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Abstract
This article discusses the scientific feasibility of sending a man-made device to a neighboring star beyond our solar system 
with limited fuel capacity and limited travel time in deep dark space using a giant LED sail.  
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1. The Challenge 
The nearest neighboring star Proxima Centauri is 4.02×1016 m 
away, about 4 lightyears of distance.  Currently Voyager 1 is 
traveling with speed of 1.7×104 m/s (About 5.7×10-5 c, where 
c is the speed of light) from the distance of 2.35×1013 m away 
from the Sun.  After it overcomes the gravitational potential of 
the Solar system from the current position, it will have the speed 
of 1.67×104 m/s (5.58×105 c).  Assuming Voyager 1 is traveling 
straight away from the Sun with this roughly constant speed 
from its current position, it will need around 7.6×104 years to 
reach Proxima Centauri. (The lower boundary estimation will be 
7.5×104 years, using the current speed of 1.7×104 m/s. We ignore 
gravitational force from the Proxima Centauri star.)  Thus, if we 
want a spaceship to reach this star within one hundred years, we 
need to provide the spaceship with many years of continuous 
thrust from limited on board fuel mass so that it can reach a very 
high speed, close to a tenth of light speed. 
 
Since a spaceship has limited capacity to carry fuel and 
propellant, we need to find a high efficiency method of fuel usage 
to obtain propulsion for long, deep dark space travel.  Based 
on Einstein’s massenergy equation, photons can transform all 
of their energy into momentum.  Using photons to obtain thrust 
might be a plausible way to fulfill this dream.  Unlike solar sails, 

which use outside photons passively from a star we propose 
building a giant photon sail with an onboard LED photon source 
that uses energy produced by an onboard energy source, such as 
a macro nuclear fission generator [1,2].  We will discuss what 
power density of LED sail and size are required and what kind 
of energy transformation process should be considered for this 
kind of deep space travel. 
 
Basically, there are five ways to obtain thrust from working 
energy for a rocket, namely chemical reaction, fission, fusion, 
star photons, and annihilation (matter and antimatter).  Storage 
of antimatter in a real world is very difficult with today’s 
storage technology for antimatter.  It would be interesting if we 
could store positronium, and strip off the outside electrons for 
annihilation when using it.  Since e and e+ have same mass, 
the electron actually does not form an outside electron cloud, 
so it is very hard to store this fuel.  To compare the efficiency 
difference among those five processes of burning energy to 
obtain momentum, such as nuclear electric propulsion (NEP), 
nuclear thermal propulsion (NTP) [3] and chemical combustion, 
we can define an ideal up- limit pure number index of energy 
efficiency as below for comparison: 
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𝑘𝑘𝐸𝐸 = ∆𝐸𝐸
𝑚𝑚𝑐𝑐2

Equation 1 

Where ∆𝐸𝐸 = ∆𝑚𝑚𝑐𝑐2 = (𝑚𝑚 − 𝑚𝑚0)𝑐𝑐2  is the energy generated by certain method such as chemical 
combustion, atomic fusion and fission, and m is the mass involved in such processes.  Here m is the 
total special relativity mass used in the process.  If the highest ideal momentum p is what we can 
obtain from such process, then another pure number index 𝑘𝑘𝑝𝑝 is a good theoretical up-limit value to 
compare among those processes.  We define ideal an up-limit momentum efficiency index 𝑘𝑘𝑝𝑝 as  

𝑘𝑘𝑝𝑝 = 𝑝𝑝𝑐𝑐
𝑚𝑚𝑐𝑐2

Equation 2 

The index in Equation 2 will reflect the unit mass efficiency of such process that the total theoretical 
momentum a process could obtain.  Consider the Einstein mass-energy equation 

𝑚𝑚2𝑐𝑐4 = 𝑝𝑝2𝑐𝑐2 + 𝑚𝑚0
2𝑐𝑐4

Equation 3 

we could rewrite Equation 2 as   

𝑘𝑘𝑝𝑝 = √𝑘𝑘𝐸𝐸(𝑘𝑘𝐸𝐸 + 2 𝑚𝑚0
𝑚𝑚 )

Equation 4 

For a process only involves photon, since we have  𝑚𝑚𝑐𝑐2 = 𝑝𝑝𝑐𝑐, we get  𝑘𝑘𝑝𝑝 = 1 and 𝑘𝑘𝐸𝐸 = 1.  This 
would be the highest theoretical efficiency index to obtain momentum from an energy transformation 
process.  For none-photon process, only when 𝑚𝑚0 → 0 or 𝑚𝑚 → ∞, which means 𝑢𝑢 = 𝑣𝑣/𝑐𝑐 → 1,  that the 
propellant mass ejected from nozzle must have the speed of light or it is the photons that we could get  
𝑘𝑘𝐸𝐸 = 1 and 𝑘𝑘𝑝𝑝 = 1.  That is the reason we want to use photon for the thrust.  

 

Let us look at LH2 and LO2 combustion.  One mole 𝐻𝐻2 can produce 241.8 kJ.  The chemical reaction is  

2𝐻𝐻2 + 𝑂𝑂2 → 2𝐻𝐻2𝑂𝑂
Equation 5 

One mole of  𝐻𝐻2 and half mole of 𝑂𝑂2 produces 241.8 kJ.  The maximum theoretical efficiency index is 
𝑘𝑘𝐸𝐸 = ∆𝐸𝐸

𝑚𝑚𝑐𝑐2 = 4.85 × 10−14 .  So, the highest theoretical 𝑘𝑘𝑝𝑝~√2𝑘𝑘𝐸𝐸 = 3.11 × 10−7.  For fission of U235, 
it releases 83.14 TJ/kg.  So 𝑘𝑘𝐸𝐸 = 9.26 × 10−4 and 𝑘𝑘𝑝𝑝 = 4.30 × 10−2.  For deuterium-tritium fusion, 
we estimate that 𝑘𝑘𝐸𝐸 = 9.41 × 10−3 and 𝑘𝑘𝑝𝑝 = 1.37 × 10−1. 
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Where Δ𝐸=Δ𝑚𝑐2=(𝑚−𝑚0)𝑐2 is the energy generated by certain 
method such as chemical combustion, atomic fusion and fission, 
and m is the mass involved in such processes. Here m is the 
total special relativity mass used in the process. If the highest 

ideal momentum p is what we can obtain from such process, 
then another pure number index 𝑘𝑝 is a good theoretical up-limit 
value to compare among those processes. We define ideal an up-
limit momentum efficiency index 𝑘𝑝 as
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The index in Equation 2 will reflect the unit mass efficiency of such process that the total theoretical momentum a process could 
obtain. Consider the Einstein mass-energy equation
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Table 1   Ideal up limit pure number index of energy and momentum of different processes 

The total efficiency index 𝑘𝑘𝐸𝐸  with multiple processes such as NTP or NEP involving burning fuel, 
producing ions, and accelerating propellant etc. will be much smaller than the theoretical one and a 
final index would be in the form as k=k1k2…kn. 

 

For nuclear fission rocket engine, the energy will be used to heat up propellant mass to be ejected or 
the energy will be converted into electric-magnetic energy to accelerate ions ejected from nozzle to 
obtain momentum [4], [5], [6], [7], [8].  NTP heats the hydrogen atom and NEP accelerates ion to be 
ejected out of the nozzle to obtain the thrust.  The reason using hydrogen is it has the smallest mass of 
one mole number.  On the other hand, using LED to emit the lightest propellant, the photon, for thrust 
and it needs no propellant mass.  The longer the journey is the better off the LED sail is.  It is 
reasonable to assume that overall efficiency indexes of NTP or NEP nuclear rocket engines are smaller 
than that of lighting LED. 

