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Abstract
Certain exact solutions of first-order ordinary differential equations naturally become corresponding solvers for simple first-
order ordinary differential equations whose form is the equality of a twice continuously differentiable function of the dependent 
variable to the derivative with respect the independent variable of the dependent variable. When the twice continuously 
differentiable function of the dependent variable is replaced by its truncated Taylor expansions through second order about its 
initial value, the resulting first-order ordinary differential equations have exact solutions that naturally become corresponding 
solvers for those simple first-order ordinary differential equations.
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1. Solvable Truncated Taylor Expansions of Simple First-Order Ordinary Differential Equations
We shall develop truncated Taylor solvers for simple first-order ordinary differential equations of the form,
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1. Solvable truncated Taylor expansions of simple first-order ordinary differential equations

We shall develop truncated Taylor solvers for simple first-order ordinary differential equations of the form,

dq/du = f(q), (1.1)

where f(q) is twice continuously differentiable, and the specified initial value of q(u) is q(ui) = qi. The first
three truncated Taylor expansions of the function f(q) about the specified initial value qi = q(ui) of q(u)
produce exactly solvable approximations to the Eq. (1.1) exact equation dq/du = f(q), which are,

dq/du ≈ f(qi), (1.2)

dq/du ≈ f(qi) + f ′(qi)(q − qi) = f ′(qi)
[
(q − qi) + (f(qi)/f

′(qi))
]
, (1.3)

and dq/du ≈ f(qi) + f ′(qi)(q − qi) +
1
2f

′′(qi)(q − qi)
2 =

1
2f

′′(qi)
[
(q − qi)

2 + 2(f ′(qi)/f
′′(qi))(q − qi) + (2f(qi)/f

′′(qi))
]
. (1.4)

2. Exact solutions of the truncated Taylor equations and the naturally corresponding solvers

The exact solution for initial value q(ui) = qi of the Eq. (1.2) truncated equation dq/du ≈ f(qi) is obviously,

q(u) = qi + f(qi)(u− ui), (2.1a)

which naturally corresponds to the following basic solver for the Eq. (1.1) exact equation dq/du = f(q),

q(ui+1) = q(ui) + f(q(ui))(ui+1 − ui), i = 0, . . . , n. (2.1b)

Assuming that f ′(qi) �= 0, we reexpress the Eq. (1.3) truncated differential equation as,

dq
/(

(q − qi) + (f(qi)/f
′(qi))

)
= f ′(qi) du, (2.2a)

which yields,

ln
(
(q(u)− qi) + (f(qi)/f

′(qi))
)
= f ′(qi)u+ ki, (2.2b)

with ki an integration constant. Since q(ui) = qi, ki = ln(f(qi)/f
′(qi))− f ′(qi)ui, so Eq. (2.2b) becomes,

ln
(
(q(u)− qi) + (f(qi)/f

′(qi))
)
= ln(f(qi)/f

′(qi)) + f ′(qi)(u− ui). (2.2c)

Exponentiating both sides of Eq. (2.2c) produces,

(q(u)− qi) + (f(qi)/f
′(qi)) = (f(qi)/f

′(qi)) exp(f
′(qi)(u− ui)), (2.2d)

so the solution with initial value q(ui) = qi of the Eq. (1.3) truncated differential equation is,

q(u) = qi + (f(qi)/f
′(qi))

[
exp(f ′(qi)(u− ui))− 1

]
, (2.2e)

which naturally corresponds to the following solver for the Eq. (1.1) exact differential equation dq/du = f(q),

q(ui+1) = q(ui) + (f(q(ui))/f
′(q(ui)))

[
exp(f ′(q(ui))(ui+1 − ui))− 1

]
, i = 0, . . . , n. (2.2f)

This more sophisticated Eq. (2.2f) solver reduces to the basic Eq. (2.1b) solver in the limit f ′(q(ui)) → 0.
Assuming that f ′′(qi) �= 0, we can reexpress the Eq. (1.4) truncated differential equation as follows,

dq
/(

(q − qi + bi)
2 +

(
ci − b2i

))
= aidu, (2.3a)

where ai
def
= 1

2f
′′(qi), bi

def
= (f ′(qi)/f

′′(qi)) and ci
def
= (2f(qi)/f

′′(qi)). When b2i < ci the left side of Eq. (2.3a)
is integrated in terms of the arctan function, but when b2i > ci, the left side of Eq. (2.3a) is integrated in
terms of the inverse of the tanh function. In the former case, integration of Eq. (2.3a) yields,
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of the function f(q) about the specied initial value qi = q(ui) of q(u) produce exactly solvable approximations to the Eq. (1.1) exact 
equation dq = du = f (q), which are,

