (ANNs) that employ continuous activation func-
tions, SNNs (spiking neural networks) utilize discrete spikes
to transmit information among neurons. This allows SNNs to
monitor changes in biological neural systems over time better,
which may further enhance computing power, making it even
more robust and powerful. New advancements have been made
in different areas such as:

• Creating new neuron models
• Ways to encode information
• Datasets for mimicking the brain
• Algorithms for improving performance

• Frameworks for both software and hardware
Another good example is the NeuCube based system which

uses the patterns of the information to handle them more
complex than in time and space it is possible. SNN can be used
in disciplines like robotics, computer graphics, and natural
language processing, alongside the others. As such research
will be going on, there will be more astonishing outcomes in
the area of SNN.

II. UNDERSTANDING SPIKING NEURAL NETWORKS
(SNNS)

A. What are SNNs?

SNNs are modelled in a similar way to how neurons in
our brain transmit signals to each other. Neurons in the
brain represent information by sending spikes, which are short
electrical signals. The frequency and the exact time when
spikes occur is used to encode information. SNNs consists of
neurons that are interconnected with each other. Each neuron
has a membrane potential, which is the electrical voltage of the
cell membrane. Once the membrane potential reaches a critical
threshold, the neuron emits a spike. The spike propagates
through the network until it reaches subsequent neurons, which
may then generate their own spikes.

Fig. 1. Spiking Neural Networks (SNN) [14]

B. How do SNNs work?

SNNs operate similarly like the brain. As the Spiking Neural
Network (SNN) receives the input, the neurons inside the
network start sending electrical signals called spikes. When
the intensity and how often they occur are determined by how
strong the input is and how the neurons are linked. The sharp
signals then move through the connections in the network, and
they have the ability to make other neurons send out signals.
This iterative process persists until the network reaches a state
of stability, characterized by a cessation of significant changes.

Figure 1: Spiking Neural Networks (SNN) [1].

Figure 2: Spiking Neurons [2].

B. How do SNNs Work?
SNNs operate similarly like the brain. As the Spiking Neural
Network (SNN) receives the input, the neurons inside the network
start sending electrical signals called spikes. When the intensity
and how often they occur are determined by how strong the input
is and how the neurons are linked. The sharp signals then move
through the connections in the network, and they have the ability

to make other neurons send out signals. This iterative process
persists until the network reaches a state of stability, characterized
by a cessation of significant changes.

The final result of the network is decided by how the neurons in
it are firing.The final result of the network is decided by how the neurons

in it are firing.

Fig. 2. Spiking neurons [15]

III. ARCHITECTURES AND FRAMEWORKS OF SNN

Software encompasses a set of instructions and programs
that direct a computer on how to execute specific tasks.
Software constitutes the intangible component of a computer
system that enables the hardware to execute various functions.
There are many different ways to create SNNs, but they all
have similar goals. Some commonly used frameworks are
BindsNET, Norse, Nengo, SpykeTorch, and SNNToolBox. To
make SNNs work for general machine learning and reinforce-
ment learning tasks, BindsNET was created using PyTorch as
its foundation. Norse makes PyTorch better by adding SNNs.

TABLE I
CURRENT PYTORCH AND SNN HIDDEN LAYER COMPARISON

Nengo is constructed using Keras/TensorFlow as its foun-
dation and incorporates elements tailored for deep learning,
as well as simulation backends such as FPGAs, Loihi, and
OpenCL [2]. In simple words, SpykeTorch is a program that
helps stimulate convolutional neural networks with one spike
per neuron. It also encodes information based on the order
of spikes and can learn through a process called STDP or R-
STDP. It is based on PyTorch. Lastly, SNNToolBox is a frame-
work that helps transform regular artificial neural networks
into spiking neural networks (SNNs). It offers different ways to
code information and can be used with various simulation tools

and hardware platforms such as SpiNNaker and Loihi. It is
compatible with popular deep learning libraries like Keras/TF
and PyTorch. Many current machine learning frameworks
cannot speed up the calculation of binary spike activation and
have difficulty handling custom continuous-time differential
expressions [3].

IV. GRADIENT DESCENT USING SPARSE SPIKING

A method that makes going backwards faster by up to 100
times; they believed that using this method would also save a
similar amount of energy. Whenever we are only looking at the
neurons that are active, we can completely ignore 98% of the
neurons or 98% of the gradient calculation when performing
the back-propagation [1]. These accelerations make back prop-
agation faster, use less memory, and consume less energy from
the GPU without affecting accuracy of the test results. These
notable improvements are facilitated by the surrogate gradient,
which is utilized to estimate the derivative of the spiking
function and becomes more pronounced as the membrane
potential nears the threshold. This concentrates most of the
gradient on the active neurons.

