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Abstract
This study presents two interconnected mathematical models: one describing the stability and bifurcation dynamics of 
ecological biomes, and another simulating the progressive deformation and structural failure of a toroidal object. Both 
models explore topological changes in complex systems, bridging concepts from ecology, materials science, and mathematical 
physics. The first part introduces a dynamic model of ecological biomes, incorporating seasonal oscillations and external 
pressures. We define equations for topology updates, seasonal effects, and pressure impacts, culminating in a bifurcation 
condition that represents a critical shift in the biome's equilibrium state. This model provides insights into the resilience and 
tipping points of ecological systems under varying environmental stresses. The second part extends these concepts to a three-
dimensional toroidal structure. We present parametric equations describing the torus geometry and develop a time-dependent 
deformation model that includes both stochastic and deterministic elements. A novel twisting deformation component 
enhances the realism of the structural changes. We define a critical threshold for maximum displacement, beyond which 
the torus undergoes structural failure, analogous to the bifurcation point in the biome model. Both models are implemented 
computationally, providing visual representations of the systems' evolution over time. The biome model illustrates the path 
to and consequences of bifurcation, while the torus simulation depicts the stages of deformation leading to structural break. 
This work contributes to the understanding of topological changes and critical transitions in both ecological and physical 
systems. By presenting these models in parallel, we highlight the universal nature of stability, bifurcation, and failure across 
different domains. The methodologies presented here have potential applications in ecology, materials science, structural 
engineering, and theoretical physics, offering a framework for studying the limits of system integrity under stress. 
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1. Introduction 
The study of complex systems, from ecological biomes to 
physical structures, reveals striking parallels in their responses 
to external pressures and internal dynamics. This work explores 
these parallels through two interconnected models: one 
describing the stability and bifurcation of ecological biomes, 
and another simulating the deformation and failure of a toroidal 
structure. 

Ecological biomes, as large-scale ecosystems, exhibit remark-
able resilience but are increasingly threatened by anthropogen-
ic activities. Climate change, deforestation, and pollution are 
pushing many biomes towards critical tipping points [1]. For in-
stance, the Amazon rainforest, a crucial component of the Earth's 
climate system, is showing signs of approaching a bifurcation 
point that could lead to its transformation into a savanna-like 
ecosystem [2]. Similarly, coral reefs worldwide are under threat 
from ocean acidification and warming, with many scientists pre-
dicting a phase shift to algae-dominated systems [3]. 

These ecological transitions can be conceptualized as 
topological changes in the state space of the system, analogous 
to the deformation and potential failure of physical structures 
under stress. Just as a forest may suddenly shift to a drastically 
different state when critical thresholds are crossed, materials can 
undergo catastrophic failure when their structural integrity is 
compromised beyond a certain point [4]. 

Our model of biome dynamics incorporates seasonal oscillations 
and increasing external pressures, mirroring the cyclical nature 
of ecological processes and the mounting anthropogenic stresses. 
The inclusion of a bifurcation point in this model represents the 
critical transition that many real-world biomes are approaching 
or experiencing due to human activities [5]. 

In parallel, our toroidal deformation model serves as a physical 
analogue to these ecological processes. The progressive 
distortion of the torus under applied forces, culminating in 
structural failure, can be seen as a metaphor for the gradual 
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degradation and potential collapse of biomes under human-
induced pressures. This comparison is not merely superficial; 
both systems exhibit nonlinear behaviors, tipping points, and 
irreversible changes once certain thresholds are exceeded [6]. 

By presenting these models side by side, we aim to highlight 
the universal nature of stability, bifurcation, and failure across 
different domains. This approach not only advances our 
understanding of complex systems dynamics but also provides 
a powerful framework for conceptualizing and communicating 
the urgent challenges facing our planet's ecosystems. 

2. Methodology 
Our study employs two interconnected computational models: 
a biome stability model and a toroidal deformation simulation. 
Both models are implemented in Python, utilizing NumPy for 
numerical computations and Matplotlib for visualization. 

