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Abstract
In the emerging field of computational neuroscience, the architecture of brain networks is a subject of intense study and debate. 
While models that only consider complex systems provide significant insights into neuronal interconnections, they often overlook 
the pivotal role of brain hubs—central nodes that manage a large number of connections. On the other hand, giving too much 
importance to brain hubs can lead to an oversimplification of the true complexity found in neuronal networks. This paper 
explores the challenges and trade-offs of incorporating both complexity and hubs in brain models. Through a custom-built 
model featuring five hubs with varying weights and distances, we investigate how these elements interact and influence the 
emergent network properties such as alpha brain wave patterns. Our findings suggest that a balanced approach that considers 
both complexity and the presence of hubs yields a more accurate and nuanced understanding of brain network architecture.
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1. Introduction 
Understanding the complexity of neural networks in the brain 
has been a significant endeavor in computational neuroscience. 
Traditional graph theory has provided a scaffold to study this 
complexity through the evaluation of brain connectivity patterns 
[1,2]. These patterns often show an intricate balance between local 
and global connectivity, often described in terms of "small-world" 
networks [3,4]. In these networks, hub nodes, which are nodes with 
a high degree of connectivity, play a crucial role in determining the 
functional and structural characteristics of the network [5,6]. 

Our recent computational experiment aimed to simulate such 
complex brain networks, with an emphasis on examining the 
relationship between hub presence and overall network complexity. 
We implemented a graph-based neural network using Python's 
Network X library, wherein each node represents a neuron, and 
each edge represents a synaptic connection [7]. The network was 
divided into multiple hubs, each with a different number of neurons 
and connection weights. These hubs were interconnected based 
on specific distance metrics, modeled to capture the essence of 
functional and anatomical distance between distinct brain regions 
[8,9]. 

By analyzing alpha wave patterns associated with each hub, we 
also explored how the micro- connectivity within and between 
hubs could influence neural oscillations, a key feature of brain 

functionality [10,11]. Alpha waves were modeled as sinusoidal 
functions modulated by the weight of the connections, thereby 
integrating structural and functional aspects of the network [12,13]. 
This paper provides an in-depth analysis of the results generated 
from our computational model, aiming to shed light on the nuanced 
relationship between hub architecture and network complexity in 
a simulated neural network. The intersection between complexity 
and hubs in network theory has a rich history that touches on 
various fields including mathematics, physics, computer science, 
and biology. Here's a brief overview: 
 
1.1 Early Work on Complexity 
The concept of complexity has been a subject of interest dating 
back to the studies of cellular automata by John von Neumann and 
later, Stephen Wolfram. Complexity theory emerged as a subset 
of computational theory and mathematics to understand how 
systems evolve and how complex phenomena arise from simple 
interactions. 

1.2 Small-World Networks and Hubs 
The seminal work of Watts and Strogatz in 1998 introduced the 
concept of small-world networks, which have a high clustering 
coefficient and short path lengths. These networks represented 
a middle ground between completely regular and completely 
random networks. Small-world networks were found to be a good 
model for many real-world networks, including neural networks, 
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social networks, and the internet [14]. 

1.3 Emergence of Hubs 
Research by Albert-László Barabási and his colleagues at the end 
of the 20th century brought attention to the presence of hubs in 
many complex networks, referred to as "scale-free networks." 
In these networks, some nodes (or "hubs") have many more 
connections than others and play a crucial role in the network's 
topology and functionality. 

1.4 Complexity Meets Hubs 
Researchers started to realize that hubs are often essential for the 
emergence of complex behaviors in networks. Hubs can serve as 
critical points for information processing, transfer, and integration, 
thereby increasing the network's complexity [15,1]. In brain 
networks, hubs are thought to facilitate global communication and 
are often associated with regions of high functional importance. 

1.5 Modern Approaches 
With advances in computational power and algorithms, the study 
of complexity and hubs has moved from theoretical models to 
real-world data analysis, especially in the case of neural networks. 
Studies often employ machine learning and graph theory to analyze 
the topological and dynamic complexities associated with hubs in 
various types of networks. The relationship between complexity 
and hubs remains an active area of research, with current work 
focusing on how to manipulate hubs to alter network behavior, 
the role of hubs in network resilience and vulnerability, and how 
the complexity of hubs may differ between different types of 
networks. Networks are not static; they evolve over time. How 
hubs and complexity co-evolve is a topic of current study. 