 

Although laser emits energy beam (photons) in one direction, unlike high efficiency commercial 
available LED, which no cooling or fan system is needed [9], [10], [11], a laser system needs cooling 
system, energy pumping apparatus etc. so that overall efficiency, as so-called Wall-Plug Efficiency 
(WPE) is less than that of LED.   

 

2. Efficiency Index of LED Sail Design 
To maximize LED efficient, we need to reflect the photons emitted from LED to one direction, namely 
z direction.    Below are two mirror formations as shown in Figure 1 and Figure 2.  In Figure 1 the 
LED and wires are integrated into base materials.  Figure 2 has an LED mounted on a cylinder within a 
parabolic mirror.  The second structure is easier to repair should the LED go bad during a long travel.  
But its structure could be heavier.  A set of panels, forming a giant junk sail, mounted with a large 
array of such LED cells could provide the thrust.   Other design could use polymer panels and long 
strips of LED light in the center of each panel to forming the giant junk sail.  Coated the sail panel with 
reflective grate strip film with saw like grate will have better reflection effect.  Or to control the sail 
panel to have a two dimensional parabolic curvature.  Or simply to make the sail panels as giant LED 
light panels.  
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up propellant mass to be ejected or the energy will be converted 
into electric-magnetic energy to accelerate ions ejected from 
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Although laser emits energy beam (photons) in one direction, 
unlike high efficiency commercial available LED, which no 
cooling or fan system is needed [9], [10], [11], a laser system 
needs cooling system, energy pumping apparatus etc. so that 
overall efficiency, as so-called Wall-Plug Efficiency (WPE) is 
less than that of LED.

2. Efficiency Index of LED Sail Design 
To maximize LED efficient, we need to reflect the photons 
emitted from LED to one direction, namely z direction.    Below 
are two mirror formations as shown in Figure 1 and Figure 2.  In 
Figure 1 the LED and wires are integrated into base materials.  
Figure 2 has an LED mounted on a cylinder within a parabolic 
mirror.  The second structure is easier to repair should the LED 
go bad during a long travel.  But its structure could be heavier.  
A set of panels, forming a giant junk sail, mounted with a large 
array of such LED cells could provide the thrust.   Other design 
could use polymer panels and long strips of LED light in the 
center of each panel to forming the giant junk sail.  Coated the 
sail panel with reflective grate strip film with saw like grate will 
have better reflection effect.  Or to control the sail panel to have 
a two dimensional parabolic curvature.  Or simply to make the 
sail panels as giant LED light panels.  
 
Let us try a simple structure in Figure 2 and calculate the 
theoretical reflection index. For the simplicity we assume the 
LED is a ball and the mounting rod is very thin so its geographic 
size could be ignored.  So that the phones reflected at the very 
bottom point of the mirror cold be ignored. 
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Figure 1  A parabolic reflect mirror cell with LED light source, similar to the hand light.  The focal point O is the LED bulb inside 
the cell. 

 
Figure 2  Parabolic mirror with ane LED bulb at the focal point.  
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Figure 2. Parabolic mirror with ane LED bulb at the focal point. 4 
 

 
Figure 3 Three dimension view of a parabolic mirror cell  with an LED in the focal point  

 

Figure 4.  Long reflection film with parabolic shape controlled by memorized end-edge 
wire, or coated with grate strip to reflect more photon in z direction 

 

For simplicity we denote light speed c=1 to simplify discussion. O is the light source, which can emit 
energy E per second uniformly.  Angle∠𝐴𝐴𝐴𝐴𝐴𝐴 = 𝜃𝜃.   Angle  𝜃𝜃0 is the angle as shown in Figure 2 
connected from the mirror edge to the focal point.  For those photons with angle less than  𝜃𝜃0 , the total 
momentum the light bulb could obtain at Z direction, is 

𝑃𝑃𝑎𝑎 = 𝐸𝐸
4 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜃𝜃0)

Equation 6

Now we will calculate those photons contribution with angle larger than 𝜃𝜃0.    Let us assuming the 
mirror is perfect, and the reflection factor is 1.  There are two parts forces, one acts on the LED ball 
and other one acts on the mirror and reflected at Z direction.  The total effective momentum the cell 
obtains at Z direction after integration for all the beam for all angle 𝜃𝜃 larger than  𝜃𝜃0  we have 

 𝑃𝑃𝑏𝑏 = 𝐸𝐸
2 (1 + 𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃0)

Equation 7 

Figure 3. Three dimension view of a parabolic mirror cell with an LED in the focal point 
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megawatts giant LED.  With a factor of 25% effective photon emitted in z direction, it provides 9.0 
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website [13] stated that it has a capacity of 1 to 50 megawatts, and the EU website [14] reported that it 
has a capacity of 1 to 20 megawatts.  Their size is close to a shipping container.  So, this LED sail 
power level is achievable with today’s technology.  Although further discussion of fuel mass to 
spaceship mass ratio would require much more power of the LED sail and higher fuel momentum 
index.  It is worth for further detailed technology analysis. 
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be 75%. As a whole system efficiency rate, the total rate will 
combine with electricity to light efficiency of the LED bulb. 
People often use overall wall plug efficiency (WPE). Current 
WPE of a cool light LED so far is 18%. So, in real world the 

up limit overall efficiency index of LED cell today would be 
0.75×0.18=0.135 for 𝜃0=𝜋/2. The area for improvement would 
be to improve WPE and the reflection index of the mirror surface

Thus, a photon sail thrust of parabolic mirror cell will be 
calculated by

Where S is the sail panel size, D is disc compact factor of cell 
array, C is one cell size, W is one LED bulb power, and F is the 
index calculated by Equation 8. For a sail size as 400 m2, cell 
size as r=1 cm, LED power as 1 watt, disc compact factor [12] as 
80%. And F=0.7 with 𝜃0=0.5𝜋 and k=0.94. We can get that there 
will be total of 1.02×106 cells, consuming 1.02 Megawatts. The 
sail power is 0.717 Megawatts. Roughly it is 962 horsepower. 
If WPE is 20%, it needs a 5.09 Megawatts generator. Another 

simple design is to coat whole sail panel with LED material and 
make the sail as a giant LED light panel and at the edge with 
some reflection mirror curtain.

Commercially available 18 watts LED has a 7x7 mm2 base. Thus, 
a 100 m2 sail will become a 36.7 megawatts giant LED. With a 
factor of 25% effective photon emitted in z direction, it provides 
9.0 megawatts thrust or nearly 12 k HP. Total power needed is 
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184 megawatts if WPE is 20%. INL website [13] stated that it 
has a capacity of 1 to 50 megawatts, and the EU website [14] 
reported that it has a capacity of 1 to 20 megawatts. Their size 
is close to a shipping container. So, this LED sail power level is 
achievable with today’s technology. Although further discussion 
of fuel mass to spaceship mass ratio would require much more 
power of the LED sail and higher fuel momentum index. It is 
worth for further detailed technology analysis.

Solar photon force near earth orbit is about 1.0×10−5𝑁/𝑚2 using 
average wavelength as 550 nm and average sun photon flux 
as 3.77×1021 𝑠−1𝑚−2. For a commercial LED of only 18 watts 
on a 7 (mm)2 base, and with 25% of z reflection factor, it is 
equivalent to 3.05×10−4𝑁/𝑚2, about 30 times of that of solar 
photon pressure near the earth orbit. The power of LED and the 
size of sail can be increased to meet the needs of a reasonable 
mass spaceship.

For sail with reflecting mirror, a challenging is to find a mirror 
material which can resist the heat of high-power photon beam in 
a high vacuum environment. It needs to disperse a huge amount 
of heat to vacuum space should a sail mirror absorb single digit 
percentage of photon energy. For a giant LED sail without mirror, 
the heat produced by LED base still is a challenging problem. To 
disperse the heat from LED base into a vacuum environment 
will be an engineering challenging task.

