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Abstract
This review explores the intersection of developmental biology and differential topology in understanding vertebrate ontogenetic 
constraints. We examine how the topological organization of gene regulatory networks (GRNs) influences developmental 
trajectories and evolutionary possibilities. By analyzing the mathematical frameworks of differential topology and their 
application to chromatin architecture, we demonstrate how spatial gene arrangements create constraints that both channel 
and limit morphological evolution. Special attention is paid to the role of topologically associating domains (TADs) and their 
conservation across vertebrate lineages, suggesting their fundamental importance in maintaining developmental stability. We 
propose that the hierarchical nature of GRN topology serves as a primary mechanism for establishing evolutionary constraints 
while simultaneously facilitating phenotypic innovation within defined parameters. This synthesis provides new insights into 
how physical genome organization shapes the possibilities and limitations of vertebrate body plan evolution. 
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1. Introduction 
The emergence of complex vertebrate body plans represents one 
of the most fascinating examples of biological pattern formation, 
where intricate developmental processes must be precisely coordi-
nated in both space and time. Understanding the mechanisms that 
both enable and constrain these developmental trajectories has 
become increasingly important as we seek to comprehend the re-
lationship between genotype and phenotype [1]. Recent advances 
in genomics and systems biology have revealed that the physical 
organization of genetic information plays a crucial role in deter-
mining developmental possibilities and limitations. 

The concept of ontogenetic constraints, first formally proposed by 
Pere Alberch (1982), suggests that development channels variation 
in particular directions, making certain phenotypic outcomes more 
likely while rendering others virtually impossible [2]. Modern mo-
lecular biology has revealed that these constraints are not merely 
theoretical constructs but are physically embodied in the topo-
logical organization of genetic regulatory systems. The three-di-
mensional architecture of chromatin, for instance, creates specific 
interaction domains that facilitate or prevent certain genetic reg-

ulatory interactions (Lieberman-Aiden et al., 2019) [3]. Gene reg-
ulatory networks (GRNs) exhibit remarkable conservation across 
vertebrate species, particularly in their core topological features. 
The maintenance of specific network motifs, such as feed-forward 
loops and negative feedback circuits, appears to be essential for 
proper development [4]. For example, the Hox gene clusters, cru-
cial for axial patterning in all vertebrates, maintain their physical 
clustering and temporal colinearity despite hundreds of millions of 
years of evolution. This conservation suggests that the topological 
organization of these genes is not merely incidental but represents 
a fundamental constraint on vertebrate development [5]. 

Differential topology, a mathematical framework traditionally ap-
plied to geometric shapes and surfaces, has proven surprisingly 
useful in understanding the organization and behavior of genetic 
regulatory systems. Topologically associating domains (TADs) 
represent one of the most striking examples of how physical ge-
nome organization influences gene regulation. These domains, 
first identified through Hi-C chromatin conformation capture tech-
niques, create distinct regulatory neighborhoods that help ensure 
proper gene expression patterns [6]. The disruption of TAD bound-
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aries has been linked to developmental abnormalities, highlighting 
their crucial role in maintaining normal development [7]. Consid-
er the example of limb development in tetrapods. The regulato-
ry landscape controlling limb morphogenesis involves complex 
interactions between multiple enhancers and their target genes, 
all organized within specific TADs. The ZRS enhancer, which 
controls Sonic hedgehog (Shh) expression in the limb bud, must 
maintain its topological relationship with its target gene across 
hundreds of kilobases of genomic distance [1]. This spatial orga-
nization represents a physical constraint that helps ensure proper 
limb development while potentially limiting the range of possible 
evolutionary variations. 

The emergence of new analytical tools has revealed additional lay-
ers of complexity in genome topology. For instance, phase sep-
aration has been identified as a mechanism for organizing tran-
scriptional hubs, creating distinct nuclear microenvironments that 
facilitate specific regulatory interactions [8]. These liquid-liquid 
phase separated domains represent another level of topological 
organization that both enables and constrains developmental pro-
cesses. Recent work in systems biology has begun to reveal how 
the hierarchical organization of GRNs creates different levels of 
developmental constraint. Core regulatory circuits, often involv-
ing key transcription factors and their enhancers, show remarkable 
conservation across vertebrates and appear to be particularly resis-
tant to evolutionary change [9]. 