V. DATASETS

Researchers have used the MNIST and CIFAR datasets as
trustworthy benchmarks to evaluate and contrast their artificial
neural network (ANN) models. Encoding input data as spikes
is a necessary step in the implementation of spiking neural
networks (SNN). Since event-based sensors capture informa-
tion in a manner akin to the brain’s information processing,
they have gained popularity. Examples of these sensors are
ATIS vision sensors. Many people also like to convert regular
datasets into neuromorphic form using software.

A. Non-Neuromorphic Datasets

Although neuromorphic datasets are getting more popular,
they are not commonly used or following a standard format.
This means that many people still have to manually modify
normal datasets to make them compatible with spiking inputs.
However, there are other well-liked sets of information that
people often use, specifically the MNIST and CIFAR-10
databases. The MNIST dataset was used by about 26 people.
About 6% of all models, including different versions like N-
MNIST and F-MNIST, were used by approximately 33.1%.
CIFAR-10 was the second most common dataset, utilized by
around 30 people [4]. Interestingly, despite many papers using
MNIST, studies using CIFAR tended to have a larger number
of models in each study. It’s important to note that numer-
ous implementations of Spiking Neural Networks (SNNs) in
neuroengineering applications are trained and utilized with
individual patient data, rather than relying on a standardized
benchmark like implanted rhesus monkey EEG data. Due
to this, these things were not taken into account during the
calculations that were done earlier. We recommend that new
researchers use the MNIST dataset or CIFAR-10 to fully
benefit from the benchmarking network effect. But, because
these two sets of data have already been converted to a type

3.Architectures and Frameworks of SNN

Software encompasses a set of instructions and programs that
direct a computer on how to execute specific tasks. Software
constitutes the intangible component of a computer system that
enables the hardware to execute various functions. There are many

different ways to create SNNs, but they all have similar goals.
Some commonly used frameworks are BindsNET, Norse, Nengo,
SpykeTorch, and SNNToolBox. To make SNNs work for general
machine learning and reinforce- ment learning tasks, BindsNET
was created using PyTorch as its foundation. Norse makes PyTorch
better by adding SNNs.

Volume 2 | Issue 3 | 3Eng OA, 2024

Table I: Current Pytorch and SNN Hidden Layer Comparison

Nengo is constructed using Keras/TensorFlow as its foun- dation
and incorporates elements tailored for deep learning, as well as
simulation backends such as FPGAs, Loihi, and OpenCL [3].
In simple words, SpykeTorch is a program that helps stimulate
convolutional neural networks with one spike per neuron. It also
encodes information based on the order of spikes and can learn
through a process called STDP or R- STDP. It is based on PyTorch.
Lastly, SNNToolBox is a frame- work that helps transform regular
artificial neural networks into spiking neural networks (SNNs).
It offers different ways to code information and can be used
with various simulation tools and hardware platforms such as
SpiNNaker and Loihi. It is compatible with popular deep learning
libraries like Keras/TF and PyTorch. Many current machine
learning frameworks cannot speed up the calculation of binary
spike activation and have difficulty handling custom continuous-
time differential expressions [4].

4. Gradient Descent Using Sparse Spiking
A method that makes going backwards faster by up to 100 times;
they believed that using this method would also save a similar
amount of energy. Whenever we are only looking at the neurons
that are active, we can completely ignore 98% of the neurons
or 98% of the gradient calculation when performing the back-
propagation [5]. These accelerations make back prop- agation
faster, use less memory, and consume less energy from the GPU
without affecting accuracy of the test results. These notable
improvements are facilitated by the surrogate gradient, which
is utilized to estimate the derivative of the spiking function and
becomes more pronounced as the membrane potential nears the
threshold. This concentrates most of the gradient on the active
neurons.

5. Datasets
Researchers have used the MNIST and CIFAR datasets as
trustworthy benchmarks to evaluate and contrast their artificial
neural network (ANN) models. Encoding input data as spikes is
a necessary step in the implementation of spiking neural networks
(SNN). Since event-based sensors capture informa- tion in a
manner akin to the brain’s information processing, they have
gained popularity. Examples of these sensors are ATIS vision
sensors. Many people also like to convert regular datasets into
neuromorphic form using software.

A. Non-Neuromorphic Datasets
Although neuromorphic datasets are getting more popular, they
are not commonly used or following a standard format. This
means that many people still have to manually modify normal
datasets to make them compatible with spiking inputs. However,
there are other well-liked sets of information that people often use,
specifically the MNIST and CIFAR-10 databases. The MNIST
dataset was used by about 26 people. About 6% of all models,
including different versions like N- MNIST and F-MNIST, were
used by approximately 33.1%. CIFAR-10 was the second most
common dataset, utilized by around 30 people [6]. Interestingly,
despite many papers using MNIST, studies using CIFAR tended
to have a larger number of models in each study. It’s important to
note that numer- ous implementations of Spiking Neural Networks
(SNNs) in neuroengineering applications are trained and utilized
with individual patient data, rather than relying on a standardized
benchmark like implanted rhesus monkey EEG data. Due to this,
these things were not taken into account during the calculations
that were done earlier. We recommend that new researchers
use the MNIST dataset or CIFAR-10 to fully benefit from the
benchmarking network effect. But, because these two sets of data
have already been converted to a type of input that works like our
brain, We suggest using the N- MNIST or DVS Gestures datasets
that are easy to find and will give consistent results for everyone
in the field.