Overall, the history of complexity and hubs theory is a tapestry of 
interdisciplinary work aimed at understanding the underpinnings 
of complex systems, and how certain key elements like hubs 
contribute to this complexity. Techniques like graph theory, 
machine learning, and computational simulations are widely 
accepted tools for studying these phenomena.

2. Methodology 
2.1 Objective 
The objective of this study is to study the relationship between hubs 
and complexity in neural network models, particularly focusing on 
the role of hubs in shaping the network's complexity and function. 

2.2 Research Design 
The study employs a mixed-method approach, combining 
computational simulations with theoretical analysis. 

2.3 Data Collection 
Data is generated synthetically through simulations. Five hubs 

with varying weights and distances were introduced into the neural 
network model. Each hub contains five neurons. Connection 
strengths between neurons within the same hub and across different 
hubs were determined based on distance and weights. 

2.4 Tools and Software
2.4.1 Network X: For constructing and analyzing neural network 
models. Matplotlib: For visualizing the network and the alpha 
waveforms. NumPy: For numerical operations.
2.4.2 Python 3.x: Programming language used for simulations. 
2.4.3 Data Collection: Data is generated synthetically through 
simulations. Five hubs with varying weights and distances were 
introduced into the neural network model. Each hub contains five 
neurons. Connection strengths between neurons within the same 
hub and across different hubs were determined based on distance 
and weights.

2.5 Variables 
Hub Weights: [0.2, 0.3, 0.1, 0.15, 0.15] 
Hub Distances: [0.1, 0.2, 0.25, 0.25, 0.2] 
Neurons Per Hub: 5 

2.5.1 Procedures 
Initialization: Initialize the neural network with five hubs and 25 
neurons. 
Intra-Hub Connections: Connect neurons within the same hub 
based on a decreasing central coefficient. 
Inter-Hub Connections: Connect neurons between different hubs 
based on the respective distances. 
Simulation: Run the network to generate alpha waveforms 
corresponding to the connections. 
Data Analysis: Compute the 20 largest differences in alpha power 
among the connections. 
Visualization: Plot graphs to visualize the connections and the 
corresponding alpha waveforms. 
Analysis 
Graph Theory Metrics: Calculate network parameters like degree 
distribution, clustering coefficient, and average shortest path 
length. 
Visual Analysis: Interpret the plotted graphs for any patterns or 
trends. 

2.6 Validation 
Sensitivity Analysis: Change the weights and distances to see how 
robust the findings are. 
Peer Review: Submit the initial findings to experts in the field for 
validation. 
By combining computational models with a rigorous analytical 
approach, this methodology aims to provide a comprehensive 
understanding of how hubs contribute to complexity in neural 
networks. 
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Figure 1: 5 Hubs With 5 Neurons Each with Different Distances and Weights Form A Complex Structure Dynamic
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Figure 2: Hubs 1 and 2 Compared to the other Hubs, on the Right the Panel with Connections and Weight
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Figure 3: Hubs 3 and 4 Compared to the other Hubs, on the Right the Panel with Connections and Weight
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Figure 4: Isolated for Better Visualization, Compared to The Other Hubs, on the Right the Panel with Connections and Weight
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a “natural language”
Figure 5: The Strongest Connections Are Visualized as the Ones that More Alpha Power Differences, A “Natural Language” of 
Modulating Neurons, that We are Beginning to Understand

3. Discussion 
3.1 Complexity and Hubs 
3.1.1 The Symbiosis 
The study highlights the intricate relationship between complexity 
and hubs in neural network models, providing a nuanced 
understanding that challenges traditional viewpoints. Hubs 
have often been seen as central points that reduce the overall 
complexity of the network by providing a concentrated point of 
high connectivity. On the contrary, our research suggests that 
while hubs do serve as central nodes, they also introduce their 
own levels of complexity. The weight of each hub significantly 
influences not just the intra-hub connectivity but also the inter- hub 
relationships. A hub with a higher weight has a stronger impact on 
the network's complexity, acting as a dominant factor in shaping 
the alpha waves' characteristics. However, hubs with lesser weights 
are not merely passive elements; they introduce a different kind 
of complexity by forming intricate patterns of weaker but more 
numerous connections (figs 2,3,4,5). 
  
Contrary to common belief, our study indicates that the distance 
between hubs does not linearly correlate with their level of 
interconnectivity. It's not just the physical distance but the intrinsic 
weights of the hubs that collectively determine the strength 
and complexity of the connections. This adds another layer 
of complexity, making it difficult to predict the behavior of the 

network based on distances alone. 
  