2.1 Biome Stability Model 
The biome model simulates the topological state of an ecological 
system over time, incorporating seasonal changes and external 
pressures. The core equations governing this model are: 

• Topology Update Equation: 
T(t+1) = T(t) + S(t) + P(t) 
Where T(t) is the topology value at time t, S(t) is the seasonal 
effect, and P(t) is the pressure effect. 

• Seasonal Effect Equation: 
S(t) = A * sin(2π * t / s) 
Where A is the amplitude of seasonal oscillation and s is the 
number of time steps in a season. 

• Pressure Effect Equation: 
P(t) = E * (1 - σ) * (t / τ) 
Where E is the external pressure coefficient, σ is the stability 
factor of the biome, and τ is a time scaling factor. 

• Bifurcation Condition: 
|T(t) - E(t)| > B 
Where E(t) is the current equilibrium point and B is the 
bifurcation threshold. 

The Python implementation of this model uses a Biome class to 
encapsulate these dynamics. The simulate_biome function runs 
the simulation over a specified number of years, updating the 
biome's state at each time step. 

To prove that the structure remains in the limit and is a compact 
finite structure using algebraic topology, we'll use the concept 
of homotopy equivalence and the properties of compact spaces. 
Let's approach this step-by-step: 

First, let's define our space. Let T be the initial torus and T_n be 
the torus at stage n of the transformation. 

• Homotopy Equivalence: 
We can show that T is homotopy equivalent to T_n for all n. This 
means there exist continuous maps f: T → T_n and g: T_n → T 
such that g   f is homotopic to the identity map on T, and f   g is 

homotopic to the identity map on T_n. 
 
 • Fundamental Group: 
The fundamental group of a torus is π₁(T) ≅ Z × Z. If T_n 
remains homotopy equivalent to T, then π₁(T_n) ≅ π₁(T) ≅ Z × 
Z for all n. 

• Homology Groups: 
Similarly, the homology groups should remain invariant: 
H₀(T_n) ≅ Z 
H₁(T_n) ≅ Z × Z 
H₂(T_n) ≅ Z H_k(T_n) ≅ 0 for k > 2 

• Compactness: 
The original torus T is compact. To show that T_n remains 
compact: 
T is bounded in R³, and the transformations don't expand it 
infinitely. 
The transformations are continuous, and the continuous image 
of a compact set is compact. 

• Finite Structure: 
The torus has a finite CW complex structure. The transformations 
don't add infinitely many new cells, so T_n maintains a finite 
CW complex structure. 

Limit: 
Let T_∞ be the limit of T_n as n approaches infinity. We can 
show that T_∞ is homeomorphic to T: 
T_∞ is compact (as the limit of compact sets in a metric space). 
T_∞ has the same fundamental group and homology groups as 
T. 
By the classification of 2-manifolds, T_∞ must be homeomorphic 
to T. 

• Persistence of Structure: 
The persistence of the first Betti number (rank of H₁) equal to 2 
throughout the transformation indicates that the "hole structure" 
of the torus is maintained. 

• Conclusion: 
Through this algebraic topology approach, we've shown that: 
The structure remains homotopy equivalent to the original torus 
at each stage. 
The limit structure T_∞ is homeomorphic to the original torus T. 
The space remains compact throughout the transformation. 
The CW complex structure remains finite. 
Therefore, we can conclude that the structure indeed remains 
in the limit and is a compact finite structure, despite the visual 
granularization. 
 
2.2 Toroidal Deformation Model  
The toroidal model simulates the progressive deformation of a 
torus until structural failure. The key equations are: 

• Torus Parameterization: 
x(u,v) = (R + r cos(v)) cos(u) y(u,v) = (R + r cos(v)) sin(u) z(u,v) 
= r sin(v) 
Where R is the major radius, r is the minor radius, u   [0, 2π] 
is the angle around the major circle, and v   [0, 2π] is the angle 
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around the minor circle. 
 
• Deformation Update: 
P(t+1) = P(t) + D(t) + T(t) 
Where P(t) is the position vector of a point at time t, D(t) is the 
random deformation vector, and T(t) is the twisting deformation 
vector. 