6. Recent Developments
6.1 A. Topology Structures
A key part of spiking neural networks (SNNs) is a layer that is
fully connected, recurrent, and convolutional. This layer exhibits
resemblances to the layers commonly found in DNNs (deep neural
networks). The various types of neu- ral networks include MLPs
(multi-layer perceptrons), RNNs (recurrent neural networks), and
CNNs (convolutional neural networks). CNNs are frequently
employed for tasks involving two-dimensional data, such as
images. In contrast, MLPs and RNNs are primarily utilized for
handling one-dimensional data, such as text or time series data.
By including repeated connections, RNNs can be considered
as upgrades to MLPs. This makes them particularly skilled at
handling time-related aspects

New Frontiers
Currently, spiking neural networks are not as complicated as the

Volume 2 | Issue 3 | 4Eng OA, 2024

networks found in living beings. The brain has different levels
of connections. To understand how complex network systems
work, researchers use multipoint minimum motif networks
as the fundamental building blocks of their analysis. Figure 4
demonstrates how different basic patterns can be grouped into 13
categories. This is based on the 3-point pattern and does not consider
the different types of nodes, such as different types of neurons [7].
Networks that are similar to each other have consistent and stable
patterns in how their motifs are distributed. However, networks

that are specifically designed for a certain purpose have noticeable
variations in their patterns. We can learn more about how complex
biolog- ical networks work by looking at the different patterns
and connections found in those networks. Including restrictions
in the design of network structures or search methods can be done
by using the evaluated motif distributions. This method helps to
get new structures that are easier to understand and more likely to
exist in biology.

of input that works like our brain, We suggest using the N-
MNIST or DVS Gestures datasets that are easy to find and
will give consistent results for everyone in the field.

VI. RECENT DEVELOPMENTS

A. Topology Structures

A key part of spiking neural networks (SNNs) is a layer
that is fully connected, recurrent, and convolutional. This
layer exhibits resemblances to the layers commonly found
in DNNs (deep neural networks). The various types of neu-
ral networks include MLPs (multi-layer perceptrons), RNNs
(recurrent neural networks), and CNNs (convolutional neural
networks). CNNs are frequently employed for tasks involving
two-dimensional data, such as images. In contrast, MLPs and
RNNs are primarily utilized for handling one-dimensional
data, such as text or time series data. By including repeated
connections, RNNs can be considered as upgrades to MLPs.
This makes them particularly skilled at handling time-related
aspects.

New Frontiers:

Currently, spiking neural networks are not as complicated as
the networks found in living beings. The brain has different
levels of connections. To understand how complex network
systems work, researchers use multipoint minimum motif
networks as the fundamental building blocks of their analysis.
Figure 4 demonstrates how different basic patterns can be
grouped into 13 categories. This is based on the 3-point pattern
and does not consider the different types of nodes, such as
different types of neurons [10]. Networks that are similar to
each other have consistent and stable patterns in how their
motifs are distributed. However, networks that are specifically
designed for a certain purpose have noticeable variations in
their patterns. We can learn more about how complex biolog-
ical networks work by looking at the different patterns and
connections found in those networks. Including restrictions in
the design of network structures or search methods can be
done by using the evaluated motif distributions. This method
helps to get new structures that are easier to understand and
more likely to exist in biology.

Fig. 3. The SNNs motif topology, multi-scale synaptic plasticity, etc [16]

Furthermore, recent methodologies have developed sophis-
ticated modeling frameworks that integrate graph neural net-
works with spiking neural networks. This fusion allows SNNs
to effectively process inputs characterized by graph structures.

B. Optimization Algorithms

Artificial neural networks (ANNs) are taught using specific
sets of information to make the network work as efficiently
as possible. In this process, it is important to use optimiza-
tion methods. The basis of modern optimization theory for
deep neural networks is a method called gradient-based error
backpropagation. This method is widely used in real-world
applications. Conversely, the field of spiking neural networks
(SNNs) lacks a universally agreed-upon fundamental optimiza-
tion method. Task performance and biological plausibility have
different focuses. The way optimization algorithms work is
affected by different ways of representing neurons, encoding
information, and the structure of the network. There are two
main types of research on improving algorithms for SNNs. The
first type doesn’t care about how quickly things are done on a
computer. Instead, it focuses on using complex models of the
brain that are realistic in terms of how the brain works. This
helps us learn more about the biological system. The second
type focuses on making computers faster by only keeping
a few important features and using strange ways to make
them work better. The algorithms in the first group attempt to
find similarities with what we already know about how living
things work. This paper further classifies plasticity optimiza-
tion into small scale, medium scale, and large scale categories.
Macro-scale plasticity frequently depends on supervised global
algorithms, whereas meso and micro-scale plasticity usually
make use of self-organizing unsupervised local algorithms.
STDP (spike-timing-dependent plasticity) and STP (short-
term plasticity) are mechanisms by which individual neurons
or synaptic sites can adjust in response to learning stimuli.
Reward-STDP, Dale’s rule, and other terms are also part of
this microscale plasticity.

