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Abstract 
Traffic signs are among the most important traffic equipment that are used in urban and non-urban areas and their purpose 
is to increase road volume and reduce delays while ensuring safe movement. Over the years, due to the growing trend of car 
production and car use, which has increased urban and road traffic, traffic signs have increased and become more diverse and 
efficient. One of these traffic control methods at intersections is the use of traffic signal scheduling techniques, which despite 
the advantages of this method has a major drawback, and that is that due to the dynamic behavior of traffic, this method has 
issues in predicting traffic signal timing especially in times of peak traffic. Designing appropriate green times for traffic signal 
lights with Adaptive Neuro-Fuzzy Inference System (ANFIS) technique in traffic signal controller is a feasible solution to tackle 
this issue in urban network congestion during peak hours. The capability to learn from experience is one of the specifications 
of ANFIS that makes these techniques appropriate to mention genuine universe challenges. ANFIS Traffic Signal Controller is 
used to control the traffic density of an intersection so that it can reduce the queue length and latency to the minimum optimal 
time expected. ANFIS Traffic Controller is an intelligent controller with automatic learning sets the appropriate green time 
for each phase of the traffic light at the beginning of the phase, and the system generally depends on traffic information. The 
controller uses metaheuristic algorithms to tune ANFIS parameters during learning time. The first part of this article concerns 
the simulation of an isolated intersection in a VISSIM simulator, for the generation of the new phase distribution of it (optimum 
cycle). In the second part, ANFIS with metaheuristic algorithms is modelized and applied to the VISSIM simulated intersection. 
In the modelized system, for training and testing phases, 90 samples of newly generated data sets from VISSIM, and 40 others 
were considered respectively. By tuning the parameters using metaheuristic algorithms, we tried to increase the accuracy of the 
ANFIS network prediction to demonstrate the high performance of the ANFIS network in predicting and controlling traffic in 
intersections. The predicting system uses real-time data to predict the signal time. Results of the analysis demonstrated that our 
predictor system with ANFIS-GA indicates better predicts in comparison to ANFIS-PSO and ANFIS-HS. The predictor system 
presented a total and Relative Mean Square Error of 2.9619 and 8.4215 in the train set and 4.2209 and 11.8501 in the test 
respectively. The designed prediction model in the field of complex data showed an acceptable level of reliability and flexibility.
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1. Introduction
Urban traffic experiences significant congestion problems at times 
and becomes one of the most critical adversities in developing 
countries which needs to be promoted to provide timely and 
effective service. Generating large amounts of greenhouse gases 
(CHG), increasing the number of accidents, and wasting time and 
energy in traffic queues are among the effects of traffic congestion’s 
disadvantages [1]. The key strategy is to speed up the traffic flow 
by controlling traffic lights at the same time through adjusting 
and optimizing traffic lights in urban transportation networks. 
Therefore, well-aimed programming for a traffic light plan is an 

essential solution if the network capacity is to be increased and its 
performance improved in unsaturated situations. A simple method 
of controlling intersections is to determine the time of each traffic 
phase by using traffic signals. There are three types of traffic signal 
control systems. The first is the simple type of control that utilizes 
preset signal sequences and is called fixed-time or predefined. 
The efficiency of this method in determining preset signals has 
been presented in Robertson's research [2]. Signal periods regulate 
based on faced traffic status in the second type of control systems 
[3]. The split-cycle and offset optimization techniques [4] are well-
known samples for the second type. The third type of control is 
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fully compatible with sudden and unexpected changes, and all 
decisions are made dynamically [5]. RHODES is an example of 
this type [6]. As a result of growing demand, traditional methods 
of control will not be appropriate for controlling traffic congestion 
in newly developed and crowded urban networks [7].

Many impeccable pieces of research have been conducted 
in optimizing traffic light networks. According to Daganzo’s 
theory  the traffic situation and the outcome in network operating 
corruption can be significantly affected by the network when it 
is overloaded, even with a subtle expansion extra to the required 
amount of the input value. Network interference can be avoided 
by monitoring the flow entering amount in such changeable 
situations. A mathematical plan performed by Chiou, found 
the ideal charge specified for signal-controlled intersections in 
networks of city traffic where redirecting traffic is regarded [8,9]. 
Another research study to optimize traffic light was conducted 
by using “Ant Colony” method and the variables like delay time, 
stops and network capacity [10]. 

A microscopic analysis was used by Radhakrishnan and Mathew 
to enhance a congestion flow model which is related to dynamic 
passenger car units [11]. The study of Cantarella and his colleagues 
proves thet since the progress is not related to time therfore, the 
optimization signal timings under the equilibrium hypothesis may 
not assure an effective solution [12]. Varia and his group applied a 
genetic system for solving the optimization issue related to traffic 
light control together with the dynamic flow in congested networks 
[13].Gangi et al. proposed the maximization system method 
based on the optimization of single intersections (green timings) 
and network coordination [14]. Khodayari and his co-workers 
suggested a modified ANFIS model to resemble and predict the 
car-following behavior that establishes the feedback delay of the 
driver-vehicle systemThe outcome of the simulation indicates that 
the proposed model has high versatility with real-world data and 
returns the status of the traffic flow in a more adequate way [15]. 
The result of a study by Marciano et al. İndicates that signal setting 
optimization leads to significant decrease in general delays on the 
network and emptying times [16]. Chang and Lieberman worked 
on an optimized model and the results shosed that case it can be 
made for a possible use about a mixed-integer linear programming 
MILP algorithm. [17]. In another research which has been done by 
Leclercq et al. at 2014 the only method to have no bias in MFD is 
a wide knowledge regarding vehicle trajectories [18]. Afandizadeh 
Zargari et al. [19] proposed a metering-based way of solving signal 
control programs in city area networks. They recommended a 
model that was used to actual networks with a factual scenario 
in Tehran based on pure information. An improved method was 
shown by [20] based on the internal-external metering strategy 
(IETMS). Their outcome pointed out that by using the IETMS 
model, the average speed is 14 percent and the average delay is 19 
percent of progress. The result of the simulation indicated that the 
best estimates were achieved with the use of multi-layer perceptron 
architecture which includes the best performance with a total 

Mean Square Error of 0.00927 in the training step and 0.01321 in 
the test step. By searching through these studies, the importance, 
superiority, and efficiency of artificial intelligence techniques (AI) 
in controlling traffic congestion, which is capable of thinking like 
humans, are more visible [21]. Many pieces of research have been 
conducted to use artificial intelligence techniques to enhance the 
efficiency of control and prediction [22,23]. Computationally 
intelligent methods are self-learning and react to dynamic shifts of 
pressure and situations. The combination of AI was proposed for 
implementing a cooperative multi-agent system for controlling a 
large-scale traffic control by Choy [24].