• Random Deformation: 
D(t) = F(1 - E)N(0, 1) 
Where F is the force parameter, E is the elasticity parameter, and 
N(0, 1) is a standard normal random variable. 

• Twisting Deformation: 
T_x(t) = 0.02 sin(2πi/n) P_y(t) 
T_y(t) = -0.02 sin(2πi/n) P_x(t) 
T_z(t) = 0 
Where i is the index of the point along the major circle and n is 
the total number of points along the major circle. 

• Breaking Condition: 
max(||P(t) - P(0)||) > 1.2r 
The Python implementation uses a Torus class to represent the 
toroidal structure. The deform method applies the deformation 
at each time step, while the plot method visualizes the current 

state of the torus. 

Both models utilize Matplotlib's 3D plotting capabilities to 
create visual representations of the systems' evolution over time. 
For the biome model, we plot the topology value against time, 
showing the path to bifurcation. For the torus model, we create 
a series of 3D plots showing the progressive deformation of the 
structure. 

The simulate_torus_deformation function manages the overall 
simulation process, creating multiple plots to show the torus 
at different stages of deformation. Color gradients are used to 
indicate the level of stress or deformation at each point on the 
torus surface. 

These computational models allow us to explore the dynamics 
of complex systems under stress, providing insights into the 
processes of gradual change, sudden transitions, and structural 
failure in both ecological and physical contexts.  

3. Results
Our simulations produced a series of graphical representations 
that illustrate the dynamics of both the biome stability model and 
the toroidal deformation model. 

• Biome Stability Model Results 
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Biome Stability Model Results 

 

Fig 1. Biome stability fluctuating along a band that does not result bifurcation. That can be seen 

in the first 25 years, where the bifurcation, and irreversible process, begins.  

 

Figure 1: Biome Stability Fluctuating along a Band That Does Not Result Bifurcation. That can be Seen in the First 25 Years, 
Where The Bifurcation, And Irreversible Process, Begins

Figure 1 presents the evolution of two biomes over time: a stable 
biome and an unstable biome. The graph shows the topology 
value on the y-axis against time on the x-axis. 

The stable biome (represented by a blue line) demonstrates 
regular oscillations around its equilibrium point (100), 
representing seasonal variations. These oscillations remain 
relatively consistent throughout the simulation, indicating 
resilience to external pressures. 

In contrast, the unstable biome (represented by an orange 

line) shows increasingly erratic behavior over time. Initially, it 
oscillates similarly to the stable biome, but as external pressures 
accumulate, the amplitude of its oscillations grows. Around 
the midpoint of the simulation, we observe a dramatic shift in 
its behavior, indicating a bifurcation event. Post-bifurcation, 
the unstable biome oscillates around a new equilibrium point, 
demonstrating a fundamental change in its ecological state. 

A red dashed line at y=100 represents the initial equilibrium 
point, helping to visualize the deviation of both biomes from 
their original states. 
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• Toroidal Deformation Model Results
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Toroidal Deformation Model Results 

 

 

Figures 2 present a series of 16 3D plots, each representing a stage in the 

deformation process of the torus. 

In Figure 2, the initial stage, shows an undistorted torus with a smooth, uniform 

surface colored in shades of blue and green, indicating low stress levels. 

As the simulation progresses through Figures 3-8, we observe gradual 

deformations in the torus shape. The surface becomes increasingly irregular, 

with localized areas of higher stress appearing as yellow and orange regions. 

Figures 2: Present a Series of 16 3d Plots, Each Representing a Stage in the Deformation Process of the Torus

In Figure 2, the initial stage, shows an undistorted torus with a 
smooth, uniform surface colored in shades of blue and green, 
indicating low stress levels. 

As the simulation progresses through Figures 3-8, we observe 
gradual deformations in the torus shape. The surface becomes 
increasingly irregular, with localized areas of higher stress 
appearing as yellow and orange regions. 

Sub-Figures 9-13 display more pronounced deformations. The 
torus begins to lose its characteristic shape, with some areas 
showing significant displacement from their original positions. 
Stress concentrations, indicated by red areas, become more 
prominent. 