2. Exact Solutions of the Truncated Taylor Equations and the Naturally Corresponding Solvers
The exact solution for initial value q(ui) = qi of the Eq. (1.2) truncated equation dq/du ≈ f (qi) is obviously,

which naturally corresponds to the following basic solver for the Eq. (1.1) exact equation dq = du = f (q),

Assuming that f ' (qi) ≠ 0, we reexpress the Eq. (1.3) truncated dierential equation as,
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(q(u)− qi) + (f(qi)/f
′(qi)) = (f(qi)/f

′(qi)) exp(f
′(qi)(u− ui)), (2.2d)

so the solution with initial value q(ui) = qi of the Eq. (1.3) truncated differential equation is,

q(u) = qi + (f(qi)/f
′(qi))

[
exp(f ′(qi)(u− ui))− 1

]
, (2.2e)

which naturally corresponds to the following solver for the Eq. (1.1) exact differential equation dq/du = f(q),

q(ui+1) = q(ui) + (f(q(ui))/f
′(q(ui)))

[
exp(f ′(q(ui))(ui+1 − ui))− 1

]
, i = 0, . . . , n. (2.2f)

This more sophisticated Eq. (2.2f) solver reduces to the basic Eq. (2.1b) solver in the limit f ′(q(ui)) → 0.
Assuming that f ′′(qi) �= 0, we can reexpress the Eq. (1.4) truncated differential equation as follows,

dq
/(

(q − qi + bi)
2 +

(
ci − b2i

))
= aidu, (2.3a)

where ai
def
= 1

2f
′′(qi), bi

def
= (f ′(qi)/f

′′(qi)) and ci
def
= (2f(qi)/f

′′(qi)). When b2i < ci the left side of Eq. (2.3a)
is integrated in terms of the arctan function, but when b2i > ci, the left side of Eq. (2.3a) is integrated in
terms of the inverse of the tanh function. In the former case, integration of Eq. (2.3a) yields,
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2. Exact solutions of the truncated Taylor equations and the naturally corresponding solvers

The exact solution for initial value q(ui) = qi of the Eq. (1.2) truncated equation dq/du ≈ f(qi) is obviously,

q(u) = qi + f(qi)(u− ui), (2.1a)

which naturally corresponds to the following basic solver for the Eq. (1.1) exact equation dq/du = f(q),

q(ui+1) = q(ui) + f(q(ui))(ui+1 − ui), i = 0, . . . , n. (2.1b)

Assuming that f ′(qi) �= 0, we reexpress the Eq. (1.3) truncated differential equation as,
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(q − qi) + (f(qi)/f
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)
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which yields,
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]
, i = 0, . . . , n. (2.2f)

This more sophisticated Eq. (2.2f) solver reduces to the basic Eq. (2.1b) solver in the limit f ′(q(ui)) → 0.
Assuming that f ′′(qi) �= 0, we can reexpress the Eq. (1.4) truncated differential equation as follows,
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where ai
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= (2f(qi)/f

′′(qi)). When b2i < ci the left side of Eq. (2.3a)
is integrated in terms of the arctan function, but when b2i > ci, the left side of Eq. (2.3a) is integrated in
terms of the inverse of the tanh function. In the former case, integration of Eq. (2.3a) yields,
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where ai
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terms of the inverse of the tanh function. In the former case, integration of Eq. (2.3a) yields,
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which yields,

Exponentiating both sides of Eq. (2.2c) produces,

so the solution with initial value q(ui) = qi of the Eq. (1.3) truncated dierential equation is,

which naturally corresponds to the following solver for the Eq. (1.1) exact dierential equation dq / du = f (q),

This more sophisticated Eq. (2.2f) solver reduces to the basic Eq. (2.1b) solver in the limit f ' (q(ui)) → 0.
Assuming that f ''(qi) ≠ 0, we can reexpress the Eq. (1.4) truncated dierential equation as follows,

(
arctan

(
(q(u)− qi + bi)

/√
ci − b2i

)/√
ci − b2i

)
= aiu+ ki, (2.3b)

where ki is a constant of integration. Since q(ui) = qi,

ki = −aiui +
(
arctan

(
bi

/√
ci − b2i

)/√
ci − b2i

)
, (2.3c)

which when inserted into Eq. (2.3b) yields,
(
arctan

(
(q(u)− qi + bi)