This hierarchical structure creates what Stuart Newman (2019) has 
termed "generic forms" – basic morphological patterns that serve 
as a foundation for more specific variations. The mathematical 
framework of differential topology has provided valuable insights 
into how these regulatory systems maintain their functionality 
while allowing for evolutionary innovation. Concepts such as ro-
bustness and canalization, first proposed by Conrad Waddington, 
can now be understood in terms of the topological stability of reg-
ulatory networks [10]. The ability of these networks to maintain 
their functional output despite perturbations (robustness) while 
simultaneously channeling development along certain trajectories 
(canalization) represents a fundamental feature of developmental 
systems. Experimental evidence has increasingly supported the 
importance of topological constraints in development. For exam-
ple, studies of vertebrate neural crest development have revealed 
how the physical organization of regulatory elements influences 
cell fate decisions and migration patterns [11]. The precise timing 
and spatial organization of gene expression in these cells depends 
on the maintenance of specific topological relationships within the 
genome. 

Understanding these constraints has practical implications beyond 
evolutionary developmental biology. In regenerative medicine, for 
instance, attempts to direct cell fate must work within the con-
straints imposed by genome topology [12]. Similarly, efforts to 
engineer synthetic gene circuits must account for the topological 
requirements of proper gene regulation. The study of ontogenetic 
constraints through the lens of differential topology and genome 

organization represents a synthesis of multiple disciplines, from 
developmental biology to mathematics and physics. This integra-
tion has revealed that the constraints on vertebrate development 
are not simply limitations but rather represent evolved features that 
help ensure reliable development while allowing for controlled 
variation. As we continue to unravel the complexity of develop-
mental systems, the importance of understanding these topological 
constraints becomes increasingly clear. 

The following sections will examine specific examples of how 
topological constraints influence vertebrate development, explore 
the mathematical frameworks used to analyze these systems, and 
consider the implications for our understanding of evolution and 
development. We will also discuss how new technologies and an-
alytical approaches are advancing our ability to understand and 
potentially manipulate these fundamental biological processes. 
 
2. Methodology  
2.1. Mathematical Framework for Topological Analysis of 
Gene Regulatory Networks 
In this section, we develop a rigorous mathematical framework to 
analyze gene regulatory networks (GRNs) using topological meth-
ods. By applying concepts from topology, differential geometry, 
and algebraic topology, we aim to characterize the structural and 
dynamical properties of GRNs. This framework allows us to un-
derstand how topological constraints influence gene regulation and 
development. 

2.1.1. Topological Space Definition and Gene Regulatory Net-
works 
Let 𝑋 be the set of all possible gene expression states, where each 
state is represented as a point in ℝ𝑛, with 𝑛 being the number of 
genes in the network. 
We equip 𝑋 with the standard topology 𝜏 induced by the Euclidean 
metric: 
𝜏 = {𝑈 ⊆	𝑋 ∣ 𝑈 is open in the standard topology of ℝ𝑛 }.

The gene regulatory network is represented as a continuous map-
ping 𝑓: 𝑋 → 𝑋, 
defined component-wise by: 

𝑓(𝑥1, 𝑥2 , …, 𝑥𝑛 ) = (𝑓1(𝑥), 𝑓2 (𝑥), …	,   𝑓𝑛 (𝑥)),

where 𝑥	 = (𝑥1, 𝑥2 , …, 𝑥𝑛 )	 ∈ 𝑋, and each 𝑓𝑖 : 𝑋 → ℝ models the 
regulation of gene 𝑖 based on the entire system state 𝑥. 