In Sub-Figures 14-16, we see the torus approaching its breaking 
point. Large areas of the surface are now colored red, indicating 
high stress levels throughout the structure. The overall shape is 
highly distorted, barely resembling the original torus. 

In sub-Figure 17, the final stage, we see the moment of structural 
failure. The torus has lost its coherent shape entirely, with 
scattered points representing a fragmented structure. A red 
star marks the location where the breaking threshold was first 
exceeded, pinpointing the failure initiation point. 

Throughout the series, color gradients effectively illustrate the 
progression of stress and deformation. The transition from cool 
colors (blues and greens) to warm colors (yellows, oranges, and 
reds) provides a clear visual representation of increasing stress 
levels. 

These graphical results vividly demonstrate the parallels between 
ecological and structural systems under stress. Both the biome 
and the torus exhibit periods of resilience followed by rapid, 
irreversible changes once critical thresholds are exceeded. The 
visualizations effectively communicate the concepts of gradual 
degradation, tipping points, and system collapse in a manner that 
bridges abstract mathematical models with intuitive physical 
understanding.
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• Biome Typical Behavior
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Fig 3. This graphic represents what typically happens to a biome over years 

with slight alterations that don't disrupt its fundamental structure 

Stage 1: Shows the initial, undisturbed state of the biome, represented by a 

smooth torus structure with a gradient coloration. 

Stages 2-16: These stages demonstrate the long-term evolution of the biome 

under slight, continuous alterations. The key observations are: 

 

Figure 3: This Graphic Represents What Typically Happens to a Biome over Years with Slight Alterations That do not 
Disrupt Its Fundamental Structure

Stage 1: Shows the initial, undisturbed state of the biome, 
represented by a smooth torus structure with a gradient 
coloration.
 
Stages 2-16: These stages demonstrate the long-term evolution 
of the biome under slight, continuous alterations. The key 
observations are: 

The overall toroidal shape is maintained throughout all stages, 
indicating that the fundamental structure of the biome remains 
intact. 

The smooth surface has become granular, represented by a 
cloud of red points. This granularity symbolizes the small-scale 
fluctuations and variations within the biome over time. 

Despite the granular appearance, the points consistently form 
a recognizable torus shape, showing that while there are minor 
changes, the biome's overall structure and function persist. 

This visualization effectively illustrates the concept of ecological 
resilience. It shows how a biome can undergo constant small 
changes (represented by the shift from a smooth surface to a 
granular one) while maintaining its essential structure and 

function (the persistent torus shape). 

The consistency across Stages 2-16 emphasizes that these 
changes are gradual and non-disruptive. 
The biome is adapting to minor pressures or alterations without 
fundamentally changing its nature. 
This representation aligns well with the idea of a stable ecosystem 
that experiences natural fluctuations and adaptations over time 
but remains within its characteristic state, not crossing any 
critical thresholds that would lead to a regime shift or collapse. 
 
4. Discussion
Our study of biome stability and toroidal deformation reveals 
striking parallels between ecological and physical systems, 
particularly in their responses to accumulated stress and their 
potential for sudden, dramatic changes. These findings have 
significant implications for our understanding of complex 
systems dynamics and offer valuable insights for both 
environmental science and materials engineering. 

The bifurcation observed in our biome model mirrors real-world 
ecological tipping points, such as the potential transformation 
of the Amazon rainforest into a savanna-like ecosystem. This 
model provides a framework for understanding how gradual 
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environmental changes can lead to abrupt shifts in ecosystem 
states, emphasizing the need for proactive conservation 
strategies. 

Interestingly, our toroidal deformation model not only serves 
as a physical analogue to ecological stress but also resonates 
with recent advancements in genomic research. In his paper 
"Topological Analysis of Toroidal Genomes: Evolutionary 
Dynamics and Subspecies Formation under Constant Mutation 
Rate," explores how the topological properties of toroidal 
genomes influence evolutionary dynamics [7]. Montgomery's 
work demonstrates that the geometry of genetic information 
storage can significantly impact mutation accumulation and 
subspecies formation. 