3. Travel Time Estimation 
Einstein special relativity theory between force f, mass m and 
acceleration a is a well-known equation [15] when we only 
consider one-dimensional movement.  A simplified approach 
is that we can ignore the fission mass loss comparing to the 
spaceship mass, and we can treat the spaceship mass as a 
constant.  Although this may not be valid if huge energy is 
needed for a long distance travel [26-30].   
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Equation 14 
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Where we denote c=1, 𝑢=𝑣/𝑐 ,and 𝛾−1=√1−𝑢2 . When only consider the fourth-dimension variant t:

Thus, we can do integral of this deferential equation:

and we have

Here T is the total acceleration time. When v/c or 𝑓𝑇/(𝑚𝑐) 
is a very small value, above equation become Newtonian one 
as 𝑣=𝑎𝑇+𝑣0=𝑓𝑇/𝑚+𝑣0. If an LED sail can provide a constant 
1.0×103 Newton force, we can calculate total travel time to 
Proxima Centauri star for a 104 kg mass spaceship in Table 2. 
Due to deceleration at the destination, there is an optimal overall 
travel time depends on total acceleration time. For 12 years of 
acceleration, the spaceship will take 46 years to reach Proxima 

Centauri. Again, for a very long trip assuming spaceship mass is 
a constant and ignoring the fuel mass change will not be valid 
since it needs a large amount of fuel mass. We will discuss a 
constant power case next.

For high-speed travel, we should assume the power 𝑤 provided 
by sail is a constant instead of the constant force. Special 
relativity would be
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1.0× 103 Newton force, we can calculate total travel time to Proxima Centauri star for a 104 kg mass 
spaceship in Table 2.  

𝑤𝑤
.  Special relativity would be 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =

𝑤𝑤
𝑚𝑚𝑐𝑐2𝑑𝑑 (1 − 𝑑𝑑2)3/2

Equation 15 

We got an energy conservative equation at the condition of spaceship mass as a constant.

𝑤𝑤𝑤𝑤 =
𝑚𝑚𝑐𝑐2

√1 − 𝑑𝑑2
−

𝑚𝑚𝑐𝑐2

√1 − 𝑑𝑑02

Equation 16 

𝑑𝑑 = √1 − 𝑚𝑚2𝑐𝑐4(1 − 𝑑𝑑02)
(𝑤𝑤𝑤𝑤√1 − 𝑑𝑑02 + 𝑚𝑚𝑐𝑐2)2

Equation 17 

Assuming the spaceship needs deceleration when approach the destination, from the chart of Figure 6, 
if the spaceship undergoes around 20 years of acceleration, it will take about 375 years to reach 
Proxima Centauri. 

We got an energy conservative equation at the condition of spaceship mass as a constant.
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Table 2   Total travel time with different acceleration time 

 

Table 2: Total travel time with different acceleration time
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Figure 5   Total travel time to Proxima Centauries with thrust force of  1 × 103 N in the phases of acceleration 
and deceleration.  

 
Figure 6   Total travel time to Proxima Centauries for a spaceship with constant sail LED power with the phases of 
acceleration and deceleration.  
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Figure 5: Total travel time to Proxima Centauries with thrust force of 1 ×103 N in the phases of acceleration and deceleration.

Figure 6: Total travel time to Proxima Centauries for a spaceship with constant sail LED power with the phases of acceleration and 
deceleration.

4. Fuel Mass Estimation
A reasonable simplification is to assume that it is a one-
dimensional movement for a long-distance travel and the 
rate of burning mass is a constant during the acceleration 
and deceleration phases. From the earth observer the mass of 
spaceship is 𝑚𝑠 The efficiency ratio is k to obtain the momentum 

from the energy by an engine to burning the mass so 𝑑𝑝 =−𝑘𝑑𝑚. 
Initial speed is 𝑢0=𝑣0/𝑐. At the end of acceleration phase the 
speed is 𝑢1 = 𝑣1/𝑐, the acceleration time is t, and total used up 
fuel mass is 𝑚𝑎. Using special relativity momentum equation 
and taking derivative of it we got those equations below.
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𝑚𝑚𝑎𝑎.  Using special relativity momentum equation and taking derivative of it we got those equations 
below.   

𝑑𝑑𝑑𝑑 =  𝑚𝑚𝑑𝑑𝑢𝑢
(1 − 𝑢𝑢2)3/2 + 𝑢𝑢𝑑𝑑𝑚𝑚

(1 − 𝑢𝑢2)1/2

Equation 18 

𝑑𝑑𝑑𝑑√1 − 𝑢𝑢2 − 𝑢𝑢𝑑𝑑𝑚𝑚 =  𝑚𝑚𝑑𝑑𝑢𝑢
(1 − 𝑢𝑢2)

Equation 19 

For acceleration 𝑑𝑑𝑑𝑑 = −𝑘𝑘𝑑𝑑𝑚𝑚  

𝑑𝑑𝑚𝑚
𝑚𝑚 = −𝑑𝑑𝑢𝑢

(1 − 𝑢𝑢2)(𝑢𝑢 + 𝑘𝑘√1 − 𝑢𝑢2)
 

Equation 20 

thus, we have 

𝑙𝑙𝑙𝑙  (1 + 𝑚𝑚𝑎𝑎
𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑑𝑑

)  = ∫ 𝑑𝑑𝑢𝑢
(1 − 𝑢𝑢2)(𝑢𝑢 + 𝑘𝑘√1 − 𝑢𝑢2)

𝑢𝑢1

𝑢𝑢0

Equation 21 

and 

𝑚𝑚𝑎𝑎
𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑑𝑑

=

𝑢𝑢1
√1 − 𝑢𝑢12 − 𝑢𝑢0

√1 − 𝑢𝑢02

𝑘𝑘 + 𝑢𝑢0
√1 − 𝑢𝑢02

Equation 22 

Where 𝑚𝑚𝑑𝑑 is the fuel mass for deceleration phase. For deceleration 𝑑𝑑𝑑𝑑 = 𝑘𝑘𝑑𝑑𝑚𝑚  the equation will be: 

(𝑘𝑘 − 𝑢𝑢
√1 − 𝑢𝑢2

) 𝑑𝑑𝑚𝑚 =  𝑚𝑚𝑑𝑑𝑢𝑢
(1 − 𝑢𝑢2)3/2

Equation 23 
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the earth observer the mass of spaceship is 𝑚𝑚𝑠𝑠  The efficiency ratio is k to obtain the momentum from 
the energy by an engine to burning the mass so 𝑑𝑑𝑑𝑑 = −𝑘𝑘𝑑𝑑𝑚𝑚.   Initial speed is 𝑢𝑢0 = 𝑣𝑣0/𝑐𝑐.  At the end 
of acceleration phase the speed is 𝑢𝑢1 = 𝑣𝑣1/𝑐𝑐, the acceleration time is t, and total used up fuel mass is 
𝑚𝑚𝑎𝑎.  Using special relativity momentum equation and taking derivative of it we got those equations 
below.   