Fuzzy logic systems play an important role in transportation and 
traffic control (FLS). The concept of fuzzy logic was first introduced 
by Zadeh  who suggested the possibility of forming logical theories 
for calculating ambiguity in mental judgments [25]. The utilization 
of a fuzzy logic controller (FLC) for an isolated intersection with 
two one-way links was performed by Pappis and Mamdani [26] 
Also, FLS has been used by many scholars to control a single 
intersection with two-way streets [27]. Jarkko [28] introduced a 
regular method for fuzzy traffic signal control based on expert 
knowledge. The results of his tests indicated that this system has 
better efficiency rather than the traditional vehicle-actuated control 
[29]. designed a neural network plan to predict daily traffic flow, 
after which the predicted traffic flow was compared with the real 
information collected by the traffic control body of Morocco. 
Many studies have been done in the traffic controlling field at 
isolated intersections using fuzzy logic controllers, and the ability 
and capability of these controllers have clearly been illustrated in 
normal and unpredictable situations to overcome traffic congestion 
at intersections [30] In recent years, many researchers have used 
the adaptive neuro-fuzzy network ANFIS presented by Jang to 
approximate problems and solve nonlinear functions in modeling 
their complex systems [31,32].

Right after the volume count is finalized, the peak hour standard 
is obtained. The high volume of vehicles in certain hours in the 
morning and around noon and the afternoon (the oversaturated 
situations) determines how the peak hour is going to be. The 
traffic lights’ timetable program will be maximized in entering 
connections. This simulation in VISSIM is done based on 
maximizing the arterials’ traffic flow which goes to the sub-
network. It keeps queue length close to its optimal value and 
obtains optimal green time with minimum oscillations through 
cycles. The rate of congestion in the protected area stays below 
the critical value in such a situation. The ANFIS structure tries to 
be close to reality and therefore uses three observed peak times 
and VISSIM’S output (the data set of queue length and delay from 
VISSIM simulator) as inputs, and green signal time as an output 
for its structure. 

There are three algorithms proposed in this research, that are 
compared to each other firstly the genetic algorithm (GA), secondly 
harmony search (Hs) and thirdly swarm optimization (PSO).The 
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performance of the proposed algorithm with the genetic algorithm 
(GA), harmony search (Hs) and particle swarm optimization 
(PSO) has been compared. The appealing features of ANFIS are 
its quick and accurate learning, simplicity in being applied, perfect 
clarification through fuzzy rules, and its easy association with 
both numeric and linguistic values for increasing problem-solving 
abilities. There is no need to redefine the rule base because ANFIS 

finds its optimal parameters through training. Research carried 
out in the literature review related to the proposed area of this 
paper shows that despite the comprehensive studies on monitoring 
traffic lights in networks, there is no proposed model of a VISSIM 
simulator with ANFIS and metaheuristic algorithms in terms of 
predicting green signal time with real data in our study area. The 
general schematic of this study is indicated in Fig 1.
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Figure 2: Signalized Intersection in İstanbul (study area)

1.2. Study Area
By using datasets from our study area, (Figure 2) the queue 
length, the total number of vehicles passing through intersection 
arms during peak hours (by using the length of the vehicles), the 
maximum number of the cars can pass on each cycle (by using 
lines) delay and green signal time for the intersection was counted 

and calculated then the current status of the intersection was 
observed. Since the queue length on the intersection arms remains 
in each phase, there is a necessity for designing a new phase 
distribution. To improve the current state of the intersection and 
achieve the optimum amount of queue length, delay, and green 
time, we will model the intersection in the VISSIM space.
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2. Methodology 

2.1. Simulation and Evaluation on VISSIM 

In different countries, vehicle- or traffic-operated signal control policies are well documented in design 

manuals. However, the effectiveness of different strategies cannot be assessed in actual testing sites. 

Strategies have a wide variety, and setting standards of every single strategy cannot be tested in field 

trials due to the big number of possibilities, limitations of the present controllers, legal limitations, and 

consumer approvals. Simulation has proven to be a worthy tool in case of such limitations. For 

economic as well as environmental reasons, the signal control should be in optimal condition within a 

presented political framework. Tools are applied to assess the quality of vehicle-operated signal control. 

There is no explanatory formula to be used for this detailed assessment due to the stochastic features of 

traffic. Single vehicles are organized by sophisticated traffic control strategies. Examples of such 

programs are bus/tram priority programs. These variations in entry times cannot be modeled correctly 

enough by entirely analytical techniques. VISSIM is an innovative simulation tool for traffic-operated 

control system plans and is regarded as a total-goal, computer-based traffic simulation system. VISSIM 

models have great features and a high level of indicating details of links, junctions, and “small” 

networks. [33-35].  
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traffic-operated control system plans and is regarded as a total-
goal, computer-based traffic simulation system. VISSIM models 
have great features and a high level of indicating details of links, 
junctions, and “small” networks. [33-35]. 