These algorithms have demonstrated high accuracy in sim-
ple sorting with the pictures. For instance, Diehl [2015] made
use of STDP to teach and through which they were able to
achieve 95% accuracy on the MNIST dataset. By integrating
plasticity mechanisms like symmetric STDP and dopamine
modifications, the precision was enhanced to 96.7%. [12].
In the article [Kheradpisheh, 2018], author was capable of
distinguishing images from the MNIST dataset using multi-
layer convolution, STDP, and information delay techniques.
They achieved the accuracy of 98.40% [9]. Moreover, the
enhancement of multi-layer spiking convolutional networks
was proposed through optimization via STDP and Reward-
STDP algorithms. Meso-scale plasticity refers to the inter-
actions and behaviors exhibited among various synapses and
neurons. It consists of lateral inhibition, self-backpropagation,
homeostatic circuit control among others. Zhang [2018a] came
up with an approach to keep each node’s data incoming and
outgoing stable. [11]

It uses neural homeostasis to optimize the process. Macro-
scale plasticity is a method that looks at the big picture when
dealing with how credit is distributed worldwide. However,
unlike natural networks, there is no agreed-upon universal
method for assigning credit that is as effective as backpropaga-

Figure 3: The SNNs Motif Topology, Multi-Scale Synaptic Plasticity, etc [8].

Furthermore, recent methodologies have developed sophis- ticated
modeling frameworks that integrate graph neural net- works with
spiking neural networks. This fusion allows SNNs to effectively
process inputs characterized by graph structures.

6.2 B. Optimization Algorithms
Artificial neural networks (ANNs) are taught using specific sets of
information to make the network work as efficiently as possible.
In this process, it is important to use optimiza- tion methods. The
basis of modern optimization theory for deep neural networks is a
method called gradient-based error backpropagation. This method
is widely used in real-world applications. Conversely, the field
of spiking neural networks (SNNs) lacks a universally agreed-
upon fundamental optimiza- tion method. Task performance and
biological plausibility have different focuses. The way optimization
algorithms work is affected by different ways of representing
neurons, encoding information, and the structure of the network.
There are two main types of research on improving algorithms for
SNNs. The first type doesn’t care about how quickly things are
done on a computer. Instead, it focuses on using complex models
of the brain that are realistic in terms of how the brain works.
This helps us learn more about the biological system. The second
type focuses on making computers faster by only keeping a few
important features and using strange ways to make them work
better. The algorithms in the first group attempt to find similarities
with what we already know about how living things work. This
paper further classifies plasticity optimiza- tion into small scale,
medium scale, and large scale categories. Macro-scale plasticity
frequently depends on supervised global algorithms, whereas meso
and micro-scale plasticity usually make use of self-organizing

unsupervised local algorithms. STDP (spike-timing-dependent
plasticity) and STP (short- term plasticity) are mechanisms by
which individual neurons or synaptic sites can adjust in response
to learning stimuli. Reward-STDP, Dale’s rule, and other terms are
also part of this microscale plasticity.

These algorithms have demonstrated high accuracy in sim- ple
sorting with the pictures. For instance, Diehl [2015] made use
of STDP to teach and through which they were able to achieve
95% accuracy on the MNIST dataset. By integrating plasticity
mechanisms like symmetric STDP and dopamine modifications,
the precision was enhanced to 96.7%. [9]. In the article
[Kheradpisheh, 2018], author was capable of distinguishing images
from the MNIST dataset using multi- layer convolution, STDP,
and information delay techniques. They achieved the accuracy of
98.40% [10]. Moreover, the enhancement of multi-layer spiking
convolutional networks was proposed through optimization via
STDP and Reward- STDP algorithms. Meso-scale plasticity refers
to the inter- actions and behaviors exhibited among various synapses
and neurons. It consists of lateral inhibition, self-backpropagation,
homeostatic circuit control among others. Zhang [2018a] came up
with an approach to keep each node’s data incoming and outgoing
stable [11].