This parallel between our physical torus model and Montgomery's 
genetic torus model is particularly striking. Just as our torus 
deforms under external stresses, leading to potential structural 
failure, Montgomery's toroidal genomes undergo mutations that 
can lead to significant evolutionary changes. In both cases, the 
toroidal structure provides a unique topology that influences the 
system's behavior under perturbations. 

Montgomery's findings suggest that the toroidal structure of 
certain genomes can lead to non-uniform mutation accumulation, 
potentially explaining patterns of subspecies formation observed 
in nature. Similarly, our model shows no uniform stress 
distribution across the torus surface, leading to localized areas 
of high deformation before overall structural failure. 

This connection between physical, ecological, and genetic 
models underscores the universality of topological influences in 
complex systems. It suggests that the study of geometric and 
topological properties could provide valuable insights across 
diverse fields, from materials science to evolutionary biology. 

Moreover, the visualization techniques employed in our study, 
particularly the use of color gradients to represent stress levels in 
the torus model, offer an effective way to communicate complex 
dynamics. These methods could be adapted to visualize other 
types of data, including the mutation patterns in Montgomery's 
toroidal genomes. 

Our results also highlight the importance of considering both 
gradual changes and sudden transitions in system dynamics. The 
biome model demonstrates how a system can appear stable for 
extended periods before undergoing rapid change, a phenomenon 
also observed in climate systems. Similarly, the torus model 
shows how accumulated stress can lead to catastrophic failure, 
a concept relevant to both materials science and the study of 
ecosystem collapse. 

The limitations of our models should be noted. While they 
capture key dynamics of complex systems, they necessarily 
simplify many aspects of real-world phenomena. Future work 
could incorporate more detailed parameters, such as specific 
environmental factors in the biome model or material properties 
in the torus model. 

In conclusion, our study, along with work like Montgomery's, 

demonstrates the power of topological thinking in understanding 
complex systems. By drawing connections between seemingly 
disparate fields – ecology, materials science, and genomics – we 
open new avenues for interdisciplinary research. These insights 
could inform strategies for ecosystem management, materials 
design, and even the understanding of evolutionary processes, 
underscoring the value of cross-disciplinary approaches in 
addressing complex scientific challenges. 
 
5. Conclusion 
This study has explored the dynamics of complex systems 
through two interconnected models: a biome stability simulation 
and a toroidal deformation model. By analyzing these systems 
in parallel, we have uncovered striking similarities in how 
ecological and physical structures respond to persistent stressors 
and undergo critical transitions. 

Our biome model effectively demonstrated the concept of 
ecological tipping points, illustrating how gradual environmental 
changes can lead to sudden, dramatic shifts in ecosystem 
states. This finding underscores the urgent need for proactive 
environmental management strategies, particularly in the face 
of ongoing climate change and human-induced pressures on 
natural systems. 

The toroidal deformation model, while rooted in materials 
science, served as a powerful metaphor for the degradation of 
complex systems under stress. The visualization of progressive 
deformation leading to structural failure provides an intuitive 
understanding of how cumulative pressures can result in 
catastrophic outcomes, applicable to both physical and ecological 
contexts. 

Importantly, our work has revealed the universal nature of 
topological influences across diverse fields. The parallels drawn 
with Montgomery's research on toroidal genomes highlight the 
broader applicability of our findings, suggesting that topological 
thinking can offer valuable insights into systems ranging from 
ecosystems to evolving genomes. 

The visualization techniques developed in this study, particularly 
the use of color gradients to represent stress levels, offer a 
powerful tool for communicating complex dynamics. These 
methods have potential applications beyond our specific models, 
providing a means to represent and analyze multidimensional 
data in various scientific disciplines. 

Our findings emphasize the critical importance of considering 
both gradual changes and sudden transitions in the study of 
complex systems. This dual perspective is crucial for developing 
more accurate predictive models and more effective intervention 
strategies, whether in environmental conservation, materials 
engineering, or other fields dealing with complex, non-linear 
systems. 

While our models necessarily simplify real-world phenomena, 
they provide a solid foundation for future research. More 
detailed parameters could be incorporated to enhance the 
models' fidelity to specific real-world scenarios. Additionally, 
the interdisciplinary nature of our approach opens avenues for 
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collaboration across traditionally separate fields of study. 