In this study, Figure (3-4) shows the optimum phase distribution, 
optimum green time, and movements designed in VISSIM for an 
intersection. The simulation was modeled in VISSIM, and the 
optimum cycle time for the Morning was 75 S, for Noon 60 S, and 
for Afternoon 75 S which have been calculated and presented in Fig 
5. In our work, to assess the model and provide that more desirable 
results which are obtained in the model (after simulation), it was 
compared with the network's current status (before simulation). 
Table.1 shows better performance of the simulated model in 3 peak 
time hours during 1 hour of simulation (08:00-09:00, 12:00-13:00, 
and 16:00-17:00). Performance of the intersection before and after 
stimulation were compared. The results of the simulation show 
improvement in terms of queue length and delay by using optimal 
green signal time in the simulation. 
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Figure 5. New Phase Distribution Simulated by VISSIM for the a) Morning, b) Noon, 

and c) Afternoon 
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Morning 

(8:00-9:00) 

Noon 

(12:00-13:00) 

Afternoon 

(16:00-17:00) 

Before After Before After Before After 

Delay 18.09 10.61 18.09 9.74 20.21 9.42 

Queue length 47.84 36.30 58 39.20 59.36 41.97 

 
Table 1: Comparison of Total Delay and Queue Length Before and After Simulation in VISSIM 
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Table 1: Comparison of Total Delay and Queue Length Before and After Simulation in VISSIM

2.2. Designed ANFIS Structure
Both Neural Networks (NN) and Fuzzy Logic (FL) are utilized 
in ANFIS architecture [36]. The network structure of ANFIS 
includes two sections, namely the premise and consequence parts. 
Layer one is the premise, and layer four is the consequence; they 
are considered as decision parameters for metaheuristic algorithms 
(GA, PSO, and HS). There are two steps in ANFIS. The first step 
is training %80 of the data set and includes input and target values. 
The decision-making parameters of this network are tuned with 
metaheuristic algorithms.  The optimum amount of (peak time, 
queue length, delay) and green signal time amounts extracted 
from the simulated intersection in the VISSIM environment are 
considered as input and output of ANFIS respectively. The second 
step is testing %20 of the data set. It is initialized with input values 
(peak time, queue length, delay), and the green signal time, or 
output, is predicted based on the input [30]. The ANFIS system 
is included in five layers, as seen in Figure 6. In this figure, the 
ANFIS structure has 3 inputs. For the first input (peak time), 
we considered three membership functions, namely Morning, 
Noon, and Afternoon. For the second input (queue length), we 
considered five membership functions: VS (very small), S (small), 
M (medium), L (large), and VL (very large); and finally, for the 
last input (delay), we considered the three membership functions 
S (small), M (medium) and L (large). There are two ranges of 

membership functions, namely lower bound and upper bound. By 
considering 11 membership functions with two ranges, we have a 
total of 22 decision variables of individuals (called chromosome 
vectors) in the first layer. The range of each membership function is 
illustrated in Figure 9. Through multiplying membership functions 
by each other (3×5×3) we have a total of 45 rules symbolizing 45 
linear equations. Each linear equation consists of 4 parameters. 
Thus, we have a total of 180 decision variables of an individual 
(4×45) in the fourth layer. In this structure, we have a total of 202 
decision variable parameters tuned by metaheuristic algorithms.
The layer structure of ANFIS, according to the ANFIS structure 
given in Figure 6, is described as follows. As is mentioned, the 
ANFIS structure presented in the figure has five layers. The first 
and fourth layers comprise an adaptive node, while the other layers 
comprise a fixed node. The ANFIS first order SUGENO-Type FIS 
has a total of five layers:
First rule: If (x is A1) and (y is B1), then (f1 (x)=P1 x+q1y+r1).
Second rule: If (x is A2) and (y is B2), then (f2 (x)=P2 x+q2y+r2).

Where A1, A2, and B1, B2 are the membership function of each x 
and y input (part of the functions), and p1, q1, r1 and p2, q2, r2, are 
the part of the linear parameters of the Takagi – SUGENO fuzzy 
inference model (last part).
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There are some nodes in first layer in figure 6 and each node 
is related to a parameter in funcion. And the output from it is a 
degree of the membership value given by the entry of membership 
functions. An explanation of the first layer has been provided 
below.

μAi and μBi are the degrees of membership functions for sets Ai 
and Bi, respectively, and {ai, ci} are parameters of the membership 
function that can change the shape of the membership function. 
The parameters in this layer are typically referred to as precursor 
parameters.

The second layer is called the rule layer. In this layer, the Gaussian 
function is the node function. μ Ai (x) and µ Bi (x) are usually 
selected as Gaussian functions and are given in the following 
equation. The firing power for each rule (wi) value is found by 
multiplying the membership values as follows.  

Where ai and ci are the standard deviation and center parameters of 
the membership function, respectively. The output for per node in 
the layer is in the range [0-1] implying the degree of membership 
of the input by the membership. These parameters will be modified 
during backpropagation.

J Gene Engg Bio Res, 2024
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The third layer is called the normalization layer. Each node in this 
layer is either fixed or non-adaptive, and the circle node is labeled 
N. Each node is the ratio between the firing rules and the sum of 
the firing powers of all rules. This result is known as normalized 
firing power.

The output of the standardization layer is w̅I, which is called the 
defuzzification layer. Weighted values of rules are calculated 
in each node of the fourth layer as given in (5). This value is 
determined by using first order polynomial.

Where w̅i is the normalized firing power from the previous 
layer (third layer) and a parameter in the node (Pi x+qiy+ri). The 
parameters in this layer are called the resulting parameters.  

The fifth layer is called the output layer. In this layer, the output of 
the neurons of the previous stage are added together, and finally, 
through defuzzification, the fuzzy outputs are converted into 
numerical outputs. There is only one neuron in this layer.