It uses neural homeostasis to optimize the process. Macro- scale
plasticity is a method that looks at the big picture when dealing
with how credit is distributed worldwide. However, unlike
natural networks, there is no agreed-upon universal method for
assigning credit that is as effective as backpropaga-tion. The way
information is sent between synapses helps fig- ure out if it is

Volume 2 | Issue 3 | 5Eng OA, 2024

going forward or backward. The weight transport problem is when
the brain doesn’t have a way to use forward weights while going
backwards. Many new algorithms have been created to improve
the way backpropagation works. The objective of algorithms
like feedback alignment, direct random target propagation, and
target propagation is to emulate the functioning of our brains
more closely while consuming less energy than traditional
backpropagation. These methods use random matrices to transfer
gradients directly in the backward process, solving the problem of
moving weights. They bring new ideas, like BRP, to help improve
the overall efficiency of SNNs. The second set of algorithms often
uses different variations of a technique called backpropagation
(BP), such as pseudo-BP and SNNs, that have been adjusted to
work with deep neural networks (DNNs), in order to optimize
a type of neural network called SNN. Using gradient-based BP
directly is challenging because it is not possible to differentiate
spike signals. By using specific values for the non-smooth parts of
spiking neurons, pseudo-BP fixes this issue. Pseudo- BP performs
and learns at a similar level to DNNs trained using regular BP
on smaller datasets. The idea underlying the transformation from
Deep Neural Networks (DNNs) to Spiking Neural Networks
(SNNs) revolves around utilizing the average firing frequency
of neurons in SNNs to approximate the outputs produced by the
Rectified Linear Unit (ReLU) function in DNNs. This is achieved
through a distinct method called rate encoding. The first DNNs
are trained using BP, and then special methods are used to turn
them into SNNs. DNNs that have been converted to SNNs can
be used for big networks and datasets. They perform very similar
to DNNs with only a small difference in performance. Examples
include Rueckauer’s enhanced iterations of GoogLeNet and VGG-
16 models. According to Sengupta’s findings, VGG-16 achieved
an accuracy of 69.96% on ImageNet dataset, experiencing a slight
loss of 0.56% in conversion precision. Hu subsequently utilized
advanced ResNet-50 model, attaining an accuracy rate of 72.75%
[12].

New Frontiers
The main goal in improving spiking neural networks (SNNs) is
to make them more realistic and efficient. Not many ways can
train really big deep SNNs directly, unlike deep neural networks
(DNNs). We need to further investigate problems with deep
network training, such as when gradients become very small
and disappear, the significant amount of resources required for
training, and when the network does not converge. Lately, we
have been using techniques from the area of DNNs, such as batch
normalization and residual learning, to train deep SNNs directly
through pseudo-BP. This plan has given us good results and could
lead to better optimization in the future for deep SNNs. Moreover,
the methods currently employed to convert DNNs into SNNs take
a long time to simulate. The range of activation values is drastically
reduced during the conversion process, which compresses the
model. The concept of DNNs (deep neural networks) is similar
to that of BNNs (binary neural networks). However, we do not
fully understand the relationship and differences between BNNs
and SNNs, as well as how the additional temporal dimension in
SNNs can potentially impact their performance. SNNs might be
easier to compress because they have a certain way of firing called
threshold firing. To make SNNs work even faster, it is important to
study how they can be used with compression methods like weight
quantization and pruning [2].

6.3 C. Software Frameworks
The SNNs’ software framework is a computer program that helps
with fast simulation, creating models of networks, and training
algorithms. Software frameworks make it easier for people to
start working in a specific area and help in building big projects
involving SNNs. They provide useful support for the scientific
research of SNNs. There are many different software frameworks
because research goals and strategies for development are different.

tion. The way information is sent between synapses helps fig-
ure out if it is going forward or backward. The weight transport
problem is when the brain doesn’t have a way to use forward
weights while going backwards. Many new algorithms have
been created to improve the way backpropagation works. The
objective of algorithms like feedback alignment, direct random
target propagation, and target propagation is to emulate the
functioning of our brains more closely while consuming less
energy than traditional backpropagation. These methods use
random matrices to transfer gradients directly in the backward
process, solving the problem of moving weights. They bring
new ideas, like BRP, to help improve the overall efficiency
of SNNs. The second set of algorithms often uses different
variations of a technique called backpropagation (BP), such
as pseudo-BP and SNNs, that have been adjusted to work
with deep neural networks (DNNs), in order to optimize a
type of neural network called SNN. Using gradient-based BP
directly is challenging because it is not possible to differentiate
spike signals. By using specific values for the non-smooth
parts of spiking neurons, pseudo-BP fixes this issue. Pseudo-
BP performs and learns at a similar level to DNNs trained
using regular BP on smaller datasets. The idea underlying
the transformation from Deep Neural Networks (DNNs) to
Spiking Neural Networks (SNNs) revolves around utilizing the
average firing frequency of neurons in SNNs to approximate
the outputs produced by the Rectified Linear Unit (ReLU)
function in DNNs. This is achieved through a distinct method
called rate encoding. The first DNNs are trained using BP,
and then special methods are used to turn them into SNNs.
DNNs that have been converted to SNNs can be used for big
networks and datasets. They perform very similar to DNNs
with only a small difference in performance. Examples include
Rueckauer’s enhanced iterations of GoogLeNet and VGG-16
models. According to Sengupta’s findings, VGG-16 achieved
an accuracy of 69.96% on ImageNet dataset, experiencing a
slight loss of 0.56% in conversion precision. Hu subsequently
utilized advanced ResNet-50 model, attaining an accuracy rate
of 72.75% [13].