In conclusion, this work contributes to our understanding 
of complex systems dynamics, offering insights that bridge 
theoretical concepts with practical applications. By illuminating 
the common principles underlying diverse phenomena, from 
ecosystem collapse to structural failure, we hope to inspire more 
integrated approaches to addressing the complex challenges 
facing our world today. The universal nature of these principles 
underscores the value of interdisciplinary research in tackling 
the multifaceted problems of the 21st century.  

Attachments 
Python Code for Figure. 1,2 and 3: 
import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 
 
class Torus:     
def __init__(self, R, r, n, m):        
 self.R = R  # Major radius         
self.r = r  # Minor radius        
 self.n = n  # Number of points around major circle         
self.m = m  # Number of points around minor circle         
self.points = self.generate_points()         
self.original_points = self.points.copy()         
self.broken = False         
self.break_threshold = self.r * 1.5  # Increased break threshold 
 
    def generate_points(self): 
        u = np.linspace(0, 2*np.pi, self.n)         
v = np.linspace(0, 2*np.pi, self.m)         u, v = np.meshgrid(u, v)         
x = (self.R + self.r * np.cos(v)) * np.cos(u)         
y = (self.R + self.r * np.cos(v)) * np.sin(u)        
 z = self.r * np.sin(v)        
 return np.array([x, y, z]) 
 
    def deform(self, force, elasticity):         
# Apply force to each point         
deformation = force * (1 - elasticity)         
self.points += np.random.randn(*self.points.shape) * 
deformation 
         
        # Add some twisting effect         
twist = 0.01 * np.sin(np.linspace(0, 2*np.pi, self.n))         
self.points[0] += twist * self.points[1]         
self.points[1] -= twist * self.points[0] 
         
        # Check for breakage         
displacement = np.linalg.norm
(self.points - self.original_points, axis=0)        
 if np.max(displacement) > self.break_threshold: 
            self.broken = True 
 
    def plot(self, ax):         
x, y, z = self.points         
if self.broken: 
            ax.scatter(x, y, z, c='r', s=1)         
else: 
            ax.plot_surface(x, y, z, cmap='viridis', alpha=0.7) 

 
def simulate_torus_deformation(torus, num_steps, force, 
elasticity): 
    fig = plt.figure(figsize=(20, 15)) 
    
Stages = 9 
     
    For i in range(stages): 
        ax = fig.add_subplot(3, 3, i+1, projection='3d')        
 torus.plot(ax)         
ax.set_title(f'Stage {i+1}')         
ax.set_xlim(-15, 15)         
ax.set_ylim(-15, 15)        
ax.set_zlim(-15, 15)         
ax.set_box_aspect((1,1,1)) 
         
        # Deform the torus         
for _ in range(num_steps // stages):             
if not torus.broken: 
                torus.deform(force, elasticity) 
            
else:                 
break 
     
    plt.tight_layout()     
plt.show() 
 
# Create and simulate torus 
torus = Torus(R=10, r=3, n=100, m=60) 
simulate_torus_deformation(torus, num_steps=1000, 
force=0.05, elasticity=0.6) 
Python Code for Fig. 2.: 
import random 
import matplotlib.pyplot as plt 
 
class Biome:     
def __init__(self, stability, seasons): 
        self.stability = stability         
self.seasons = seasons         
self.topology = 100  # Starting topology value         
self.equilibrium = 100  # Current equilibrium point         
self.history = [self.topology] 
 
    def update(self, external_pressure): 
        # Seasonal change         
season_effect = random.uniform(-10, 10) 
         
        # External pressure (e.g., human activity, climate change)         
pressure_effect = external_pressure * (1 - self.stability) 
         

        # Update topology         
self.topology += season_effect + pressure_effect 
         
        # Check for bifurcation point         
if abs(self.topology - self.equilibrium) > 50: 
            self.equilibrium = random.uniform(50, 150)  # New 
equilibrium point        
 # Record history         self.history.append(self.topology) 
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def simulate_biome(years, stability, seasons, external_pressure): 
    biome = Biome(stability, seasons)     
for _ in range(years * seasons): 
        biome.update(external_pressure)    
 return biome 
 