/√
ci − b2i

)/√
ci − b2i

)
= ai(u− ui) +

(
arctan

(
bi

/√
ci − b2i

)/√
ci − b2i

)
. (2.3d)

We now multiply both sides of Eq. (2.3d) by
√
ci − b2i , followed by taking the tangent of both sides of the

result, followed by multiplying both sides of that second result by
√
ci − b2i . The upshot is,

q(u) = qi − bi +
√
ci − b2i tan

(
ai(u− ui)

√
ci − b2i + arctan

(
bi

/√
ci − b2i

))
. (2.3e)

We next apply the trigonometric identity tan(θ1 + θ2) = (tan θ1 + tan θ2)/(1 − tan θ1 tan θ2) to Eq. (2.3e),
but to keep the resulting expression reasonably compact we simultaneously introduce the abbreviation,

Wi(u− ui)
def
=

(
1
/√

ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)
. (2.3f)

The upshot of the steps just described is that Eq. (2.3e) becomes,

q(u) =

qi − bi +
(((

ci − b2i
)
Wi(u− ui) + bi

)/(
1− biWi(u− ui)

))
=

qi +
((
−bi

(
1− biWi(u− ui)

)
+
(
ci − b2i

)
Wi(u− ui) + bi

)/(
1− biWi(u− ui)

))
=

qi + (ciWi(u− ui)/(1− biWi(u− ui))) =

qi +
((

ci

/√
ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)/(
1−

(
bi

/√
ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)))
. (2.3g)

Eq. (2.3g) of course is valid only if b2i < ci. However, if b2i > ci, the corresponding result is,

q(u) =

qi +
((

ci

/√
b2i − ci

)
tanh

(
ai(u− ui)

√
b2i − ci

)/(
1−

(
bi

/√
b2i − ci

)
tanh

(
ai(u− ui)

√
b2i − ci

)))
, (2.3h)

and if b2i = ci, the corresponding result is the ci → b2i limit of Eq. (2.3g) or Eq. (2.3h), which is,

q(u) =

qi + bi(aibi(u− ui)/(1− aibi(u− ui))). (2.3i)

To actually utilize Eqs. (2.3i), (2.3h) and (2.3g) as solvers for the Eq. (1.1) exact differential equation
dq/du = f(q), one must carry out extensive checks at every solving step. At each step one first checks
whether f ′′(q(ui)) = 0. If so, one checks whether f ′(q(ui)) = 0. If that is also the case, one must use the
basic Eq. (2.1b) solver for that particular step, but if f ′(q(ui)) �= 0, one may use the Eq. (2.2f) solver for

that step. If f ′′(q(ui)) �= 0, one computes a(ui)
def
= 1

2f
′′(q(ui)), b(ui)

def
= (f ′(q(ui))/f

′′(q(ui)) and c(ui)
def
=

(2f(q(ui))/f
′′(q(ui)) anew for that particular step. If (b(ui))

2 = c(ui), one uses the Eq. (2.3i) q(ui+1) as
the solver for that step, whereas if (b(ui))

2 > c(ui), one uses the Eq. (2.3h) q(ui+1) as the solver for that
step, but if (b(ui))

2 < c(ui), one uses the Eq. (2.3g) q(ui+1) as the solver for that step. The entire procedure
described in this paragraph must be repeated afresh at each and every solving step.

2
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√
ci − b2i , followed by taking the tangent of both sides of the

result, followed by multiplying both sides of that second result by
√
ci − b2i . The upshot is,

q(u) = qi − bi +
√
ci − b2i tan

(
ai(u− ui)

√
ci − b2i + arctan

(
bi

/√
ci − b2i

))
. (2.3e)

We next apply the trigonometric identity tan(θ1 + θ2) = (tan θ1 + tan θ2)/(1 − tan θ1 tan θ2) to Eq. (2.3e),
but to keep the resulting expression reasonably compact we simultaneously introduce the abbreviation,

Wi(u− ui)
def
=

(
1
/√

ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)
. (2.3f)

The upshot of the steps just described is that Eq. (2.3e) becomes,

q(u) =

qi − bi +
(((

ci − b2i
)
Wi(u− ui) + bi

)/(
1− biWi(u− ui)

))
=

qi +
((
−bi

(
1− biWi(u− ui)