New Frontiers:

The main goal in improving spiking neural networks
(SNNs) is to make them more realistic and efficient. Not
many ways can train really big deep SNNs directly, unlike
deep neural networks (DNNs). We need to further investigate
problems with deep network training, such as when gradients
become very small and disappear, the significant amount of
resources required for training, and when the network does not
converge. Lately, we have been using techniques from the area
of DNNs, such as batch normalization and residual learning,
to train deep SNNs directly through pseudo-BP. This plan has
given us good results and could lead to better optimization in
the future for deep SNNs. Moreover, the methods currently
employed to convert DNNs into SNNs take a long time to
simulate. The range of activation values is drastically reduced
during the conversion process, which compresses the model.
The concept of DNNs (deep neural networks) is similar to that

of BNNs (binary neural networks). However, we do not fully
understand the relationship and differences between BNNs and
SNNs, as well as how the additional temporal dimension in
SNNs can potentially impact their performance. SNNs might
be easier to compress because they have a certain way of firing
called threshold firing. To make SNNs work even faster, it is
important to study how they can be used with compression
methods like weight quantization and pruning [15].

C. Software Frameworks

The SNNs’ software framework is a computer program that
helps with fast simulation, creating models of networks, and
training algorithms. Software frameworks make it easier for
people to start working in a specific area and help in building
big projects involving SNNs. They provide useful support
for the scientific research of SNNs. There are many different
software frameworks because research goals and strategies for
development are different.

Fig. 4. SNN based Software working process [17]

We have been able to create smaller computer models that
imitate how the brain works. These models are made using
specific computer programs and are mainly used to study liv-
ing things. There are two popular software frameworks called
Neuron and Nest that are used to support many programming
languages, like Python and C++. These frameworks also have
visual interfaces [5]. They also support the use of models
with complex structures or details about how neurons work,
like H-H, LIF, and Izhikevich. Other frameworks can help
with different tasks, work with many types of neurons, and
support different ways that neurons can change and learn.
Bindsnet, Brain2, Spyketorch, SpikingJelly, CogSNN, etc.,
are software tools created in Python that help with building
networks of neurons. They are designed to be good at handling
multiple neurons working together and can be used for tasks
that involve recognizing complex patterns. In simple terms,
CogSNN (a type of computer program) is good at helping
with specific sets of data that are related to the brain, like
N-MNIST, DVS-CIFAR10, and DvsGesture [6].

New Frontiers:

The software frameworks for SNN are still under devel-
opment and not completely finished. PyTorch is utilized for
constructing and training neural networks, serving as one of
the most widely used frameworks for educating about Deep

Figure 4: SNN Based Software Working Process [12].

Volume 2 | Issue 3 | 6Eng OA, 2024

We have been able to create smaller computer models that imitate
how the brain works. These models are made using specific
computer programs and are mainly used to study liv- ing things.
There are two popular software frameworks called Neuron and
Nest that are used to support many programming languages, like
Python and C++. These frameworks also have visual interfaces
[13]. They also support the use of models with complex structures
or details about how neurons work, like H-H, LIF, and Izhikevich.
Other frameworks can help with different tasks, work with many
types of neurons, and support different ways that neurons can
change and learn. Bindsnet, Brain2, Spyketorch, SpikingJelly,
CogSNN, etc., are software tools created in Python that help with
building networks of neurons. They are designed to be good at
handling multiple neurons working together and can be used for
tasks that involve recognizing complex patterns. In simple terms,
CogSNN (a type of computer program) is good at helping with
specific sets of data that are related to the brain, like N-MNIST,
DVS-CIFAR10, and DvsGesture [14].

New Frontiers
The software frameworks for SNN are still under devel- opment
and not completely finished. PyTorch is utilized for constructing
and training neural networks, serving as one of the most widely
used frameworks for educating about Deep Neural Networks
(DNNs). A person new to this can easily create and instruct deep
neural networks (DNNs) because of the easy-to-use programming
interface and the streamlined data processing method. This greatly
enhances the area of DNNs. But, right now, there are only a small
number of frameworks that can help with making and training
big SNNs. Programmers need to have coding skills to make big
SNNs. So, in order to move forward in this field, we have to create
programming frameworks that are user-friendly and can effectively
handle big SNNs.