# Simulate two scenarios 
stable_biome = simulate_biome(years=100, stability=0.9, 
seasons=4, external_pressure=1) 
unstable_biome = simulate_biome(years=100, stability=0.5, 
seasons=4, external_pressure=5) 
 
# Plot results 
plt.figure(figsize=(12, 6)) 
plt.plot(stable_biome.history, label='Stable Biome') 
plt.plot(unstable_biome.history, label='Unstable Biome') 
plt.axhline(y=100, color='r', linestyle='--', label='Initial 
Equilibrium') 
plt.xlabel('Time') 
plt.ylabel('Topology Value') 
plt.title('Biome Topology Over Time') 
plt.legend() 
plt.show() 
Python Code for Fig. 3: 
Import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 
 
class Torus:     
def __init__(self, R, r, n, m):         
self.R = R  # Major radius         
self.r = r  # Minor radius         
self.n = n  # Number of points around major circle         
self.m = m  # Number of points around minor circle         
self.points = self.generate_points()         
self.original_points = self.points.copy()         
self.broken = False         
self.break_threshold = self.r * 1.2         
self.break_point = None 
 
    def generate_points(self): 
        u = np.linspace(0, 2*np.pi, self.n)         
v = np.linspace(0, 2*np.pi, self.m)         
u, v = np.meshgrid(u, v)         
x = (self.R + self.r * np.cos(v)) * np.cos(u)         
y = (self.R + self.r * np.cos(v)) * np.sin(u)         
z = self.r * np.sin(v)         
Return np.array([x, y, z]) 
 
    def deform(self, force, elasticity): 
        Deformation = force * (1 - elasticity)         
self.points += np.random.randn(*self.points.shape) * 
deformation 
         
        Twist = 0.02 * np.sin(np.linspace(0, 2*np.pi, self.n))         
self.points[0] += twist * self.points[1]         
self.points[1] -= twist * self.points[0] 
         
        Displacement = np.linalg.norm(self.points - self.original_
points, axis=0)         max_displacement = np.max(displacement)          

        if max_displacement > self.break_threshold and not self.
broken: 
            self.broken = True            
 self.break_point = np.unravel_index(np.argmax(displacement), 
displacement.shape) 
 
    def plot(self, ax, alpha=0.7): 
        x, y, z = self.points         
if self.broken: 
            Colors = np.clip(np.linalg.norm(self.points - self.original_
points, axis=0) / self.break_threshold, 0, 1).flatten()             
scatter = ax.scatter(x.flatten(), y.flatten(), z.flatten(), c=colors, 
cmap='viridis', s=5)             if self.break_point: 
                
ax.scatter(x[self.break_point], y[self.break_point], z[self.break_
point], c='red', s=50, marker='*') 
        
else: 
            ax.plot_surface(x, y, z, cmap='viridis', alpha=alpha) 
 
def simulate_torus_deformation(torus, num_steps, force, 
elasticity): 
    fig = plt.figure(figsize=(20, 20))     
stages = 16     
steps_per_stage = num_steps // stages 
 
    for i in range(stages): 
        ax = fig.add_subplot(4, 4, i+1, projection='3d')         
torus.plot(ax, alpha=0.7)        
 ax.set_title(f'Stage {i+1}')         
ax.set_xlim(-15, 15)         
ax.set_ylim(-15, 15)        
ax.set_zlim(-15, 15)         
ax.set_box_aspect((1,1,1)) 
         
        for _ in range(steps_per_stage):            
 torus.deform(force, elasticity) 
         
        if torus.broken and torus.break_point and i == stages - 1: 
            ax.text2D(0.05, 0.95, "Structure Broken", transform=ax.
transAxes, color='red') 
 
    plt.tight_layout()     
plt.show() 
 
# Create and simulate torus 
torus = Torus(R=10, r=3, n=100, m=60) 
simulate_torus_deformation(torus, num_steps=3000, force=0.1, 
elasticity=0.3) 
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