3. ANFIS Training
3.1. ANFIS Training Approaches 
ANFIS training means establishing the related standards in a 
system while applying an optimization algorithm. Prosperous 

training plays a crucial role in gaining efficient outcomes with 
ANFIS, thus for the improvement of ANFIS, toachieve the best 
performance various methods is evaluated, which consists of 
three main part, firstly derivative-based, secondly heuristic-based, 
and a hybrid of the two as third part. When derivative-based 
optimization algorithms are applied in ANFIS training, the risk of 
local minimum may arise. Thus, metaheuristic algorithms are used 
extensively in ANFIS training. A survey in the literature reveals 
that all parts of ANFIS, or a related portion of it, are trained by 
metaheuristic algorithms. For ANFIS training, metaheuristic 
algorithms are applied. The amount of metaheuristic algorithms 
used in ANFIS training has increased rapidly in recent years. The 
metaheuristic algorithms are GA, PSO, HS, ABC, DE, CS, FA, 
SA, MBA, and HS. The parameters which are related to input 
membership functions are [ai, ci]. Which are known as premise 
parameters. [pi, qi, rí] are modifiable parameters and are related 
to the first-order multinomial. These parameters are called 
consequent parameters. There are two steps in ANFIS. The first 
step is training %80 of the data set, which includes input and 
target values, and tunes decision parameters with metaheuristic 
algorithms.  The simulated (peak time, queue length, delay) and 
green signal time amounts extracted from isolated intersections 
in VISSIM environments are considered as inputs and output of 
ANFIS respectively. The second step is testing %20 of the data 
set which is initialized as input value (peak time, queue length, 
and delay) and green signal time is predicted.  The parameters of 
the premise and consequence are tuned and analyzed by applying 
the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), 
and Harmony Search (HS) optimization methods. The mentioned 
algorithms attempt to find the best parameters for the ANFIS. The 
Process of integrating metaheuristic algorithms to achieve the 
best parameters is shown in Figure 8 the iteration steps of each 
algorithm are shown separately in their respective sections
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by calculating standard deviation Sd (σ), MSE, and RMSE error 
functions. Errors can be calculated as follows:
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Where x is individual observation, 𝑥̅𝑥 is an average amount, and n is the number of observations. In 

equations 8 & 9, N is the number of data points, fi is the value returned by the ANFIS, and Yi is the 

target value for data point I. These heuristic algorithms are used to minimize the mean square error 

MSE and relative mean square error RMSE.  

 

3.2. ANFIS Training based on GA 
The search and optimization abilities of genetic algorithms (GA) are based on Darwin's natural selection 

and theory of evolution [36]. GAs are one of the most popular optimization algorithms which can be 
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models. Genetic algorithms illustrate an evolutionary computation branch in which they mimic 
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evolutionary principles such as mutation, crossover, and selection to get better answers from the actual 
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by using neural network capabilities. The set of chromosomes chosen at the beginning behave as parent 

chromosomes. The timetable, queue length, and delays are altered by a value of 0.1 randomly in child 

chromosomes. The minimum amount of signal timing is obtained from parent chromosomes. If the 

signal timing obtained from the set of parent chromosomes is less than the child chromosome set, the 

chromosome will be transmitted to the next generation; otherwise, the chromosome is retrained [39].  

 

The process continues for 10 iterations with 1000 function evaluation numbers (error functions). So the 

minimum amount of green signal timing is obtained by the chromosome (decision variable) which is 
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Where x is individual observation, x̅ is an average amount, and n 
is the number of observations. In equations 8 & 9, N is the number 
of data points, fi is the value returned by the ANFIS, and Yi is the 
target value for data point I. These heuristic algorithms are used 
to minimize the mean square error MSE and relative mean square 
error RMSE. 
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The search and optimization abilities of genetic algorithms (GA) 
are based on Darwin's natural selection and theory of evolution 
[36]. GAs are one of the most popular optimization algorithms 
which can be used to maximize or minimize a specific function 
to obtain the optimal responses of computational models. Genetic 
algorithms illustrate an evolutionary computation branch in which 
they mimic biological and natural selection to find suitable solutions. 
Evolutionary algorithms use natural evolutionary principles such 
as mutation, crossover, and selection to get better answers from 
the actual population of solutions. GA continues this process until 
it reaches the optimal parameters for the controller [37,50]. In this 
paper, GA tried to reduce the peak time, queue length, and delay 
parameters to obtain optimal green signal timing. The number of 
chromosomes will illustrate the signal timing corresponding to 
the peak time, queue length, and delays. The mentioned signal 
timings are obtained by using neural network capabilities. The 
set of chromosomes chosen at the beginning behave as parent 
chromosomes. The timetable, queue length, and delays are altered 
by a value of 0.1 randomly in child chromosomes. The minimum 
amount of signal timing is obtained from parent chromosomes. If 
the signal timing obtained from the set of parent chromosomes 
is less than the child chromosome set, the chromosome will be 
transmitted to the next generation; otherwise, the chromosome is 
retrained [39]. 

The process continues for 10 iterations with 1000 function 
evaluation numbers (error functions). So the minimum amount 
of green signal timing is obtained by the chromosome (decision 
variable) which is related to the parameters of layer 1 (premise) 
and layer 4 (consequence) of ANFIS. 

3.3.  ANFIS Training Based on PSO

Collective intelligence is a organized property in which the agents 
collaborate locally. The allocation of collective behavior of all 
agents leads to meeting at a point close to the optimal global 
solution. The advantage of this algorithm is its lack of need for global 
control. Two well-known algorithms of collective intelligence 
are the Ant’s Nest and the PSO. Both of these algorithms can be 
used to train neural networks. The common behavior of PSO and 
evolutionary algorithms is the tendency of both algorithm types to 
use a population of solutions or agents to achieve the best solution 
(Guntsch & Middendorf 2015) In 1995, Kennedy and Eberhart first 
presented the PSO as an indeterminate search method for function 
optimization. This algorithm was inspired by the flock movements 
of birds seeking food [40]. A flock of birds randomly looks for 
food in the environment. There is only one piece of food in the 
search area. Each solution in the search space is called a particle. 
Also, each particle in the search area has an ideal value called the 
objective function. The distance of the particle from its target is 
the criterion of the particle merit in the search space. Assuming 
that a search space consists of d dimensions and n particles that 
ith particle at a position Xi (Xi1, Xi2, …, Xid) with a velocity Vi 
(Vi1, Vi2, …, Vid), each particle includes own best particle, Pi (Pi1, 
Pi2, …, Pid) which indicates best performance in the swarm. A 
total best performance of a particle concerning the swarm outlined 
global best is gbest. Each particle attempts to amend its position 
using current positions, current velocities, and distances between 
the current position and gbest. Particle motion is controlled by 
updating its velocity and position characteristics [42]. In this paper, 
the PSO algorithm attempts to adjust swarm behavior by exploring 
the decision variable related to the parameters of layer 1 (premise) 
and layer 4 (consequence) of ANFIS. Specific parameters of PSO 
through training are mentioned in Table 2.