6.4 D. Hardware Frameworks
The growth of related applications to more expansive real- world
settings is made possible by the development of SNN software
frameworks. This benefits areas demanding small size, low energy,
and parallel computing, like robotics, pattern recognition, and
high-speed cameras. Neuromorphic chips like TrueNorth, Loihi,
and Tianjic support SNNs with low energy consumption. These
chips have multiple cores working concurrently, each with its own
storage, enabling high par- allelism. For facilitating brain-inspired
affective computing, IBM’s TrueNorth, for instance, features 1
million neurons, 256 million synapses, and 4096 cores. Intel’s
Loihi enhances olfactory sensitivity with its 8 billion synapses
and 8 million neurons. Stanford’s Neurogrid provides real-time
processing assistance for both high-performance computers and
robot cir- cuits that resemble brains [15]. Tsinghua University’s
Tianjic is a hybrid chip supporting both DNNs and SNNs,
demonstrated in applications like speech recognition and obstacle
avoidance on self-driving bicycles.

New Frontiers
Neuromorphic chips have become a popular topic of re- search
for over 10 years because they offer a different way of computing

compared to traditional digital circuits, which can be slow. These
chips have had some successful out- comes. Neuromorphic circuits
are able to perform tasks with high parallelism and use very little
power. They are a good choice for event-driven computation in
SNNs because they are designed to work like the brain. Bringing
together various useful technologies in computer chips is an
important area of research that requires careful examination. These
things can work together:
• Combining two different methods, DNNs and SNNs, makes
things better.
• Using low-quality memristors and high-quality digital circuits
together for calculations.
• Making a computer chip that is good at learning on its own but
not so good at big-picture learning.

7. Conclusion
In this paper, We have reviewed the main concepts and latest
methods to improve memory and save energy in spiking neural
networks (SNNs), while maintaining good performance. This
research has reviewed a list of the most common tests being made
by the individuals who are learning about SNNs, in addition to their
overall performances. In addition, it evaluates new breakthroughs
and innovations in SNNs reattuning as well. SNNs will be one of
the most significant innovations in the future devices like serious
wearables and brain-machine interfaces, which have limited power
and storage volume. As we continue to delve into SNNs (spiking
neural networks), the third generation of neural networks, we gain
deeper understandings of the working of brain and how we can
emulate it to create advanced machines. Another plus will be a
better outcome of neural networks that will tune at the same time
with lower consumption of energy [16,17].

References
1.	 Shirsavar, S. R., Vahabie, A. H., & Dehaqani, M. R. A. (2023).

Models developed for spiking neural networks. MethodsX, 10,
102157.

2.	 Cachi, P. G., Ventura, S., & Cios, K. J. (2021). Crba: A
competitive rate-based algorithm based on competitive spiking
neural networks. Frontiers in Computational Neuroscience,
15, 627567.

3.	 Rasmussen, D. (2019). NengoDL: Combining deep learning
and neuromorphic modelling methods. Neuroinformatics,
17(4), 611-628.

4.	 Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., & Gu, S. (2021).
Differentiable spike: Rethinking gradient-descent for training
spiking neural networks. Advances in Neural Information
Processing Systems, 34, 23426-23439.

5.	 Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Guerra,
G. A. F., Joshi, P., ... & Risbud, S. R. (2021). Advancing
neuromorphic computing with loihi: A survey of results and
outlook. Proceedings of the IEEE, 109(5), 911-934.

6.	 Rossbroich, J., Gygax, J., & Zenke, F. (2022). Fluctuation-
driven initialization for spiking neural network training.
Neuromorphic Computing and Engineering, 2(4), 044016.

7.	 Zhu, Z., Peng, J., Li, J., Chen, L., Yu, Q., & Luo, S. (2022).
Spiking graph convolutional networks. arXiv preprint

https://doi.org/10.1016/j.mex.2023.102157
https://doi.org/10.1016/j.mex.2023.102157
https://doi.org/10.1016/j.mex.2023.102157
C:\Users\admin\Downloads\10.3389\fncom.2021.627567
C:\Users\admin\Downloads\10.3389\fncom.2021.627567
C:\Users\admin\Downloads\10.3389\fncom.2021.627567
C:\Users\admin\Downloads\10.3389\fncom.2021.627567
https://link.springer.com/article/10.1007/s12021-019-09424-z
https://link.springer.com/article/10.1007/s12021-019-09424-z
https://link.springer.com/article/10.1007/s12021-019-09424-z
https://proceedings.neurips.cc/paper/2021/hash/c4ca4238a0b923820dcc509a6f75849b-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c4ca4238a0b923820dcc509a6f75849b-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c4ca4238a0b923820dcc509a6f75849b-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c4ca4238a0b923820dcc509a6f75849b-Abstract.html
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1109/JPROC.2021.3067593
https://iopscience.iop.org/article/10.1088/2634-4386/ac97bb/meta
https://iopscience.iop.org/article/10.1088/2634-4386/ac97bb/meta
https://iopscience.iop.org/article/10.1088/2634-4386/ac97bb/meta
https://arxiv.org/abs/2205.02767
https://arxiv.org/abs/2205.02767