)
+
(
ci − b2i

)
Wi(u− ui) + bi

)/(
1− biWi(u− ui)

))
=

qi + (ciWi(u− ui)/(1− biWi(u− ui))) =

qi +
((

ci

/√
ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)/(
1−

(
bi

/√
ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)))
. (2.3g)

Eq. (2.3g) of course is valid only if b2i < ci. However, if b2i > ci, the corresponding result is,

q(u) =

qi +
((

ci

/√
b2i − ci

)
tanh

(
ai(u− ui)

√
b2i − ci

)/(
1−

(
bi

/√
b2i − ci

)
tanh

(
ai(u− ui)

√
b2i − ci

)))
, (2.3h)

and if b2i = ci, the corresponding result is the ci → b2i limit of Eq. (2.3g) or Eq. (2.3h), which is,

q(u) =

qi + bi(aibi(u− ui)/(1− aibi(u− ui))). (2.3i)

To actually utilize Eqs. (2.3i), (2.3h) and (2.3g) as solvers for the Eq. (1.1) exact differential equation
dq/du = f(q), one must carry out extensive checks at every solving step. At each step one first checks
whether f ′′(q(ui)) = 0. If so, one checks whether f ′(q(ui)) = 0. If that is also the case, one must use the
basic Eq. (2.1b) solver for that particular step, but if f ′(q(ui)) �= 0, one may use the Eq. (2.2f) solver for

that step. If f ′′(q(ui)) �= 0, one computes a(ui)
def
= 1

2f
′′(q(ui)), b(ui)

def
= (f ′(q(ui))/f

′′(q(ui)) and c(ui)
def
=

(2f(q(ui))/f
′′(q(ui)) anew for that particular step. If (b(ui))

2 = c(ui), one uses the Eq. (2.3i) q(ui+1) as
the solver for that step, whereas if (b(ui))

2 > c(ui), one uses the Eq. (2.3h) q(ui+1) as the solver for that
step, but if (b(ui))

2 < c(ui), one uses the Eq. (2.3g) q(ui+1) as the solver for that step. The entire procedure
described in this paragraph must be repeated afresh at each and every solving step.

2

(
arctan

(
(q(u)− qi + bi)

/√
ci − b2i

)/√
ci − b2i

)
= aiu+ ki, (2.3b)

where ki is a constant of integration. Since q(ui) = qi,

ki = −aiui +
(
arctan

(
bi

/√
ci − b2i

)/√
ci − b2i

)
, (2.3c)

which when inserted into Eq. (2.3b) yields,
(
arctan

(
(q(u)− qi + bi)

/√
ci − b2i

)/√
ci − b2i

)
= ai(u− ui) +

(
arctan

(
bi

/√
ci − b2i

)/√
ci − b2i

)
. (2.3d)

We now multiply both sides of Eq. (2.3d) by
√

ci − b2i , followed by taking the tangent of both sides of the

result, followed by multiplying both sides of that second result by
√
ci − b2i . The upshot is,

q(u) = qi − bi +
√
ci − b2i tan

(
ai(u− ui)

√
ci − b2i + arctan

(
bi

/√
ci − b2i

))
. (2.3e)

We next apply the trigonometric identity tan(θ1 + θ2) = (tan θ1 + tan θ2)/(1 − tan θ1 tan θ2) to Eq. (2.3e),
but to keep the resulting expression reasonably compact we simultaneously introduce the abbreviation,

Wi(u− ui)
def
=

(
1
/√

ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)
. (2.3f)

The upshot of the steps just described is that Eq. (2.3e) becomes,

q(u) =

qi − bi +
(((

ci − b2i
)
Wi(u− ui) + bi

)/(
1− biWi(u− ui)

))
=

qi +
((
−bi

(
1− biWi(u− ui)

)
+
(
ci − b2i

)
Wi(u− ui) + bi

)/(
1− biWi(u− ui)

))
=

qi + (ciWi(u− ui)/(1− biWi(u− ui))) =

qi +
((

ci

/√
ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)/(
1−

(
bi

/√
ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)))
. (2.3g)

Eq. (2.3g) of course is valid only if b2i < ci. However, if b2i > ci, the corresponding result is,

q(u) =

qi +
((

ci

/√
b2i − ci

)
tanh

(
ai(u− ui)

√
b2i − ci

)/(
1−

(
bi

/√
b2i − ci

)
tanh

(
ai(u− ui)