𝑑𝑑𝑑𝑑 =  𝑚𝑚𝑑𝑑𝑢𝑢
(1 − 𝑢𝑢2)3/2 + 𝑢𝑢𝑑𝑑𝑚𝑚

(1 − 𝑢𝑢2)1/2

Equation 18 

𝑑𝑑𝑑𝑑√1 − 𝑢𝑢2 − 𝑢𝑢𝑑𝑑𝑚𝑚 =  𝑚𝑚𝑑𝑑𝑢𝑢
(1 − 𝑢𝑢2)

Equation 19 

For acceleration 𝑑𝑑𝑑𝑑 = −𝑘𝑘𝑑𝑑𝑚𝑚  

𝑑𝑑𝑚𝑚
𝑚𝑚 = −𝑑𝑑𝑢𝑢

(1 − 𝑢𝑢2)(𝑢𝑢 + 𝑘𝑘√1 − 𝑢𝑢2)
 

Equation 20 

thus, we have 

𝑙𝑙𝑙𝑙  (1 + 𝑚𝑚𝑎𝑎
𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑑𝑑

)  = ∫ 𝑑𝑑𝑢𝑢
(1 − 𝑢𝑢2)(𝑢𝑢 + 𝑘𝑘√1 − 𝑢𝑢2)

𝑢𝑢1

𝑢𝑢0

Equation 21 

and 

𝑚𝑚𝑎𝑎
𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑑𝑑

=

𝑢𝑢1
√1 − 𝑢𝑢12 − 𝑢𝑢0

√1 − 𝑢𝑢02

𝑘𝑘 + 𝑢𝑢0
√1 − 𝑢𝑢02

Equation 22 

Where 𝑚𝑚𝑑𝑑 is the fuel mass for deceleration phase. For deceleration 𝑑𝑑𝑑𝑑 = 𝑘𝑘𝑑𝑑𝑚𝑚  the equation will be: 

(𝑘𝑘 − 𝑢𝑢
√1 − 𝑢𝑢2

) 𝑑𝑑𝑚𝑚 =  𝑚𝑚𝑑𝑑𝑢𝑢
(1 − 𝑢𝑢2)3/2

Equation 23 

For acceleration 𝑑𝑝=−𝑘𝑑𝑚

thus, we have

and

Where 𝑚𝑑 is the fuel mass for deceleration phase. For deceleration 𝑑𝑝=𝑘𝑑𝑚 the equation will be:

Since dm<0 and du<0 so we have the constrain condition as 
(𝑘−𝑢1/√1−𝑢1

2)>0. This is understandable that from the earth 
observer, only when a mass traveling fast than u from the 
spaceship could it reduce the speed of the spaceship. Since 𝑘<1 
so (𝑘−𝑢1/√1−𝑢1

2)<1. The relationship of k and 𝑢1 is decided by 

acceleration phase. Thus, in this case u has an up limit due to the 
efficiency index of k. For example, if we do not dump used fuel 
for U235 fission energy, since k=0.043, we have 𝑢1< 0.04296 of 
speed of light.
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Since dm<0 and du<0 so we have the constrain condition as (𝑘𝑘 − 𝑢𝑢1/√1 − 𝑢𝑢12) > 0.  This is 
understandable that from the earth observer, only when a mass traveling fast than u from the spaceship 
could it reduce the speed of the spaceship.  Since 𝑘𝑘 < 1 so (𝑘𝑘 − 𝑢𝑢1/√1 − 𝑢𝑢12) < 1.  The relationship 
of k and 𝑢𝑢1 is decided by acceleration phase.    Thus, in this case u has an up limit due to the efficiency 
index of k.  For example, if we do not dump used fuel for U235 fission energy, since k=0.043, we have 
𝑢𝑢1< 0.04296 of speed of light. 

𝑑𝑑𝑚𝑚
𝑚𝑚 =  𝑑𝑑𝑢𝑢

(1 − 𝑢𝑢2)(𝑘𝑘√1 − 𝑢𝑢2 − 𝑢𝑢)
Equation 24 

𝑚𝑚𝑑𝑑
𝑚𝑚𝑠𝑠

=

𝑢𝑢1
√1 − 𝑢𝑢12 − 𝑢𝑢0

√1 − 𝑢𝑢02

𝑘𝑘 − 𝑢𝑢1
√1 − 𝑢𝑢12

Equation 25 

Thus, the total fuel mass is 𝑚𝑚𝑓𝑓 =  𝑚𝑚𝑎𝑎 +  𝑚𝑚𝑑𝑑. 

𝑚𝑚𝑓𝑓
𝑚𝑚𝑠𝑠

=
2𝑘𝑘( 𝑢𝑢1

√1 − 𝑢𝑢12 − 𝑢𝑢0
√1 − 𝑢𝑢02)

(𝑘𝑘 − 𝑢𝑢1
√1 − 𝑢𝑢12)(𝑘𝑘 + 𝑢𝑢0

√1 − 𝑢𝑢02)

Equation 26 

We need reconsider the Equation 19 to calculate the fuel mass for the case of dumping used fuel with 
speed of 𝑢𝑢′ with the momentum 𝑝𝑝′ (where dm <0).  From the observer of earth coordinate, in this case 
assume the dm<0.  At time t, the spaceship has mass m, speed u and momentum p.  At t+dt, they are 
m+dm, u+du, p+dp, and dumped used fuel as dm with speed 𝑢𝑢′ relative to earth observer.  The energy 
used for reducing the momentum so 𝑑𝑑𝑝𝑝 =  −𝑘𝑘𝑑𝑑𝑚𝑚 > 0 for acceleration, and 𝑑𝑑𝑝𝑝 =  𝑘𝑘𝑑𝑑𝑚𝑚 < 0 for 
deceleration.  Using special relativity momentum equation, we have  

𝑝𝑝(𝑡𝑡 + 𝑑𝑑𝑡𝑡) − 𝑝𝑝(𝑡𝑡) = 𝑚𝑚𝑑𝑑𝑢𝑢
(1 − 𝑢𝑢2)3/2 + 𝑢𝑢𝑑𝑑𝑚𝑚

(1 − 𝑢𝑢2)1/2 + 𝑑𝑑𝑝𝑝′

Equation 27 

(𝑑𝑑𝑝𝑝 − 𝑑𝑑𝑝𝑝′)√1 − 𝑢𝑢2 − 𝑢𝑢𝑑𝑑𝑚𝑚 =  𝑚𝑚𝑑𝑑𝑢𝑢
1 − 𝑢𝑢2

Equation 28 

Where dm<0 and u’>0, so dp’>0, assume its velocity in earth coordinate is 𝑢𝑢′ 

𝑑𝑑𝑝𝑝′ = −𝑢𝑢′𝑑𝑑𝑚𝑚
√1 − 𝑢𝑢′2
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Since dm<0 and du<0 so we have the constrain condition as (𝑘𝑘 − 𝑢𝑢1/√1 − 𝑢𝑢12) > 0.  This is 
understandable that from the earth observer, only when a mass traveling fast than u from the spaceship 
could it reduce the speed of the spaceship.  Since 𝑘𝑘 < 1 so (𝑘𝑘 − 𝑢𝑢1/√1 − 𝑢𝑢12) < 1.  The relationship 
of k and 𝑢𝑢1 is decided by acceleration phase.    Thus, in this case u has an up limit due to the efficiency 
index of k.  For example, if we do not dump used fuel for U235 fission energy, since k=0.043, we have 
𝑢𝑢1< 0.04296 of speed of light. 

𝑑𝑑𝑚𝑚
𝑚𝑚 =  𝑑𝑑𝑢𝑢

(1 − 𝑢𝑢2)(𝑘𝑘√1 − 𝑢𝑢2 − 𝑢𝑢)
Equation 24 

𝑚𝑚𝑑𝑑
𝑚𝑚𝑠𝑠

=

𝑢𝑢1
√1 − 𝑢𝑢12 − 𝑢𝑢0

√1 − 𝑢𝑢02

𝑘𝑘 − 𝑢𝑢1
√1 − 𝑢𝑢12

Equation 25 

Thus, the total fuel mass is 𝑚𝑚𝑓𝑓 =  𝑚𝑚𝑎𝑎 +  𝑚𝑚𝑑𝑑. 