Volume 2 | Issue 3 | 7Eng OA, 2024

Copyright: ©2024 Fabiha Anan, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

https://opastpublishers.com

arXiv:2205.02767.
8.	 Zhang, D., Jia, S., & Wang, Q. (2022). Recent advances and

new frontiers in spiking neural networks. arXiv preprint
arXiv:2204.07050.

9.	 Hao, Y., Huang, X., Dong, M., & Xu, B. (2020). A biologically
plausible supervised learning method for spiking neural
networks using the symmetric STDP rule. Neural Networks,
121, 387-395.

10.	 Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A., &
Masquelier, T. (2019). Spyketorch: Efficient simulation of
convolutional spiking neural networks with at most one spike
per neuron. Frontiers in neuroscience, 13, 457850.

11.	 Zhang, D., Zhang, T., Jia, S., Cheng, X., & Xu, B. (2021).
Population-coding and dynamic-neurons improved spiking
actor network for reinforcement learning. arXiv preprint
arXiv:2106.07854.

12.	 Hu, Y., Tang, H., & Pan, G. (2021). Spiking deep residual
networks. IEEE Transactions on Neural Networks and
Learning Systems, 34(8), 5200-5205.

13.	 Migliore, M., Cannia, C., Lytton, W. W., Markram, H., &
Hines, M. L. (2006). Parallel network simulations with
NEURON. Journal of computational neuroscience, 21, 119-
129

14.	 Tielin	 Zhang	 and	 Hongxing	 L i u . 	
CogSNN. https://github.com/thomasaimondy/CogSNN, 2022.
Accessed:2022-05-02.

15.	 Hao, Y., Huang, X., Dong, M., & Xu, B. (2020). A biologically
plausible supervised learning method for spiking neural
networks using the symmetric STDP rule. Neural Networks,
121, 387-395.

16.	 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., ... & Chintala, S. (2019). Pytorch: An imperative
style, high-performance deep learning library. Advances in
neural information processing systems, 32.

17.	 Xiao, C., Chen, J., & Wang, L. (2022). Optimal mapping of
spiking neural network to neuromorphic hardware for edge-
AI. Sensors, 22(19), 7248.

https://arxiv.org/abs/2205.02767
https://doi.org/10.48550/arXiv.2204.07050
https://doi.org/10.48550/arXiv.2204.07050
https://doi.org/10.48550/arXiv.2204.07050
https://doi.org/10.1016/j.neunet.2019.09.007
https://doi.org/10.1016/j.neunet.2019.09.007
https://doi.org/10.1016/j.neunet.2019.09.007
https://doi.org/10.1016/j.neunet.2019.09.007
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2019.00625/full
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2019.00625/full
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2019.00625/full
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2019.00625/full
https://doi.org/10.48550/arXiv.2106.07854
https://doi.org/10.48550/arXiv.2106.07854
https://doi.org/10.48550/arXiv.2106.07854
https://doi.org/10.48550/arXiv.2106.07854
https://doi.org/10.1109/TNNLS.2021.3119238
https://doi.org/10.1109/TNNLS.2021.3119238
https://doi.org/10.1109/TNNLS.2021.3119238
https://link.springer.com/article/10.1007/s10827-006-7949-5
https://link.springer.com/article/10.1007/s10827-006-7949-5
https://link.springer.com/article/10.1007/s10827-006-7949-5
https://link.springer.com/article/10.1007/s10827-006-7949-5
D:\Engineering Journal\New folder 1\EOA-24-35\Tielin	Zhang	and	Hongxing	Liu.	CogSNN. https:\github.com\thomasaimondy\CogSNN, 2022. Accessed:2022-05-02
D:\Engineering Journal\New folder 1\EOA-24-35\Tielin	Zhang	and	Hongxing	Liu.	CogSNN. https:\github.com\thomasaimondy\CogSNN, 2022. Accessed:2022-05-02
D:\Engineering Journal\New folder 1\EOA-24-35\Tielin	Zhang	and	Hongxing	Liu.	CogSNN. https:\github.com\thomasaimondy\CogSNN, 2022. Accessed:2022-05-02
https://doi.org/10.1016/j.neunet.2019.09.007
https://doi.org/10.1016/j.neunet.2019.09.007
https://doi.org/10.1016/j.neunet.2019.09.007
https://doi.org/10.1016/j.neunet.2019.09.007
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.3390/s22197248
https://doi.org/10.3390/s22197248
https://doi.org/10.3390/s22197248