3.1.2 Alpha Wave Variability 
The alpha wave patterns generated during the simulations offer an 
intriguing insight into the network's functioning. Higher variances 
in alpha power were observed in networks with balanced hub 
weights compared to those with a single dominant hub. This 
could have implications in understanding how brain networks 
might operate, given that alpha waves are often linked to various 
cognitive and neurological processes as a “natural language” (see 
fig.1 and 6). 
 
3.2 Limitations 
While the study provides valuable insights, it is not without 
limitations. The model assumes a simplified version of a neural 
network, ignoring several biological factors like neurochemical 
processes and voltage gates, which might play a role in the actual 
brain. Furthermore, the model does not account for dynamic 
changes in hub weights or connections over time, which could be 
an essential aspect of real neural networks. 

The relationship between hubs and complexity is far from 
straightforward. Hubs bring their own form of complexity, 
influenced by their weights and the interplay with other hubs, 
challenging our conventional understanding of their role in 
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network architecture. This intricate relationship warrants further 
exploration to fully grasp the multifaceted nature of complex 
systems. 

The encoding of information in neural networks, including the 
human brain, is a subject of extensive research and is not fully 
understood yet. However, various theories suggest different ways 
that brain waves, including alpha waves, might encode information. 
Here are some perspectives: 
 
3.3 Differences in Ranges 
Spectral Encoding: Different frequency bands (alpha, beta, gamma, 
etc.) are thought to serve different roles in cognitive processes. 
For example, alpha waves are generally associated with a relaxed, 
alert state and inhibit regions that are not currently being used. 
Cross-Frequency Coupling: It's suggested that different types of 
brain waves might interact with each other to encode complex 
information. For example, gamma and theta waves may work 
in conjunction with alpha waves to process different types of 
information. 
  
3.4 Amplitude Modulation
The strength (amplitude) of the alpha wave also carry information. 
For instance, stronger alpha waves may indicate a greater level of 
attentional inhibition. 
Global Network States: Homogeneous patterns could reflect 
a globally coordinated state of the brain, where all parts are 
operating in harmony, potentially representing a specific type of 
cognitive task. 

3.5 Multiplexing
This hypothesis suggests that different types of information 
could be encoded simultaneously using different aspects of the 
waveforms (e.g., amplitude, frequency, phase). 
Dynamic Switching: The brain might dynamically switch between 
different encoding strategies based on the cognitive task at hand. 

3.6 Localized Encoding
Different regions of the brain might use different encoding 
schemes based on their functional role. For example, the frontal 
cortex might use a different scheme than the visual cortex. 
Given the complexities involved, it's likely that no single theory 
can fully explain how information is encoded, and a multi-faceted 
approach considering both differences in ranges and homogeneity 
is necessary for a comprehensive understanding. 
 
4. Conclusion 
The study of complexity in neural networks and the role of hubs 
offer promising avenues for understanding how information is 
processed and encoded in the brain. Our computational model, built 
on network theory and simulated alpha wave dynamics, serves as 
a stepping stone for exploring these intricate relationships. While 
no consensus exists yet on the precise mechanisms for information 
encoding, our findings suggest that both differences in alpha power 
ranges and their homogeneity may play a role, echoing various 
theories in neuroscience and cognitive science. 

As we have demonstrated, hubs in a neural network have unique 
characteristics, including specific weights and varying distances 
from other hubs, which could be instrumental in determining 
how alpha waves are generated and modulated. The role of alpha 
waves in inhibiting or enabling different regions of the network 
suggests a sophisticated mechanism for controlling information 
flow, consistent with existing literature. Our model also raised 
intriguing questions about how information might be encoded 
differently within the same network, depending on various factors 
like the strength and frequency of connections, as well as the 
distance between hubs. 

While our model captures some of the core dynamics, it is clear 
that the real biological neural networks are far more complex, 
involving various types of neurons, synaptic mechanisms, and other 
neural oscillations beyond alpha waves. Further research should 
incorporate these elements for a more complete understanding. 
Moreover, empirical validation is required to substantiate the 
predictions made by our model.  In sum, the exploration of neural 
complexity and hubs is more than a mere academic exercise; it 
holds the potential to significantly advance our understanding 
of cognitive processes, mental health conditions, and even 
the development of neural-inspired computing systems. It is a 
multidisciplinary challenge that warrants the collective effort from 
neuroscience, psychology, computer science, and related fields 
[17-24]. 
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