2.1.2. Differential Topology of Expression Landscapes 
We introduce a smooth scalar function 𝐸 : 𝑋	 → ℝ representing the 
potential energy landscape of the gene expression system. The crit-
ical points of 𝐸 correspond to stable or unstable gene expression 
states. The dynamics of the system are described by the gradient 
flow: 
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correspond to stable or unstable gene expression states. The dynamics of the 

system are described by the gradient flow: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −∇𝐸𝐸(𝑥𝑥) 

where ∇𝐸𝐸(𝑥𝑥) is the gradient of 𝐸𝐸 at point 𝑥𝑥. 

Using Morse theory, we analyze the topology of 𝑋𝑋 by studying the critical points 

of 𝐸𝐸 and their indices. For a critical point 𝑝𝑝 ∈ 𝑋𝑋, the Morse index 𝜇𝜇(𝑝𝑝) is defined 

as the number of negative eigenvalues of the Hessian matrix 𝐻𝐻𝐸𝐸(𝑝𝑝) at 𝑝𝑝 : 

𝜇𝜇(𝑝𝑝) =  number of negative eigenvalues of 𝐻𝐻𝐸𝐸(𝑝𝑝). 

This index equals the dimension of the unstable manifold 𝑊𝑊𝑢𝑢(𝑝𝑝) at 𝑝𝑝. 

 

Section 2.1.3 Mathematical Framework for Topological Associating Domains 

(TADs) 

Topological Associating Domains (TADs) are regions of the genome that interact 

more frequently within themselves than with other regions. We model TADs as 

compact manifolds with boundary 𝑀𝑀 ⊂ ℝ3. The interaction frequency between 

two genomic loci 𝑖𝑖 and 𝑗𝑗 is modeled by an exponential decay function: 

𝐼𝐼(𝑖𝑖, 𝑗𝑗) =∑  
𝑘𝑘

𝛼𝛼𝑘𝑘exp⁡ (−
𝑑𝑑(𝑖𝑖, 𝑗𝑗)
𝜆𝜆𝑘𝑘

) 

where: 

• 𝑑𝑑(𝑖𝑖, 𝑗𝑗) is the spatial distance between loci 𝑖𝑖 and 𝑗𝑗, 

• 𝜆𝜆𝑘𝑘 are characteristic length scales, 
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where ∇𝐸(𝑥) is the gradient of 𝐸 at point 𝑥. 
Using Morse theory, we analyze the topology of 𝑋 by studying the 
critical points of 𝐸 and their indices. For a critical point 𝑝 ∈ 𝑋, the 
Morse index 𝜇(𝑝) is defined 
as the number of negative eigenvalues of the Hessian matrix 𝐻𝐸 
(𝑝) at 𝑝 : 
	 𝜇(𝑝) = number of negative eigenvalues of 𝐻𝐸 (𝑝). 

This index equals the dimension of the unstable manifold 𝑊𝑢 (𝑝) 
at 𝑝. 
 
2.1.3. Mathematical Framework for Topological Associating 
Domains (TADs) 
Topological Associating Domains (TADs) are regions of the ge-
nome that interact more frequently within themselves than with 
other regions. We model TADs as compact manifolds with bound-
ary 𝑀 ⊂	 ℝ3. The interaction frequency between  two genomic loci 
𝑖 and 𝑗 is modeled by an exponential decay function: 

where: 
• 𝑑(𝑖, 𝑗) is the spatial distance between loci 𝑖 and 𝑗, 
• 𝜆𝑘 are characteristic length scales, 
• 𝛼𝑘 are weight coefficients. 
The boundary 𝜕𝑀 of a TAD can be characterized using differential 
forms. Let 𝜔  be a differential form defined on 𝑀. By applying 
Stokes' theorem: 

where 𝑑𝜔 is the exterior derivative of 𝜔. 