√
b2i − ci

)))
, (2.3h)

and if b2i = ci, the corresponding result is the ci → b2i limit of Eq. (2.3g) or Eq. (2.3h), which is,

q(u) =

qi + bi(aibi(u− ui)/(1− aibi(u− ui))). (2.3i)

To actually utilize Eqs. (2.3i), (2.3h) and (2.3g) as solvers for the Eq. (1.1) exact differential equation
dq/du = f(q), one must carry out extensive checks at every solving step. At each step one first checks
whether f ′′(q(ui)) = 0. If so, one checks whether f ′(q(ui)) = 0. If that is also the case, one must use the
basic Eq. (2.1b) solver for that particular step, but if f ′(q(ui)) �= 0, one may use the Eq. (2.2f) solver for

that step. If f ′′(q(ui)) �= 0, one computes a(ui)
def
= 1

2f
′′(q(ui)), b(ui)

def
= (f ′(q(ui))/f

′′(q(ui)) and c(ui)
def
=

(2f(q(ui))/f
′′(q(ui)) anew for that particular step. If (b(ui))

2 = c(ui), one uses the Eq. (2.3i) q(ui+1) as
the solver for that step, whereas if (b(ui))

2 > c(ui), one uses the Eq. (2.3h) q(ui+1) as the solver for that
step, but if (b(ui))

2 < c(ui), one uses the Eq. (2.3g) q(ui+1) as the solver for that step. The entire procedure
described in this paragraph must be repeated afresh at each and every solving step.

2

(
arctan

(
(q(u)− qi + bi)

/√
ci − b2i

)/√
ci − b2i

)
= aiu+ ki, (2.3b)

where ki is a constant of integration. Since q(ui) = qi,

ki = −aiui +
(
arctan

(
bi

/√
ci − b2i

)/√
ci − b2i

)
, (2.3c)

which when inserted into Eq. (2.3b) yields,
(
arctan

(
(q(u)− qi + bi)

/√
ci − b2i

)/√
ci − b2i

)
= ai(u− ui) +

(
arctan

(
bi

/√
ci − b2i

)/√
ci − b2i

)
. (2.3d)

We now multiply both sides of Eq. (2.3d) by
√
ci − b2i , followed by taking the tangent of both sides of the

result, followed by multiplying both sides of that second result by
√
ci − b2i . The upshot is,

q(u) = qi − bi +
√
ci − b2i tan

(
ai(u− ui)

√
ci − b2i + arctan

(
bi

/√
ci − b2i

))
. (2.3e)

We next apply the trigonometric identity tan(θ1 + θ2) = (tan θ1 + tan θ2)/(1 − tan θ1 tan θ2) to Eq. (2.3e),
but to keep the resulting expression reasonably compact we simultaneously introduce the abbreviation,

Wi(u− ui)
def
=

(
1
/√

ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)
. (2.3f)

The upshot of the steps just described is that Eq. (2.3e) becomes,

q(u) =

qi − bi +
(((

ci − b2i
)
Wi(u− ui) + bi

)/(
1− biWi(u− ui)

))
=

qi +
((
−bi

(
1− biWi(u− ui)

)
+
(
ci − b2i

)
Wi(u− ui) + bi

)/(
1− biWi(u− ui)

))
=

qi + (ciWi(u− ui)/(1− biWi(u− ui))) =

qi +
((

ci

/√
ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)/(
1−

(
bi

/√
ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)))
. (2.3g)

Eq. (2.3g) of course is valid only if b2i < ci. However, if b2i > ci, the corresponding result is,

q(u) =

qi +
((

ci

/√
b2i − ci

)
tanh

(
ai(u− ui)

√
b2i − ci

)/(
1−

(
bi

/√
b2i − ci

)
tanh

(
ai(u− ui)

√
b2i − ci

)))
, (2.3h)

and if b2i = ci, the corresponding result is the ci → b2i limit of Eq. (2.3g) or Eq. (2.3h), which is,

q(u) =

qi + bi(aibi(u− ui)/(1− aibi(u− ui))). (2.3i)

To actually utilize Eqs. (2.3i), (2.3h) and (2.3g) as solvers for the Eq. (1.1) exact differential equation
dq/du = f(q), one must carry out extensive checks at every solving step. At each step one first checks
whether f ′′(q(ui)) = 0. If so, one checks whether f ′(q(ui)) = 0. If that is also the case, one must use the
basic Eq. (2.1b) solver for that particular step, but if f ′(q(ui)) �= 0, one may use the Eq. (2.2f) solver for

that step. If f ′′(q(ui)) �= 0, one computes a(ui)
def
= 1

2f
′′(q(ui)), b(ui)

def
= (f ′(q(ui))/f

′′(q(ui)) and c(ui)
def
=

(2f(q(ui))/f
′′(q(ui)) anew for that particular step. If (b(ui))