3.4. ANFIS Training Based on HS
One of the well-known metaheuristic algorithms is the Harmony 
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In which the parameters are as below; 

w; interior weight 

c1; cognitive acceleration coefficient 

c2; social acceleration coefficient 

r1 and r2 ;random values between [0,1] 

xbest ; personal best of the particle  

gbest ; global best of the particle 

Xi
t ; current position of the ith particle at iteration t  

Vi
t ; velocity of the 𝑖𝑖�� particle at iteration t. 

 

3.4. ANFIS Training Based on HS 
One of the well-known metaheuristic algorithms is the Harmony Search optimization algorithm. The 

recently-developed population-based HS optimization algorithm is expanded by a musical 

improvisation process that is based on a search for better harmony. HS algorithm emerged from Zong 

Woo Gem’s Ph.D. thesis [43]. Furthermore, the HS was developed by [44]. Despite the algorithm that 

was newly presented, it was already known from the first publication [43]. The performance of the HS 
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Search optimization algorithm. The recently-developed 
population-based HS optimization algorithm is expanded by 
a musical improvisation process that is based on a search for 
better harmony. HS algorithm emerged from Zong Woo Gem’s 
Ph.D. thesis [43]. Furthermore, the HS was developed by [44]. 
Despite the algorithm that was newly presented, it was already 
known from the first publication [43]. The performance of the HS 
algorithm is largely affected by harmony memory size (HMS), 
harmony memory consideration rate (HMCR), and pitch adjusting 
rate (PAR). Other parameters such as a maximum number of 
improvisations and bandwidth vector (bw) have been used in pitch 
adjustment for implementing the algorithm [45].

By considering all these parameters, the convergence of the basic 
HS algorithm was argued by Geem and his colleagues as obtained 
from the results of the research of [43, 47 ,45 and 49]. In the other 
study, proposed a modified firefly algorithm that is suitable for a 
combination of ANFIS with GA, PSO, and HS [50].

4. Results and Discussion
In the beginning, an assessment of the prior studies in this area 
is reported as a literature review. Various techniques are offered 
in this field and in general, can be divided into 3 categories. The 
first category is fixed-time controllers, which are not dependent 
on traffic fluctuate and compute signal times via ancient data. 
The subsequent category is operated controllers, where signal 
controlling is executed with the assistance of sensors stationed 
in parts close to stopping lines and the running traffic request 
determinants transit times. Adaptive signal timing is the ultimate 
category with more workability to suit signal times depend on 
traffic changes. About utilizing intelligent techniques, previously 
almost all mentioned AI techniques have disclosed their 
advantages in various aspects and applications, especially in traffic 
signal timing against traditional controllers. A general evaluation 
of researches in traditional traffic signal timing and VISSIM-based 
is compared, also results of computational intelligence methods 
for predicting the optimum signal time for a single intersection 
are investigated. Giving consideration to prior studies and using 
a combination of encouraging AI methods and novel optimization 
techniques makes it possible to design efficient controller for 
traffic signal timing. This study contributes to expanding traffic 
signal timing controllers aiming to reduce expected and predicted 
error values at the intersection. Modeling an isolated intersection 
network with 3 phases in VISSIM. Moreover, considering various 
traffic scenarios for the network to test the accuracy and reliability 
of the designed controller before and after modeling is illustrated 
in Table.1. These results are following the findings of who have 
explained the significant negative effects of fix-time methods. The 
traffic volume will fluctuate over time, so, designing the green 
time at the beginning of a phase for the present phase can be 
more compatible with the present traffic situation [51-56]. During 
the test process, Our results also support that designing a phase-
based controller can be more accurate as explained by [57,58]. 
The controller in this study used Optimum cycle time extracted 

from the VISSIM simulator. In prior studies, the controller could 
consider a fixed amount of time as a green time extension while 
the chance of having ongoing green time. The results concerning 
this method are in good agreement with those found by [59,60]. It 
is decided to performing the most powerful techniques for traffic 
signal timing with a unique ANFIS structure and VISSIM-designed 
unique testbed and compare their performance with metaheuristic 
algorithms for the first time. Detailed examination of computational 
intelligence techniques containing the combination of ANFIS with 
metaheuristic algorithms for traffic light timing is one of the novels 
in this field. ANFIS is an appropriate method due to its speed and 
accuracy in learning and approximating hidden samples in big 
data. The efficiency of this method depends on its initialization 
and training process. In addition, The findings of [61,62]  which 
explained the superiority and accuracy of both ANFIS types in 
predicting are supporting our selection. In the ANFIS structure, 
the first-order SUGENO model fuzzy system tunes the rules and 
adaptively learns to attain the optimal parameters for the rule 
base, so there is no need for a pre-defined rule base. To bound 
the number of parameters in the ANFIS structure and enhance the 
rapidity of convergence tendency, we presume three, five, and three 
membership functions for three inputs. Membership functions are 
Gaussian with 2 ranges of membership functions, namely lower 
bound and upper bound. By considering 11 membership functions 
with 23 ranges, we have a total of 11*2=22 decision variables of 
individuals (called chromosome vectors) in the first layer. Also, 
in the ANFIS controller, the number of membership functions is 
fixed and set manually. Dedicating more membership functions 
will lead to a faster and more robust controller, however, using 
useless membership functions can force negative results. Hence, 
detecting fully the right numbers is helpful in the efficiency of 
the controller. Our membership function selection seems to be 
consistent with previous studies and the performance is following 
the findings of [63,64]. Following the results explained by 
metaheuristic algorithms used in training play a significant role in 
getting effective results with ANFIS [65-67]. There are two steps 
in ANFIS training. In this study, the first step is training %80 of the 
data set, which includes input and target values, and tunes decision 
parameters with metaheuristic algorithms.  The simulated (peak 
time, queue length, delay) and green signal time amounts extracted 
from isolated intersections in VISSIM environments are considered 
as inputs and output of ANFIS respectively. The second step is 
testing %20 of the data set which is initialized as input value (peak 
time, queue length, and delay) and green signal time is predicted. 
The prediction efficiency of our designed ANFIS structure has also 
been compared with 3 metaheuristic algorithms, namely GA, PSO, 
and HS. ANFIS-GA runs 10 times with 1000 function evaluation 
numbers [68]. All the general and specific parameters of each 
algorithm used in this study have been listed separately in Table 2. 
Tables 3-5 illustrate the best cost, Root Mean Square Error (RMSE), 
Error of Standard Decision (ER.St.D) and Error Mean for Training 
(Tr) and Testing (Ts) samples for GA, PSO, and HS, respectively. 
The best cost results for each algorithm have been presented in 
Table 6. One of the best cost results of the ANFIS-GA with 40 
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samples (test data) was predicted and presented with the statistic 
evaluation as in Figure 9. 90 samples (train data from the output 
of VISSIM) were trained and analyzed with statistic evaluation 
as in Figure 10. Likewise, The GA algorithm has the best cost at 
8.8828 in the same criteria compared to other algorithms. ANFIS-
GA, with the best cost and properly lower variance, outperformed 