𝑚𝑚𝑓𝑓
𝑚𝑚𝑠𝑠

=
2𝑘𝑘( 𝑢𝑢1

√1 − 𝑢𝑢12 − 𝑢𝑢0
√1 − 𝑢𝑢02)

(𝑘𝑘 − 𝑢𝑢1
√1 − 𝑢𝑢12)(𝑘𝑘 + 𝑢𝑢0

√1 − 𝑢𝑢02)

Equation 26 

We need reconsider the Equation 19 to calculate the fuel mass for the case of dumping used fuel with 
speed of 𝑢𝑢′ with the momentum 𝑝𝑝′ (where dm <0).  From the observer of earth coordinate, in this case 
assume the dm<0.  At time t, the spaceship has mass m, speed u and momentum p.  At t+dt, they are 
m+dm, u+du, p+dp, and dumped used fuel as dm with speed 𝑢𝑢′ relative to earth observer.  The energy 
used for reducing the momentum so 𝑑𝑑𝑝𝑝 =  −𝑘𝑘𝑑𝑑𝑚𝑚 > 0 for acceleration, and 𝑑𝑑𝑝𝑝 =  𝑘𝑘𝑑𝑑𝑚𝑚 < 0 for 
deceleration.  Using special relativity momentum equation, we have  

𝑝𝑝(𝑡𝑡 + 𝑑𝑑𝑡𝑡) − 𝑝𝑝(𝑡𝑡) = 𝑚𝑚𝑑𝑑𝑢𝑢
(1 − 𝑢𝑢2)3/2 + 𝑢𝑢𝑑𝑑𝑚𝑚

(1 − 𝑢𝑢2)1/2 + 𝑑𝑑𝑝𝑝′

Equation 27 

(𝑑𝑑𝑝𝑝 − 𝑑𝑑𝑝𝑝′)√1 − 𝑢𝑢2 − 𝑢𝑢𝑑𝑑𝑚𝑚 =  𝑚𝑚𝑑𝑑𝑢𝑢
1 − 𝑢𝑢2

Equation 28 

Where dm<0 and u’>0, so dp’>0, assume its velocity in earth coordinate is 𝑢𝑢′ 

𝑑𝑑𝑝𝑝′ = −𝑢𝑢′𝑑𝑑𝑚𝑚
√1 − 𝑢𝑢′2

Thus, the total fuel mass is 𝑚𝑓= 𝑚𝑎 + 𝑚𝑑.
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We need reconsider the Equation 19 to calculate the fuel 
mass for the case of dumping used fuel with speed of 𝑢′ 
with the momentum 𝑝′ (where dm <0). From the observer of 
earth coordinate, in this case assume the dm<0. At time t, the 
spaceship has mass m, speed u and momentum p. At t+dt, they 

are m+dm, u+du, p+dp, and dumped used fuel as dm with speed 
𝑢′ relative to earth observer. The energy used for reducing the 
momentum so 𝑑𝑝= −𝑘𝑑𝑚>0 for acceleration, and 𝑑𝑝= 𝑘𝑑𝑚<0 
for deceleration. Using special relativity momentum equation, 
we have
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Since dm<0 and du<0 so we have the constrain condition as (𝑘𝑘 − 𝑢𝑢1/√1 − 𝑢𝑢12) > 0.  This is 
understandable that from the earth observer, only when a mass traveling fast than u from the spaceship 
could it reduce the speed of the spaceship.  Since 𝑘𝑘 < 1 so (𝑘𝑘 − 𝑢𝑢1/√1 − 𝑢𝑢12) < 1.  The relationship 
of k and 𝑢𝑢1 is decided by acceleration phase.    Thus, in this case u has an up limit due to the efficiency 
index of k.  For example, if we do not dump used fuel for U235 fission energy, since k=0.043, we have 
𝑢𝑢1< 0.04296 of speed of light. 

𝑑𝑑𝑚𝑚
𝑚𝑚 =  𝑑𝑑𝑢𝑢

(1 − 𝑢𝑢2)(𝑘𝑘√1 − 𝑢𝑢2 − 𝑢𝑢)
Equation 24 

𝑚𝑚𝑑𝑑
𝑚𝑚𝑠𝑠

=

𝑢𝑢1
√1 − 𝑢𝑢12 − 𝑢𝑢0

√1 − 𝑢𝑢02

𝑘𝑘 − 𝑢𝑢1
√1 − 𝑢𝑢12

Equation 25 

Thus, the total fuel mass is 𝑚𝑚𝑓𝑓 =  𝑚𝑚𝑎𝑎 +  𝑚𝑚𝑑𝑑. 

𝑚𝑚𝑓𝑓
𝑚𝑚𝑠𝑠

=
2𝑘𝑘( 𝑢𝑢1

√1 − 𝑢𝑢12 − 𝑢𝑢0
√1 − 𝑢𝑢02)

(𝑘𝑘 − 𝑢𝑢1
√1 − 𝑢𝑢12)(𝑘𝑘 + 𝑢𝑢0

√1 − 𝑢𝑢02)

Equation 26 

We need reconsider the Equation 19 to calculate the fuel mass for the case of dumping used fuel with 
speed of 𝑢𝑢′ with the momentum 𝑝𝑝′ (where dm <0).  From the observer of earth coordinate, in this case 
assume the dm<0.  At time t, the spaceship has mass m, speed u and momentum p.  At t+dt, they are 
m+dm, u+du, p+dp, and dumped used fuel as dm with speed 𝑢𝑢′ relative to earth observer.  The energy 
used for reducing the momentum so 𝑑𝑑𝑝𝑝 =  −𝑘𝑘𝑑𝑑𝑚𝑚 > 0 for acceleration, and 𝑑𝑑𝑝𝑝 =  𝑘𝑘𝑑𝑑𝑚𝑚 < 0 for 
deceleration.  Using special relativity momentum equation, we have  

𝑝𝑝(𝑡𝑡 + 𝑑𝑑𝑡𝑡) − 𝑝𝑝(𝑡𝑡) = 𝑚𝑚𝑑𝑑𝑢𝑢
(1 − 𝑢𝑢2)3/2 + 𝑢𝑢𝑑𝑑𝑚𝑚

(1 − 𝑢𝑢2)1/2 + 𝑑𝑑𝑝𝑝′

Equation 27 

(𝑑𝑑𝑝𝑝 − 𝑑𝑑𝑝𝑝′)√1 − 𝑢𝑢2 − 𝑢𝑢𝑑𝑑𝑚𝑚 =  𝑚𝑚𝑑𝑑𝑢𝑢
1 − 𝑢𝑢2

Equation 28 

Where dm<0 and u’>0, so dp’>0, assume its velocity in earth coordinate is 𝑢𝑢′ 

𝑑𝑑𝑝𝑝′ = −𝑢𝑢′𝑑𝑑𝑚𝑚
√1 − 𝑢𝑢′2
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Since dm<0 and du<0 so we have the constrain condition as (𝑘𝑘 − 𝑢𝑢1/√1 − 𝑢𝑢12) > 0.  This is 
understandable that from the earth observer, only when a mass traveling fast than u from the spaceship 
could it reduce the speed of the spaceship.  Since 𝑘𝑘 < 1 so (𝑘𝑘 − 𝑢𝑢1/√1 − 𝑢𝑢12) < 1.  The relationship 
of k and 𝑢𝑢1 is decided by acceleration phase.    Thus, in this case u has an up limit due to the efficiency 
index of k.  For example, if we do not dump used fuel for U235 fission energy, since k=0.043, we have 
𝑢𝑢1< 0.04296 of speed of light. 
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(1 − 𝑢𝑢2)(𝑘𝑘√1 − 𝑢𝑢2 − 𝑢𝑢)
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=
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√1 − 𝑢𝑢12 − 𝑢𝑢0