2 = c(ui), one uses the Eq. (2.3i) q(ui+1) as
the solver for that step, whereas if (b(ui))

2 > c(ui), one uses the Eq. (2.3h) q(ui+1) as the solver for that
step, but if (b(ui))

2 < c(ui), one uses the Eq. (2.3g) q(ui+1) as the solver for that step. The entire procedure
described in this paragraph must be repeated afresh at each and every solving step.

2

(
arctan

(
(q(u)− qi + bi)

/√
ci − b2i

)/√
ci − b2i

)
= aiu+ ki, (2.3b)

where ki is a constant of integration. Since q(ui) = qi,

ki = −aiui +
(
arctan

(
bi

/√
ci − b2i

)/√
ci − b2i

)
, (2.3c)

which when inserted into Eq. (2.3b) yields,
(
arctan

(
(q(u)− qi + bi)

/√
ci − b2i

)/√
ci − b2i

)
= ai(u− ui) +

(
arctan

(
bi

/√
ci − b2i

)/√
ci − b2i

)
. (2.3d)

We now multiply both sides of Eq. (2.3d) by
√
ci − b2i , followed by taking the tangent of both sides of the

result, followed by multiplying both sides of that second result by
√
ci − b2i . The upshot is,

q(u) = qi − bi +
√
ci − b2i tan

(
ai(u− ui)

√
ci − b2i + arctan

(
bi

/√
ci − b2i

))
. (2.3e)

We next apply the trigonometric identity tan(θ1 + θ2) = (tan θ1 + tan θ2)/(1 − tan θ1 tan θ2) to Eq. (2.3e),
but to keep the resulting expression reasonably compact we simultaneously introduce the abbreviation,

Wi(u− ui)
def
=

(
1
/√

ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)
. (2.3f)

The upshot of the steps just described is that Eq. (2.3e) becomes,

q(u) =

qi − bi +
(((

ci − b2i
)
Wi(u− ui) + bi

)/(
1− biWi(u− ui)

))
=

qi +
((
−bi

(
1− biWi(u− ui)

)
+
(
ci − b2i

)
Wi(u− ui) + bi

)/(
1− biWi(u− ui)

))
=

qi + (ciWi(u− ui)/(1− biWi(u− ui))) =

qi +
((

ci

/√
ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)/(
1−

(
bi

/√
ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)))
. (2.3g)

Eq. (2.3g) of course is valid only if b2i < ci. However, if b2i > ci, the corresponding result is,

q(u) =

qi +
((

ci

/√
b2i − ci

)
tanh

(
ai(u− ui)

√
b2i − ci

)/(
1−

(
bi

/√
b2i − ci

)
tanh

(
ai(u− ui)

√
b2i − ci

)))
, (2.3h)

and if b2i = ci, the corresponding result is the ci → b2i limit of Eq. (2.3g) or Eq. (2.3h), which is,

q(u) =

qi + bi(aibi(u− ui)/(1− aibi(u− ui))). (2.3i)

To actually utilize Eqs. (2.3i), (2.3h) and (2.3g) as solvers for the Eq. (1.1) exact differential equation
dq/du = f(q), one must carry out extensive checks at every solving step. At each step one first checks
whether f ′′(q(ui)) = 0. If so, one checks whether f ′(q(ui)) = 0. If that is also the case, one must use the
basic Eq. (2.1b) solver for that particular step, but if f ′(q(ui)) �= 0, one may use the Eq. (2.2f) solver for

that step. If f ′′(q(ui)) �= 0, one computes a(ui)
def
= 1

2f
′′(q(ui)), b(ui)

def
= (f ′(q(ui))/f

′′(q(ui)) and c(ui)
def
=

(2f(q(ui))/f
′′(q(ui)) anew for that particular step. If (b(ui))

2 = c(ui), one uses the Eq. (2.3i) q(ui+1) as
the solver for that step, whereas if (b(ui))

2 > c(ui), one uses the Eq. (2.3h) q(ui+1) as the solver for that
step, but if (b(ui))

2 < c(ui), one uses the Eq. (2.3g) q(ui+1) as the solver for that step. The entire procedure
described in this paragraph must be repeated afresh at each and every solving step.