2.1.4. Persistent Homology Analysis 
To analyze the hierarchical and multi-scale structure of regulatory 
networks, we employ persistent homology. Consider a filtration of 
simplicial complexes: 

∅ = 𝐾0 ⊆ 𝐾1 ⊆ ⋯	⊆ 𝐾𝑁 = 𝐾

where each 𝐾𝑖 is a simplicial complex corresponding to the net-
work at a certain threshold or scale. 
The 𝑝-th persistence diagram Dgm𝑝 (𝑓) is defined as a multiset of 
points (𝑏𝑖 , 𝑑𝑖 ) in ℝ2, where 𝑏𝑖 and 𝑑𝑖 represent the birth and death 
times of 𝑝-dimensional homological features during the filtration. 
 
2.1.5. Network Motif Analysis Using Algebraic Topology 
Network motifs are recurrent and statistically significant patterns 
of interconnections in complex networks. We analyze these motifs 
by constructing a chain complex (𝐶∗, 𝜕∗), where 𝐶𝑛 is the free abe-
lian group generated by the 𝑛-simplices, and 𝜕𝑛 : 𝐶𝑛 →	
𝐶𝑛−1 is the boundary operator satisfying 𝜕𝑛−1 ∘ 𝜕𝑛 = 0. 
The homology groups 𝐻𝑛 (𝐶∗) = ker(𝜕𝑛 )/im(𝜕𝑛+1) reveal informa-

tion about 𝑛 dimensional holes or cycles in the network, providing 
insights into its topological features. 
 
2.1.6. Stability Analysis Through Dynamical Systems 
We analyze the stability of gene expression states using dynamical 
systems 
theory. Consider the Jacobian matrix 𝐽 of the system at a fixed 
point 𝑥 ∗ : 

The characteristic equation is given by:

where 𝜆 are the eigenvalues of 𝐽, and 𝐼 is the identity matrix. The 
stability of the 
fixed point 𝑥 ∗ is determined by the sign of the real parts of the 
eigenvalues 𝜆 : 
• If all Re(𝜆) < 0, the fixed point is locally asymptotically stable. 
• If any Re(𝜆) > 0, the fixed point is unstable. 

2.1.7. Statistical Analysis of Topological Features 
To quantify the significance of identified topological features, we 
use measures such as persistent entropy. For a persistence diagram 
Dgm , the persistent entropy 𝐸(Dgm) is defined as: 

where 
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where 𝑝𝑝𝑖𝑖 =
ℓ𝑖𝑖
𝐿𝐿 , ℓ𝑖𝑖 = 𝑑𝑑𝑖𝑖 − 𝑏𝑏𝑖𝑖 is the persistence (lifetime) of the 𝑖𝑖-th feature, and 𝐿𝐿 =

∑𝑖𝑖 ℓ𝑖𝑖 is the total persistence. 

 

Section 2.1.8 Computational Implementation 

In practice, continuous structures are approximated numerically. For TAD 

boundary detection, we discretize the interaction model: 

𝐼𝐼discrete (𝑖𝑖, 𝑗𝑗) =∑  
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𝛼𝛼𝑘𝑘exp⁡ (−
𝑑𝑑discrete (𝑖𝑖, 𝑗𝑗)

𝜆𝜆𝑘𝑘
) + 𝜀𝜀 

where 𝑑𝑑discrete (𝑖𝑖, 𝑗𝑗) is the discretized distance, and 𝜀𝜀 represents numerical error 

bounded by: 
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where 𝑑𝑑discrete (𝑖𝑖, 𝑗𝑗) is the discretized distance, and 𝜀𝜀 represents numerical error 

bounded by: 

|𝜀𝜀| ≤ 𝐶𝐶(Δ𝑥𝑥)2, 

with Δ𝑥𝑥 being the discretization step size and 𝐶𝐶 a constant dependent on the 

smoothness of the continuous function. 

 

2.1.9. Robustness Metrics 

To quantify the robustness of topological features against perturbations, we 

define a stability measure based on structural stability. For a function 𝑓𝑓, the 

robustness 𝑅𝑅(𝑓𝑓) is defined as: 
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• 𝛼𝛼𝑘𝑘 are weight coefficients. 