√1 − 𝑢𝑢02

𝑘𝑘 − 𝑢𝑢1
√1 − 𝑢𝑢12

Equation 25 

Thus, the total fuel mass is 𝑚𝑚𝑓𝑓 =  𝑚𝑚𝑎𝑎 +  𝑚𝑚𝑑𝑑. 
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=
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(𝑘𝑘 − 𝑢𝑢1
√1 − 𝑢𝑢12)(𝑘𝑘 + 𝑢𝑢0

√1 − 𝑢𝑢02)

Equation 26 

We need reconsider the Equation 19 to calculate the fuel mass for the case of dumping used fuel with 
speed of 𝑢𝑢′ with the momentum 𝑝𝑝′ (where dm <0).  From the observer of earth coordinate, in this case 
assume the dm<0.  At time t, the spaceship has mass m, speed u and momentum p.  At t+dt, they are 
m+dm, u+du, p+dp, and dumped used fuel as dm with speed 𝑢𝑢′ relative to earth observer.  The energy 
used for reducing the momentum so 𝑑𝑑𝑝𝑝 =  −𝑘𝑘𝑑𝑑𝑚𝑚 > 0 for acceleration, and 𝑑𝑑𝑝𝑝 =  𝑘𝑘𝑑𝑑𝑚𝑚 < 0 for 
deceleration.  Using special relativity momentum equation, we have  

𝑝𝑝(𝑡𝑡 + 𝑑𝑑𝑡𝑡) − 𝑝𝑝(𝑡𝑡) = 𝑚𝑚𝑑𝑑𝑢𝑢
(1 − 𝑢𝑢2)3/2 + 𝑢𝑢𝑑𝑑𝑚𝑚

(1 − 𝑢𝑢2)1/2 + 𝑑𝑑𝑝𝑝′

Equation 27 

(𝑑𝑑𝑝𝑝 − 𝑑𝑑𝑝𝑝′)√1 − 𝑢𝑢2 − 𝑢𝑢𝑑𝑑𝑚𝑚 =  𝑚𝑚𝑑𝑑𝑢𝑢
1 − 𝑢𝑢2

Equation 28 

Where dm<0 and u’>0, so dp’>0, assume its velocity in earth coordinate is 𝑢𝑢′ 

𝑑𝑑𝑝𝑝′ = −𝑢𝑢′𝑑𝑑𝑚𝑚
√1 − 𝑢𝑢′2

Where dm<0 and u’>0, so dp’>0, assume its velocity in earth coordinate is 𝑢′
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Equation 29 

For acceleration phase and dumping used fuel with speed of 𝑢𝑢′ , we have: 

− 𝑑𝑑𝑑𝑑
𝑑𝑑 = 𝑑𝑑𝑢𝑢

(1 − 𝑢𝑢2) ((𝑘𝑘 − 𝑢𝑢′/√1 − 𝑢𝑢′2) √1 − 𝑢𝑢2 + 𝑢𝑢)

Equation 30 

And integral the left side we have 

𝑙𝑙𝑙𝑙 (1 + 𝑑𝑑𝑎𝑎
𝑑𝑑𝑠𝑠 + 𝑑𝑑𝑑𝑑

) =  ∫ 𝑑𝑑𝑢𝑢
(1 − 𝑢𝑢2)((𝑘𝑘 − 𝑢𝑢′/√1 − 𝑢𝑢′2)√1 − 𝑢𝑢2 + 𝑢𝑢) 

𝑢𝑢1

𝑢𝑢𝑜𝑜

Equation 31 

For deceleration phase with dump speed u’ no less than u, relative to earth coordinate. 

− 𝑑𝑑𝑑𝑑
𝑑𝑑 = 𝑑𝑑𝑢𝑢

(1 − 𝑢𝑢2) ((−𝑘𝑘 − 𝑢𝑢′/√1 − 𝑢𝑢′2) √1 − 𝑢𝑢2 + 𝑢𝑢)

Equation 32 

and 

𝑙𝑙𝑙𝑙 (1 + 𝑑𝑑𝑑𝑑
𝑑𝑑𝑠𝑠

) =  ∫ 𝑑𝑑𝑢𝑢
(1 − 𝑢𝑢2)((𝑘𝑘 + 𝑢𝑢′/√1 − 𝑢𝑢′2)√1 − 𝑢𝑢2 − 𝑢𝑢) 

𝑢𝑢1

𝑢𝑢𝑜𝑜

Equation 33 

For the case with 𝑢𝑢′ = 𝑢𝑢,  That is equivalent to dump the used fuel with relative zero speed to 
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fuel and spaceship mass with different 𝑢𝑢1 and k.  If we reuse and then dump the used fuel in the cases 
of nuclear fission energy, the mass ratio will be much smaller than that of no dumping.  The best 
would be matter-antimatter energy generator since the momentum index k is much larger. 
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mass requirement.  For k =0.4 and 𝑢𝑢1 = 0.08  the mass ratio is about 0.5.   Table 3 lists the ratio of 
fuel and spaceship mass with different 𝑢𝑢1 and k.  If we reuse and then dump the used fuel in the cases 
of nuclear fission energy, the mass ratio will be much smaller than that of no dumping.  The best 
would be matter-antimatter energy generator since the momentum index k is much larger. 

For acceleration phase and dumping used fuel with speed of 𝑢′ , we have:

And integral the left side we have

For deceleration phase with dump speed u’ no less than u, relative to earth coordinate.

and

For the case with 𝑢′=𝑢, That is equivalent to dump the used fuel with relative zero speed to spaceship. We have
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With 𝑢0=0.00001 and 𝑢1=0.04 , k =0.043, the ratio would be 
𝑚𝑓/𝑚𝑠 =26.96. This is a huge fuel mass requirement. For k =0.4 
and 𝑢1=0.08 the mass ratio is about 0.5. Table 3 lists the ratio of 
fuel and spaceship mass with different 𝑢1 and k. If we reuse and 

then dump the used fuel in the cases of nuclear fission energy, 
the mass ratio will be much smaller than that of no dumping. 
The best would be matter-antimatter energy generator since the 
momentum index k is much larger.
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Figure 7   For dumping used fuel with relative speed 0 to spaceship, initial speed to lightspeed as 
u0=0.0001.  Fuel mass to spaceship mass ratio relationship with finial speed u and momentum 
index k.  Here uses c=1. 

When the total mass changes due to large amount of fuel mass is used, Equation 16 and Equation 17 
are no longer valid.  For acceleration phase, we need to combine Equation 15, Equation 30 and 
Equation 32 that dumping the used fuel mass with relative speed 0 to spaceship (u’=u).  Thus, for 
acceleration and deceleration we could get mass and speed relation below respectively: 

𝑚𝑚 = 𝑚𝑚0 𝑒𝑒
−𝑢𝑢

𝑘𝑘√1−𝑢𝑢2+ 𝑢𝑢0
𝑘𝑘√1−𝑢𝑢02

Equation 35 

13 
 

 

Table 3  Minimum fuel mass to spaceship mass ratio for different index k 

 
Figure 7   For dumping used fuel with relative speed 0 to spaceship, initial speed to lightspeed as 
u0=0.0001.  Fuel mass to spaceship mass ratio relationship with finial speed u and momentum 
index k.  Here uses c=1. 