all others. The results concerning GA are in good agreement with 
those found by [19] who detected rapid convergence tendency of 
GA with metaheuristics. As Figure 11 shows, it can be concluded 
that in our VISSIM-modeled intersection, the prediction ability of 
ANFIS-GA has better performance than the others. 
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Parameters for Each Algorithm 

General Parameters for Each Algorithm 

Row Population 

Size 

Cost Function 

Number 

Number of Decision 

Variables 

 

Upper Bound/Lower Bound 

1 25 1000 202 0.1/1 

Specific Parameters for Each Algorithm 

Name  Gama Mutation 

Percentage 

 

Mutation Rate 

 

Selection Pressure 

 

GA pc=0.4 

 

0.7 

 

pm=0.7 

 

mu=0.15 

 

beta=5 

 

Name Inertia 

Weight 

 

Inertia Weight 

Damping Ratio 

 

Personal Learning 

Coefficient 

 

Global Learning Coefficient 

 

PSO w=1 

 

W damp=0.99 

 

c1=1 

 

c2=2 

 

Name Harmony Memory 

Consideration Rate 

 

Pitch Adjustment Rate 

 

Fret Width Damp Ratio 

 

HS HMCR=0.9 

 

PAR=0.1 

 

FWdamp=0.995 

 

Table 2. General and Specific Parameters of GA, PSO, and HS 

 
 

Iteratio

n 

Best Cost RMSE(T

r) 

ER.St.D(T

r) 

ER.Mean(T

r) 

ER.RMSE(T

s) 

ER.St.D(T

s) 

ER.Mean(T

s) 

1 11.760499

85 

11.7605 11.7459 1.3828 16.8792 17.1005 0.41884 

2 8.8828388

84 

8.8828 8.4225 2.9619 12.4316 11.8501 44.2209 

3 10.663588

85 

10.6636 10.0981 3.5914 10.0468 9.0969 4.5924 

4 10.465559

28 

10.4656 10.1778 2.6678 12.9987 13.0968 1.3972 
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Table 2: General and Specific Parameters of GA, PSO, and HS

 

 
 

Parameters for Each Algorithm 

General Parameters for Each Algorithm 

Row Population 

Size 

Cost Function 

Number 

Number of Decision 

Variables 

 

Upper Bound/Lower Bound 

1 25 1000 202 0.1/1 

Specific Parameters for Each Algorithm 

Name  Gama Mutation 

Percentage 

 

Mutation Rate 

 

Selection Pressure 

 

GA pc=0.4 

 

0.7 

 

pm=0.7 

 

mu=0.15 

 

beta=5 

 

Name Inertia 

Weight 

 

Inertia Weight 

Damping Ratio 

 

Personal Learning 

Coefficient 

 

Global Learning Coefficient 

 

PSO w=1 

 

W damp=0.99 

 

c1=1 

 

c2=2 

 

Name Harmony Memory 

Consideration Rate 

 

Pitch Adjustment Rate 

 

Fret Width Damp Ratio 

 

HS HMCR=0.9 

 

PAR=0.1 

 

FWdamp=0.995 

 

Table 2. General and Specific Parameters of GA, PSO, and HS 

 
 

Iteratio

n 

Best Cost RMSE(T

r) 

ER.St.D(T

r) 

ER.Mean(T

r) 

ER.RMSE(T

s) 

ER.St.D(T

s) 

ER.Mean(T

s) 

1 11.760499

85 

11.7605 11.7459 1.3828 16.8792 17.1005 0.41884 

2 8.8828388

84 

8.8828 8.4225 2.9619 12.4316 11.8501 44.2209 

3 10.663588

85 

10.6636 10.0981 3.5914 10.0468 9.0969 4.5924 

4 10.465559

28 

10.4656 10.1778 2.6678 12.9987 13.0968 1.3972 

 

 
 

Parameters for Each Algorithm 

General Parameters for Each Algorithm 

Row Population 

Size 

Cost Function 

Number 

Number of Decision 

Variables 

 

Upper Bound/Lower Bound 

1 25 1000 202 0.1/1 

Specific Parameters for Each Algorithm 

Name  Gama Mutation 

Percentage 

 

Mutation Rate 

 

Selection Pressure 

 

GA pc=0.4 

 

0.7 

 

pm=0.7 

 

mu=0.15 

 

beta=5 

 

Name Inertia 

Weight 

 

Inertia Weight 

Damping Ratio 

 

Personal Learning 

Coefficient 

 

Global Learning Coefficient 

 

PSO w=1 

 