2

(
arctan

(
(q(u)− qi + bi)

/√
ci − b2i

)/√
ci − b2i

)
= aiu+ ki, (2.3b)

where ki is a constant of integration. Since q(ui) = qi,

ki = −aiui +
(
arctan

(
bi

/√
ci − b2i

)/√
ci − b2i

)
, (2.3c)

which when inserted into Eq. (2.3b) yields,
(
arctan

(
(q(u)− qi + bi)

/√
ci − b2i

)/√
ci − b2i

)
= ai(u− ui) +

(
arctan

(
bi

/√
ci − b2i

)/√
ci − b2i

)
. (2.3d)

We now multiply both sides of Eq. (2.3d) by
√
ci − b2i , followed by taking the tangent of both sides of the

result, followed by multiplying both sides of that second result by
√
ci − b2i . The upshot is,

q(u) = qi − bi +
√
ci − b2i tan

(
ai(u− ui)

√
ci − b2i + arctan

(
bi

/√
ci − b2i

))
. (2.3e)

We next apply the trigonometric identity tan(θ1 + θ2) = (tan θ1 + tan θ2)/(1 − tan θ1 tan θ2) to Eq. (2.3e),
but to keep the resulting expression reasonably compact we simultaneously introduce the abbreviation,

Wi(u− ui)
def
=

(
1
/√

ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)
. (2.3f)

The upshot of the steps just described is that Eq. (2.3e) becomes,

q(u) =

qi − bi +
(((

ci − b2i
)
Wi(u− ui) + bi

)/(
1− biWi(u− ui)

))
=

qi +
((
−bi

(
1− biWi(u− ui)

)
+
(
ci − b2i

)
Wi(u− ui) + bi

)/(
1− biWi(u− ui)

))
=

qi + (ciWi(u− ui)/(1− biWi(u− ui))) =

qi +
((

ci

/√
ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)/(
1−

(
bi

/√
ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)))
. (2.3g)

Eq. (2.3g) of course is valid only if b2i < ci. However, if b2i > ci, the corresponding result is,

q(u) =

qi +
((

ci

/√
b2i − ci

)
tanh

(
ai(u− ui)

√
b2i − ci

)/(
1−

(
bi

/√
b2i − ci

)
tanh

(
ai(u− ui)

√
b2i − ci

)))
, (2.3h)

and if b2i = ci, the corresponding result is the ci → b2i limit of Eq. (2.3g) or Eq. (2.3h), which is,

q(u) =

qi + bi(aibi(u− ui)/(1− aibi(u− ui))). (2.3i)

To actually utilize Eqs. (2.3i), (2.3h) and (2.3g) as solvers for the Eq. (1.1) exact differential equation
dq/du = f(q), one must carry out extensive checks at every solving step. At each step one first checks
whether f ′′(q(ui)) = 0. If so, one checks whether f ′(q(ui)) = 0. If that is also the case, one must use the
basic Eq. (2.1b) solver for that particular step, but if f ′(q(ui)) �= 0, one may use the Eq. (2.2f) solver for

that step. If f ′′(q(ui)) �= 0, one computes a(ui)
def
= 1

2f
′′(q(ui)), b(ui)

def
= (f ′(q(ui))/f

′′(q(ui)) and c(ui)
def
=

(2f(q(ui))/f
′′(q(ui)) anew for that particular step. If (b(ui))

2 = c(ui), one uses the Eq. (2.3i) q(ui+1) as
the solver for that step, whereas if (b(ui))

2 > c(ui), one uses the Eq. (2.3h) q(ui+1) as the solver for that
step, but if (b(ui))

2 < c(ui), one uses the Eq. (2.3g) q(ui+1) as the solver for that step. The entire procedure
described in this paragraph must be repeated afresh at each and every solving step.