When the total mass changes due to large amount of fuel mass is used, Equation 16 and Equation 17 
are no longer valid.  For acceleration phase, we need to combine Equation 15, Equation 30 and 
Equation 32 that dumping the used fuel mass with relative speed 0 to spaceship (u’=u).  Thus, for 
acceleration and deceleration we could get mass and speed relation below respectively: 

𝑚𝑚 = 𝑚𝑚0 𝑒𝑒
−𝑢𝑢

𝑘𝑘√1−𝑢𝑢2+ 𝑢𝑢0
𝑘𝑘√1−𝑢𝑢02

Equation 35 

13 
 

 

Table 3  Minimum fuel mass to spaceship mass ratio for different index k 

 
Figure 7   For dumping used fuel with relative speed 0 to spaceship, initial speed to lightspeed as 
u0=0.0001.  Fuel mass to spaceship mass ratio relationship with finial speed u and momentum 
index k.  Here uses c=1. 

When the total mass changes due to large amount of fuel mass is used, Equation 16 and Equation 17 
are no longer valid.  For acceleration phase, we need to combine Equation 15, Equation 30 and 
Equation 32 that dumping the used fuel mass with relative speed 0 to spaceship (u’=u).  Thus, for 
acceleration and deceleration we could get mass and speed relation below respectively: 

𝑚𝑚 = 𝑚𝑚0 𝑒𝑒
−𝑢𝑢

𝑘𝑘√1−𝑢𝑢2+ 𝑢𝑢0
𝑘𝑘√1−𝑢𝑢02

Equation 35 

Table 3: Minimum fuel mass to spaceship mass ratio for different index k

Figure 7: For dumping used fuel with relative speed 0 to spaceship, initial speed to lightspeed as u0=0.0001. Fuel mass to spaceship 
mass ratio relationship with finial speed u and momentum index k. Here uses c = 1.

When the total mass changes due to large amount of fuel mass 
is used, Equation 16 and Equation 17 are no longer valid. For 
acceleration phase, we need to combine Equation 15, Equation 
30 and Equation 32 that dumping the used fuel mass with 

relative speed 0 to spaceship (u’=u). Thus, for acceleration 
and deceleration we could get mass and speed relation below 
respectively:
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Where 𝑚𝑚0 = 𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑎𝑎 + 𝑚𝑚𝑑𝑑, and 𝑚𝑚′0 = 𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑑𝑑.   Where 𝑚𝑚𝑠𝑠 is the mass of spaceship, 𝑚𝑚𝑎𝑎 is the total fuel 
mass used for acceleration phase and the 𝑚𝑚𝑑𝑑 is the total fuel mass used for future deceleration phase.  And 𝑢𝑢1 is 
the speed at the end of acceleration phase.  Then the ship will travel in constant speed of 𝑢𝑢1, then reduces the 
speed to 𝑢𝑢0 when it reaches the destination star.  

Combine Equation 15, Equation 35 and Equation 36. we will have three phases differential equations 
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Equation 37 

This set of equation needs numerical solution to estimate the travel time.  One way is using fuel 
requirement as first priority, using 𝑚𝑚𝑠𝑠, 𝑚𝑚𝑑𝑑, 𝑢𝑢0, 𝑘𝑘, and Equation 36, we could get speed 𝑢𝑢1.  Then we could 
use 𝑢𝑢1 to get 𝑚𝑚𝑎𝑎 from Equation 35.  Thus, from Equation 37 we could calculate travel time for the three 
phases for the target distance.  Another way is using speed requirement as first priority, using 𝑚𝑚𝑠𝑠, 𝑢𝑢0, 𝑢𝑢1, 𝑘𝑘  and 
Equation 35 and Equation 36 we could obtain needed fuel mass 𝑚𝑚𝑎𝑎, 𝑚𝑚𝑑𝑑, then from Equation 37 and the 
target distance we will get the travel time for the three phases.  First method is based on fuel technology status 
and the second method is based the travel time needed.  The code is listed at the end of the citation section. 
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Figure 8: Travel time vs acceleration time
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5. Other Considerations 
Sending and receiving signals between home and a 4.25 lightyear 
distance source is very challenging.  We could send signals back 
home by blinking LEDs as morse signals or send microwaves 
using the sail frame as a giant antenna.  However, a critical 
problem exists in that the signal beam must be sufficiently 
focused.  Table 4 shows that for a point source 4.25 lightyears 
away, a beam with an angular divergence of  0.1 degrees will 
have a beam radius of 7×1013 m at Earth.  If the source has 2 

MW power, with a 50 m radius microwave telescope as reflection 
surface, Earth would only receive 1×10-18 watts of that energy.  
Unlike radio telescopes that can accumulate the signal as time 
being, communication between two faraway parties will require 
each bit of signal be received within certain time interval [31-
35].  We call it as the bandwidth requirement.  This makes the 
task even more challenging.  Of cause the minimum theoretical 
divergent angle is decided by diffraction formula as 1.22𝜆/𝐷 
where D is the effective diameter of sail and 𝜆 will be the 
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With long distance travel in the interstellar space, it must consider the possibility of sail being 
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Using photons to obtain thrust has high efficiency in converting energy to momentum compared with 
other methods using regular propellent whose rest mass is not zero. With the use of LED sails, 
conversion of fuel mass into thrust photons will have high fuel efficiency if macro nuclear generators 
are used as the energy source.  There are still many unsolved technology issues that need to be 
developed to fulfill this dream.  Developing new kinds of atomic fuel with high momentum index kp is 
critical for a reasonable fuel to spaceship mass ratio for atomic energy powered space travel.  
Implementation of disposing of used fuel methods are also required. Looking forward, the ultimate 
goal is to develop a new kind of nuclear fuel that uses matter-antimatter in a future macro fusion 
nuclear generator should a new storage technology of anti-matter be invented.  Dispersing base heat of 
LED sails in a vacuum environment will be a challenge, as well as developing a huge light-weight 
LED sail structure. Receiving a signal sent back from the spaceship 4 light years away is another 
challenge. Folding and unfolding a giant sail and replacing failed parts autonomously during travel 
also will be a challenge. 
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energy to momentum compared with other methods using 
regular propellent whose rest mass is not zero. With the use of 
LED sails, conversion of fuel mass into thrust photons will have 
high fuel efficiency if macro nuclear generators are used as the 
energy source.  There are still many unsolved technology issues 
that need to be developed to fulfill this dream.  Developing new 
kinds of atomic fuel with high momentum index kp is critical 
for a reasonable fuel to spaceship mass ratio for atomic energy 
powered space travel [36-43].  Implementation of disposing 
of used fuel methods are also required. Looking forward, the 
ultimate goal is to develop a new kind of nuclear fuel that uses 
matter-antimatter in a future macro fusion nuclear generator 
should a new storage technology of anti-matter be invented.  
Dispersing base heat of LED sails in a vacuum environment will 
be a challenge, as well as developing a huge light-weight LED 
sail structure. Receiving a signal sent back from the spaceship 4 
light years away is another challenge. Folding and unfolding a 
giant sail and replacing failed parts autonomously during travel 
also will be a challenge. 
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%% calculate time needed to travel to a remote star  
%% input parameters for the scripts  %% 
% u0        %inital spaceship speed  in m/s 
% sd:       %distance to remote star in m 
% ms:       %spaceship mass in kg 
% w :       %LED sail power in watts 
% k :       %momentum index p = k*delta(m) 
%% Return data 
% year1:       %acceleration years in phase one 
% year2:       %travel years with constant speed in phase two 
% year3:       %deceleration years in phase three 
% u1:          %constant speed in phase two 
% syear:       %total travel years 
% ma:          %fuel mass in kg for accerlation 
% md:          %fuel mass in kg for decerlation 
% dis1:        %distance in phase one 
% dis2:        %distance in phase two 
% dis3:        %distance in phase three 
%% input values 
w   = 1.0E10;    %LED sail power in watts 
ms  = 10000;     %ship mass in kg 
k   = 0.2;       %momentum index k = delta_p/delta_mass, p = k*dm 
c   = 2.9979E8;  %speed of light in m/s 
ys  = 3.1558E7;  %~365*24*60*60;  %seconds in one year 31557600 
sd  = 4.0198E16; %target star distance in m 
u0  = 0.00001;   %initial speed relative to lighspeed in m/s 
N   = 100;       %total points to calculate 
u10 = 0.002;     %first u1 speed 
u11 = 0.082;     %last  u1 speed 
%delta increse of u1 
du1 = (u11-u10)/(N-1); 
%% output  data to text file 
fileID = fopen('led_shiptime.csv','w'); 
fprintf(fileID,'mass=;%.0e;ton;w=;%.0e;Mw;k=;%.2f;sd=;%.2e;km;u0=;%0.1e;c\n',
ms/1000,w/1000000,k,sd/1000,u0); 
fprintf(fileID,'acc year;const year;dec year;const speed;travel year;acc 
mass;dce mass;dis1 ;dis2 ;dis3 ;\n'); 
draw=0; 
for u1=u10:du1:u11 
    draw=0; 
    if u1==u11 
        draw=1; 
    end 
    [year1,year2,year3,syear,ma,md, dis1,dis2,dis3] = ... 
                              shiptravel(u0, u1, w, k, ms, sd,c,ys, draw); 
    fprintf(fileID,'%.2e;%.2e;%.2e;%.2e;%.2e;%.2e;%.2e;%.2e;%.2e;%.2e\n',... 
                 year1,year2,year3,u1,syear,ma,md, dis1,dis2,dis3); 
end 
fclose(fileID); 
fclose('all'); 