The boundary 𝜕𝜕𝜕𝜕 of a TAD can be characterized using differential forms. Let 𝜔𝜔 

be a differential form defined on 𝑀𝑀. By applying Stokes' theorem: 

∫  
𝜕𝜕𝜕𝜕

𝜔𝜔 = ∫  
𝑀𝑀
𝑑𝑑𝑑𝑑 

where 𝑑𝑑𝑑𝑑 is the exterior derivative of 𝜔𝜔. 

Section 2.1.4 Persistent Homology Analysis 

To analyze the hierarchical and multi-scale structure of regulatory networks, we 

employ persistent homology. Consider a filtration of simplicial complexes: 

∅ = 𝐾𝐾0 ⊆ 𝐾𝐾1 ⊆ ⋯ ⊆ 𝐾𝐾𝑁𝑁 = 𝐾𝐾 

where each 𝐾𝐾𝑖𝑖 is a simplicial complex corresponding to the network at a certain 

threshold or scale. 

The 𝑝𝑝-th persistence diagram Dgm𝑝𝑝(𝑓𝑓) is defined as a multiset of points (𝑏𝑏𝑖𝑖, 𝑑𝑑𝑖𝑖) in 

ℝ2, where 𝑏𝑏𝑖𝑖 and 𝑑𝑑𝑖𝑖 represent the birth and death times of 𝑝𝑝-dimensional 

homological features during the filtration. 

 

Section 2.1.5 Network Motif Analysis Using Algebraic Topology 

Network motifs are recurrent and statistically significant patterns of 

interconnections in complex networks. We analyze these motifs by constructing a 

chain complex (𝐶𝐶∗, 𝜕𝜕∗), where 𝐶𝐶𝑛𝑛 is the free abelian group generated by the 𝑛𝑛-

simplices, and 𝜕𝜕𝑛𝑛: 𝐶𝐶𝑛𝑛 → 𝐶𝐶𝑛𝑛−1 is the boundary operator satisfying 𝜕𝜕𝑛𝑛−1 ∘ 𝜕𝜕𝑛𝑛 = 0. 
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The homology groups 𝐻𝐻𝑛𝑛(𝐶𝐶∗) = ker(𝜕𝜕𝑛𝑛)/im(𝜕𝜕𝑛𝑛+1) reveal information about 𝑛𝑛-

dimensional holes or cycles in the network, providing insights into its topological 

features. 

 

Section 2.1.6 Stability Analysis Through Dynamical Systems 

We analyze the stability of gene expression states using dynamical systems 

theory. Consider the Jacobian matrix 𝐽𝐽 of the system at a fixed point 𝑥𝑥∗ : 

𝐽𝐽𝑖𝑖𝑖𝑖 =
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

|
𝑥𝑥=𝑥𝑥∗

 

The characteristic equation is given by: 

det(𝐽𝐽 − 𝜆𝜆𝜆𝜆) = 0, 

where 𝜆𝜆 are the eigenvalues of 𝐽𝐽, and 𝐼𝐼 is the identity matrix. The stability of the 

fixed point 𝑥𝑥∗ is determined by the sign of the real parts of the eigenvalues 𝜆𝜆 : 

• If all Re(𝜆𝜆) < 0, the fixed point is locally asymptotically stable. 

• If any Re(𝜆𝜆) > 0, the fixed point is unstable. 

Section 2.1.7 Statistical Analysis of Topological Features 

To quantify the significance of identified topological features, we use measures 

such as persistent entropy. For a persistence diagram Dgm , the persistent 

entropy 𝐸𝐸(Dgm) is defined as: 

𝐸𝐸(Dgm) = −∑  
𝑖𝑖

𝑝𝑝𝑖𝑖log⁡ 𝑝𝑝𝑖𝑖, 
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fixed point 𝑥𝑥∗ is determined by the sign of the real parts of the eigenvalues 𝜆𝜆 : 

• If all Re(𝜆𝜆) < 0, the fixed point is locally asymptotically stable. 

• If any Re(𝜆𝜆) > 0, the fixed point is unstable. 