W damp=0.99 

 

c1=1 

 

c2=2 

 

Name Harmony Memory 

Consideration Rate 

 

Pitch Adjustment Rate 

 

Fret Width Damp Ratio 

 

HS HMCR=0.9 

 

PAR=0.1 

 

FWdamp=0.995 

 

Table 2. General and Specific Parameters of GA, PSO, and HS 

 
 

Iteratio

n 

Best Cost RMSE(T

r) 

ER.St.D(T

r) 

ER.Mean(T

r) 

ER.RMSE(T

s) 

ER.St.D(T

s) 

ER.Mean(T

s) 

1 11.760499

85 

11.7605 11.7459 1.3828 16.8792 17.1005 0.41884 

2 8.8828388

84 

8.8828 8.4225 2.9619 12.4316 11.8501 44.2209 

3 10.663588

85 

10.6636 10.0981 3.5914 10.0468 9.0969 4.5924 

4 10.465559

28 

10.4656 10.1778 2.6678 12.9987 13.0968 1.3972  

 
 

5 11.379869

19 

11.3799 10.8959 3.4852 12.175 12.0907 2.4277 

6 10.090065

46 

10.0901 9.5103 3.5203 14.3815 14.0431 3.8483 

7 9.5684015

17 

9.5684 9.2578 2.6116 11.8227 10.8292 5.0587 

8 10.549500

12 

10.5495 10.5855 0.71533 14.6317 14.8272 -0.16032 

9 12.059804

84 

12.0598 11.7917 2.8239 9.8268 9.2893 3.5419 

10 11.760499

85 

11.7605 11.7459 1.3826 16.8792 17.1005 0.41844 

 Table 3. GA Experiments in 10 Iterations with 1000 Function Evaluation Numbers 

 

Iteratio

n 

Best Cost RMSE(T

r) 

ER.St.D(T

r) 

ER.Mean(T

r) 

ER.RMSE(T

s) 

ER.St.D(T

s) 

ER.Mean(T

s) 

1 10.24274337 10.1327 9.9132 3.1016 14.9602 15.1424 0.74143 

2 11.38296531 11.383 10.5295 4.4671 11.4969 11.3076 2.7716 

3 10.14274137 10.1427 9.7122 3.1016 14.9602 15.1424 0.74143 

4 10.89375463 10.8938 10.1777 4.0331 11.762 10.3535 4.2786 

5 10.80272467 10.7422 10.0904 3.5440 11.2243 11.102 2.0272 

6 10.73027223 10.7303 10.2134 3.4655 11.6683 11.7177 1.5673 

7 10.75195862 10.752 10.1948 3.5851 11.3179 11.194 2.4672 

8 10.96160988 10.9616 10.7472 2.4427 10.3179 10.2493 -2.0432 

9 11.01776643 11.0178 10.4485 3.6688 11.2907 11.4217 0.6768 

10 11.14744368 11.1474 10.455 4.0249 13.6499 13.3446 3.5954 

Table 4. HS Experiments in 10 Iterations with 1000 Function Evaluation Numbers 

 

Iteration Best Cost RMSE(Tr) ER.St.D(Tr) ER.Mean(Tr) ER.RMSE(Ts) ER.St.D(Ts) ER.Mean(Ts) 

1 10.96031598 10.9603 10.5717 3.1046 7.3678 7.2607 1.7183 

2 8.954222742 8.9542 8.726 2.2137 10.8775 10.8836 1.7275 

3 9.788586236 9.78.86 9.3292 3.126 12.1447 12.082 2.3149 

4 13.85598915 13.856 13.8428 1.5949 14.2084 14.3982 -0.1562 

5 9.009749371 9.0097 8.7582 2.3111 12.6672 12.7944 1.0339 

6 9.255105177 9.2551 9.028 2.2537 12.5431 12.6575 1.1546 
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Table 4: HS Experiments in 10 Iterations with 1000 Function Evaluation Numbers

Table 5: PSO Experiments in 10 Iterations with 1000 Function Evaluation Numbers
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7 10.10974672 10.97 9.8905 2.3445 10.0512 9.1912 4.3326 

8 9.659392225 9.6594 9.4998 2.3223 10.1669 9.5308 3.8627 

9 9.358697992 9.3587 9.2467 1.7481 17.9272 18.2386 -0.86387 

10 10.43044628 10.944 9.1465 2.1027 10.9815 9.4526 4.7193 

 

Table 5. PSO Experiments in 10 Iterations with 1000 Function Evaluation Numbers 

 
 

 Best Cost 

Row/Name PSO HS GA 

1 10.96031598 10.14274137 11.76049985 

2 8.954222742 11.38296531 8.882838884 

3 9.788586236 10.14274137 10.66358885 

4 13.85598915 10.89375463 10.46555928 

5 9.009749371 10.80272467 11.37986919 

6 9.255105177 10.73027223 10.09006546 

7 10.10974672 10.75195862 9.568401517 

8 9.659392225 10.96160988 10.54950012 

9 9.358697992 11.01776643 12.05980484 

10 10.43044628 11.14744368 11.76049985 

Mín 8.954222742 (2) 10.14274137 (3) 8.882838884 (1) 

Max 13.85598915 (3) 11.38296531 (1) 12.05980484 (2) 

Variance 2.110913086 (3) 0.157109225 (1) 1.065655198 (2) 

Mean 10.13822519 (1) 10.79739782 (3) 10.71806278 (2) 

Table 6: Best Cost Results in the Same Criterions with Ranking 

 

 

 
 

7 10.10974672 10.97 9.8905 2.3445 10.0512 9.1912 4.3326 

8 9.659392225 9.6594 9.4998 2.3223 10.1669 9.5308 3.8627 

9 9.358697992 9.3587 9.2467 1.7481 17.9272 18.2386 -0.86387 

10 10.43044628 10.944 9.1465 2.1027 10.9815 9.4526 4.7193 

 

Table 5. PSO Experiments in 10 Iterations with 1000 Function Evaluation Numbers 

 
 