 
code 1 Main script 
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function [year1,year2,year3,syear,ma,md, dis1,dis2,dis3] = ... 
                              shiptravel(u0, u1, w, k, ms, sd,c,ys, draw) 
  % get ma and md of fuel requirement 
  md = get_dc_mass(ms,k,u0, u1); 
  ma = get_ac_mass(ms, md, k,u0, u1);   
  % Acceleration phase, phase one, from u0 to u1 
  uxspan=[u0,u1]; 
  [ux,t1] = ode45(@(ux,t1) odefcnac(ux,t1,w,ms,ma,md,k,c,u0), uxspan, u1); 
  % integeral ux to obtain dis1 from u0 to u1 
  dis1 = trapz(t1,ux);   
  j = size(t1,1);   
  tt1 = t1(j);  %get the time of phase one   
  % Deceleration phase, phase three, from u1 to u0   
  uyspan=[u1,u0]; 
  [uy,t3] = ode45(@(uy,t3) odefcnde(uy,t3,w,ms,   md,k,c,u1), uyspan, u0); 
  t33 = t3(1)-t3; 
  %integeral uy to obtain dis3 from u1 to u0 
  dis3 = trapz(t33,uy);   
  j = size(t33,1);   % time used for phase three   
  tt3 = t33(j); 
  %phase two distance 
  dis2 = sd - dis1 -dis3; 
  %calculate time for phase two, constant speed with u1 
  tt2 = dis2/(u1*c);   
  %total time  
  syear = (tt1+tt2+tt3)/ys; 
  year1 = tt1/ys;  year2 = tt2/ys;  year3 = tt3/ys; 
  % draw curves   
  if draw>0 
      u1s =sprintf('u1=%.1f c, ',u1); 
      y1s =sprintf('y1=%.1f y,',year1);       
      y3s =sprintf('y3=%.1f y,',year3); 
      syears =sprintf('y3=%.1f y,',syear); 
      mds =sprintf('md=%.0f kg,',md); 
      mas =sprintf('ma=%.0f kg,',ma); 
      wm  =w/1000000; 
      wms =sprintf('LED=%.0f Mw,',wm); 
      msk =ms/1000; 
      mks =sprintf('mass=%.0f ton,',msk); 
      ks  =sprintf('k=%.1f,',k);  
      sds =sprintf('dis=%.1e m',sd); 
      yyaxis left 
      ty1=t1./ys; 
      plot(ty1,ux,'-'); 
      xlabel('time in year','FontSize',12); 
      ylabel('speed u/c in acceleration phase','FontSize',12);       
      titletext =['u vs acc year : ', wms, mks,ks,u1s]; 
      stitletext=[y1s,y3s,syears,mas,mds,sds]; 
      title(titletext,stitletext,'FontSize',12) 
      grid on   
      hold all 
      yyaxis right 
      ty3=t33./ys; 
      plot(ty3,uy,'-.'); 
      ylabel('speed u/c in deceleration phase','FontSize',12); 
  end  
end 

 

code 2 Function calculate for travel time 
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%% deceleration phase mass need from u0 and u1 
function md = get_dc_mass(ms,k,u0, u1) 
    % ms = m1*exp(1/k*(u0/sqer(1-u0^2) - u1/sqrt(1-u1^2))) 
    % m1 = ms + md       %initial mass of deceleration phase 
    ux  = exp(1.0/k*(u0/sqrt(1-u0^2) - u1/sqrt(1-u1^2))); 
    m1  = ms/ux;  
    md  = m1 - ms; 
end 
%% acceleration phase mass need from u0 and u1, md 
function ma = get_ac_mass(ms, md, k,u0, u1) 
    % ms = m0*exp(1/k*(u0/sqrt(1-u0^2) - u1/sqrt(1-u1^2))) 
    % m0 = ms + md + ma %initial mass of deceleration phase 
    m1  = ms + md; 
    ux  = exp(1.0/k*(u0/sqrt(1-u0^2) - u1/sqrt(1-u1^2))); 
    m0  = m1/ux;  
    ma  = m0 - m1; 
end 
%% deceleration phase, get speed from md mass  
function u = get_dc_speed(ms,md,k,u1) 
    % m = m1*exp(1/k*(u/sqrt(1-u^2) - u1/sqrt(1-u1^2))) 
    % m0 = ms + ma + md  %initial mass of acceleration phase 
    % m1 = ms + md       %initial mass of deceleration phase 
    m01=ms+md; 
    lnmm1 = ln(ms/m01); 
    u00=exp(u1/(k*sqrt(1-u1^2))); 
    u01=lnmm1*u00; 
    u02=ln(u01)*k;  %u02 must positive 
    u03=u02*u02; 
    % u/sqrt(1-u^2) = u02 
    u=sqrt(u03/(1+u03)); 
end 
%% acceleration phase, get speed from ma mass  
function u = get_ac_speed(ms,md,ma,k,u0) 
% m = m0*exp(1/k*(-u/sqrt(1-u^2) + u0/sqrt(1-u0^2))) 
% at the end of accerlation phase mass is ms+md 
m00=ms+md+ma; 
m01=ms+md; 
lnmm0 = ln(m01/m00); 
u00=exp(u0/(k*sqrt(1-u0^2)));  % u00 must negtive 
u01=lnmm0/u00; 
u02=-ln(u01)*k; 
u03= u02*u02; 
% u/sqrt(1-u^2) = u02 
u=sqrt(u03/(1+u03)); 
end 
%% phase one:   time need to obtain u in acce phase (t using s as unit) 
function dtduac = odefcnac(u,t,w,ms,ma,md,k,c,u0) 
  m0 = ms + ma + md; 
  dtduac =1.0/((w/(m0*c*c*u))*(1-u*u)^(3/2)*(exp((u/sqrt(1-u*u)-u0/sqrt(1-
u0*u0))/k))); 
end 
%% phase three: time need to reduce u in dec  phase (t using s as unit) 
function dtdude = odefcnde(u,t,w,ms,md,k,c,u1) 
  m1 = ms + md; 
  dtdude =1.0/((w/(m1*c*c*u))*(1-u*u)^(3/2)*(exp((u1/sqrt(1-u1*u1)-u/sqrt(1-
u*u))/k))) ; 
end 

 

code 3 help functions 