2

where ki is a constant of integration. Since q(ui) = qi,

which when inserted into Eq. (2.3b) yields,

The upshot of the steps just described is that Eq. (2.3e) becomes,
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(
arctan

(
(q(u)− qi + bi)

/√
ci − b2i

)/√
ci − b2i

)
= aiu+ ki, (2.3b)

where ki is a constant of integration. Since q(ui) = qi,

ki = −aiui +
(
arctan

(
bi

/√
ci − b2i

)/√
ci − b2i

)
, (2.3c)

which when inserted into Eq. (2.3b) yields,
(
arctan

(
(q(u)− qi + bi)

/√
ci − b2i

)/√
ci − b2i

)
= ai(u− ui) +

(
arctan

(
bi

/√
ci − b2i

)/√
ci − b2i

)
. (2.3d)

We now multiply both sides of Eq. (2.3d) by
√
ci − b2i , followed by taking the tangent of both sides of the

result, followed by multiplying both sides of that second result by
√
ci − b2i . The upshot is,

q(u) = qi − bi +
√
ci − b2i tan

(
ai(u− ui)

√
ci − b2i + arctan

(
bi

/√
ci − b2i

))
. (2.3e)

We next apply the trigonometric identity tan(θ1 + θ2) = (tan θ1 + tan θ2)/(1 − tan θ1 tan θ2) to Eq. (2.3e),
but to keep the resulting expression reasonably compact we simultaneously introduce the abbreviation,

Wi(u− ui)
def
=

(
1
/√

ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)
. (2.3f)

The upshot of the steps just described is that Eq. (2.3e) becomes,

q(u) =

qi − bi +
(((

ci − b2i
)
Wi(u− ui) + bi

)/(
1− biWi(u− ui)

))
=

qi +
((
−bi

(
1− biWi(u− ui)

)
+
(
ci − b2i

)
Wi(u− ui) + bi

)/(
1− biWi(u− ui)

))
=

qi + (ciWi(u− ui)/(1− biWi(u− ui))) =

qi +
((

ci

/√
ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)/(
1−

(
bi

/√
ci − b2i

)
tan

(
ai(u− ui)

√
ci − b2i

)))
. (2.3g)

Eq. (2.3g) of course is valid only if b2i < ci. However, if b2i > ci, the corresponding result is,

q(u) =

qi +
((

ci

/√
b2i − ci

)
tanh

(
ai(u− ui)

√
b2i − ci

)/(
1−

(
bi

/√
b2i − ci

)
tanh

(
ai(u− ui)

√
b2i − ci

)))
, (2.3h)

and if b2i = ci, the corresponding result is the ci → b2i limit of Eq. (2.3g) or Eq. (2.3h), which is,

q(u) =

qi + bi(aibi(u− ui)/(1− aibi(u− ui))). (2.3i)

To actually utilize Eqs. (2.3i), (2.3h) and (2.3g) as solvers for the Eq. (1.1) exact differential equation
dq/du = f(q), one must carry out extensive checks at every solving step. At each step one first checks
whether f ′′(q(ui)) = 0. If so, one checks whether f ′(q(ui)) = 0. If that is also the case, one must use the
basic Eq. (2.1b) solver for that particular step, but if f ′(q(ui)) �= 0, one may use the Eq. (2.2f) solver for

that step. If f ′′(q(ui)) �= 0, one computes a(ui)
def
= 1

2f
′′(q(ui)), b(ui)

def
= (f ′(q(ui))/f

′′(q(ui)) and c(ui)
def
=

(2f(q(ui))/f
′′(q(ui)) anew for that particular step. If (b(ui))

2 = c(ui), one uses the Eq. (2.3i) q(ui+1) as
the solver for that step, whereas if (b(ui))

2 > c(ui), one uses the Eq. (2.3h) q(ui+1) as the solver for that
step, but if (b(ui))

2 < c(ui), one uses the Eq. (2.3g) q(ui+1) as the solver for that step. The entire procedure
described in this paragraph must be repeated afresh at each and every solving step.
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(
arctan

(
(q(u)− qi + bi)

/√
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We now multiply both sides of Eq. (2.3d) by
√
ci − b2i , followed by taking the tangent of both sides of the
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√
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ci − b2i
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We next apply the trigonometric identity tan(θ1 + θ2) = (tan θ1 + tan θ2)/(1 − tan θ1 tan θ2) to Eq. (2.3e),
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ci − b2i
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=
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)/(
1− biWi(u− ui)
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√
ci − b2i
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ci − b2i
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√
ci − b2i
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def
=

(2f(q(ui))/f
′′(q(ui)) anew for that particular step. If (b(ui))

2 = c(ui), one uses the Eq. (2.3i) q(ui+1) as
the solver for that step, whereas if (b(ui))

2 > c(ui), one uses the Eq. (2.3h) q(ui+1) as the solver for that
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2 < c(ui), one uses the Eq. (2.3g) q(ui+1) as the solver for that step. The entire procedure
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