 Best Cost 

Row/Name PSO HS GA 

1 10.96031598 10.14274137 11.76049985 

2 8.954222742 11.38296531 8.882838884 

3 9.788586236 10.14274137 10.66358885 

4 13.85598915 10.89375463 10.46555928 

5 9.009749371 10.80272467 11.37986919 

6 9.255105177 10.73027223 10.09006546 

7 10.10974672 10.75195862 9.568401517 

8 9.659392225 10.96160988 10.54950012 

9 9.358697992 11.01776643 12.05980484 

10 10.43044628 11.14744368 11.76049985 

Mín 8.954222742 (2) 10.14274137 (3) 8.882838884 (1) 

Max 13.85598915 (3) 11.38296531 (1) 12.05980484 (2) 

Variance 2.110913086 (3) 0.157109225 (1) 1.065655198 (2) 

Mean 10.13822519 (1) 10.79739782 (3) 10.71806278 (2) 

Table 6: Best Cost Results in the Same Criterions with Ranking 

 



Volume 6 | Issue 2 | 13J Gene Engg Bio Res, 2024

Table 6: Best Cost Results in the Same Criterions with Ranking

 

 

 
 

Table 6: Best Cost Results in the Same Criterions with Ranking 

 

 
                     Figure 11. Comparing the Performance of the Metaheuristic Algorithms 

 

 

Test Results for ANFIS -GA 

Signal Target Value  Signal Output Value  

26 25.98392271 

12 11.73902 

12 11.9625162 

14 13.34917415 

14 13.5490892 

14 13.48701588 

25 24.73183246 

10 9.91159936 

26 25.22100347 

10 9.27301582 

42 41.51346323 

53 52.18975964 

26 25.4519122 

14 13.90522145 

53 52.75836313 

10 9.82100825 

26 25.68173131 

 

 
 

7 10.10974672 10.97 9.8905 2.3445 10.0512 9.1912 4.3326 

8 9.659392225 9.6594 9.4998 2.3223 10.1669 9.5308 3.8627 

9 9.358697992 9.3587 9.2467 1.7481 17.9272 18.2386 -0.86387 

10 10.43044628 10.944 9.1465 2.1027 10.9815 9.4526 4.7193 

 

Table 5. PSO Experiments in 10 Iterations with 1000 Function Evaluation Numbers 

 
 

 Best Cost 

Row/Name PSO HS GA 

1 10.96031598 10.14274137 11.76049985 

2 8.954222742 11.38296531 8.882838884 

3 9.788586236 10.14274137 10.66358885 

4 13.85598915 10.89375463 10.46555928 

5 9.009749371 10.80272467 11.37986919 

6 9.255105177 10.73027223 10.09006546 

7 10.10974672 10.75195862 9.568401517 

8 9.659392225 10.96160988 10.54950012 

9 9.358697992 11.01776643 12.05980484 

10 10.43044628 11.14744368 11.76049985 

Mín 8.954222742 (2) 10.14274137 (3) 8.882838884 (1) 

Max 13.85598915 (3) 11.38296531 (1) 12.05980484 (2) 

Variance 2.110913086 (3) 0.157109225 (1) 1.065655198 (2) 

Mean 10.13822519 (1) 10.79739782 (3) 10.71806278 (2) 

Table 6: Best Cost Results in the Same Criterions with Ranking 

 

Figure 11: Comparing the Performance of the Metaheuristic Algorithms

 

 
 

 
                     Figure 11. Comparing the Performance of the Metaheuristic Algorithms 

 

 

Test Results for ANFIS -GA 

Signal Target Value  Signal Output Value  

26 25.98392271 

12 11.73902 

12 11.9625162 

14 13.34917415 

14 13.5490892 

14 13.48701588 

25 24.73183246 

10 9.91159936 

26 25.22100347 

10 9.27301582 

42 41.51346323 

53 52.18975964 

26 25.4519122 

14 13.90522145 

53 52.75836313 

10 9.82100825 

26 25.68173131 

14 13.23073958 

26 25.21447959 



Volume 6 | Issue 2 | 14J Gene Engg Bio Res, 2024

Table 7: Comparing the Signal Target Value & Signal Output Value
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5. Conclusion
This study contributes to expanding traffic signal timing controllers 
which is tried to reduce expected error values at the intersection and 
indicated best best prediction. We modeled an isolated intersection 
network with 3 phases in VISSIM. Moreover, considering various 
traffic scenarios for the network to test the accuracy and reliability 
of the VISSIM-designed controller before and after modeling is 
illustrated better performance after modeling. It was concluded 
that the documented information delivered accurate outcomes 
which can be stored as reference data for future studies. The 
recognition of a traffic-forecasting tool based on the ANFIS 
and metaheuristic algorithms is the contribution of the current 
article in this survey; ANFIS and metaheuristic algorithms were 
implemented in MATLAB. We tried to quantify the parameters 
of ANFIS by considering the ability of metaheuristic algorithms 
in the interaction between exploration and exploitation to find the 
best parameters. This prevented the algorithm from prematurely 
converging. By using the metaheuristic algorithm’s ability in 
tuning the parameters, we observed better performance stability of 
ANFIS-GA in comparison with its rivals in terms of prediction. Our 
model predicts with a total Mean Square Error and Relative Mean 
Square Error of 2.9619 and 8.4215 in the train set and 4.2209 and 
11.8501 in the test set respectively. Considerable studies are done 
in the field of traffic signal timing, but still, there is remarkable 
time need to be spent on this issue over the world. One of the 
reasons should be the gap between the methodical works and 
what is done in the industry. The further cause could be related 
to the laxity of techniques that these days are used. However, the 
effect of enhancing the number of vehicles and travel in urban 
areas is undeniable. Also, in the ANFIS controller, the number 
of membership functions is fixed and set manually. Dedicating 
more membership functions will lead to a faster and more robust 
controller, however, using useless membership functions can force 
negative results. hence, detecting fully the right numbers is helpful 
in the efficiency of the controller. Providing intelligent techniques 
for this purpose is useful.
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