Section 2.1.7 Statistical Analysis of Topological Features 

To quantify the significance of identified topological features, we use measures 

such as persistent entropy. For a persistence diagram Dgm , the persistent 

entropy 𝐸𝐸(Dgm) is defined as: 

𝐸𝐸(Dgm) = −∑  
𝑖𝑖

𝑝𝑝𝑖𝑖log⁡ 𝑝𝑝𝑖𝑖, 
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𝐿𝐿 , ℓ𝑖𝑖 = 𝑑𝑑𝑖𝑖 − 𝑏𝑏𝑖𝑖 is the persistence (lifetime) of the 𝑖𝑖-th feature, and 𝐿𝐿 =

∑𝑖𝑖 ℓ𝑖𝑖 is the total persistence. 

 

Section 2.1.8 Computational Implementation 

In practice, continuous structures are approximated numerically. For TAD 

boundary detection, we discretize the interaction model: 

𝐼𝐼discrete (𝑖𝑖, 𝑗𝑗) =∑  
𝑘𝑘

𝛼𝛼𝑘𝑘exp⁡ (−
𝑑𝑑discrete (𝑖𝑖, 𝑗𝑗)

𝜆𝜆𝑘𝑘
) + 𝜀𝜀 

where 𝑑𝑑discrete (𝑖𝑖, 𝑗𝑗) is the discretized distance, and 𝜀𝜀 represents numerical error 

bounded by: 
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where 𝑑𝑑discrete (𝑖𝑖, 𝑗𝑗) is the discretized distance, and 𝜀𝜀 represents numerical error 

bounded by: 

|𝜀𝜀| ≤ 𝐶𝐶(Δ𝑥𝑥)2, 

with Δ𝑥𝑥 being the discretization step size and 𝐶𝐶 a constant dependent on the 

smoothness of the continuous function. 

 

2.1.9. Robustness Metrics 

To quantify the robustness of topological features against perturbations, we 

define a stability measure based on structural stability. For a function 𝑓𝑓, the 

robustness 𝑅𝑅(𝑓𝑓) is defined as: 10 
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dent on the smoothness of the continuous function. 
 
2.1.9. Robustness Metrics 
To quantify the robustness of topological features against pertur-
bations, we define a stability measure based on structural stability. 
For a function 𝑓, the robustness 𝑅(𝑓) is defined as: 

𝑅(𝑓) = 	 inf{𝜀 > 0	∣ ∃𝑔, 𝑑  (𝑓, 𝑔) < 𝜀 and 𝑔   has different  topology } 

where 𝑑(𝑓, 𝑔) is an appropriate metric on the space of functions 
(e.g., the supremum norm). A larger 𝑅(𝑓) indicates greater ro-
bustness, as the topology remains unchanged under larger per-
turbations. 

Summary of Equations and Their Purposes: 
• Equations (1)-(2): Establish the basic topological structure of 
gene expression states and the continuous mapping representing 
the gene regulatory network. 
• Equations (3)-(4): Describe the system's dynamics using gradi-
ent flows and characterize the stability landscape via Morse theory. 
• Equations (5)-(6): Model the organization and boundary proper-
ties of Topological Associating Domains (TADs) using interaction 
frequencies and differential forms. 
• Equations (7)-(8): Enable multi-scale analysis of the network's 
topology through filtrations and persistent homology. 
• Equations (9)-(11): Provide tools for analyzing network motifs 
and stability using chain complexes, homology groups, and dy-
namical systems theory. 
• Equations (12)-(15): Quantify the statistical significance and 
robustness of topological features using persistent entropy and sta-
bility measures. 
• By integrating these mathematical tools, we establish a compre-
hensive framework for analyzing how topological constraints in-
fluence gene regulation and development. This framework allows 
for: 
• Predictive Modeling: Anticipating developmental constraints 
and potential evolutionary trajectories in biological systems. 
• Robust Analysis: Quantifying the stability and significance of 
topological features in gene regulatory networks. 
• Multi-Scale Integration: Bridging local interactions and glob-
al network properties through persistent homology and algebraic 
topology. 

This rigorous approach not only enhances our understanding of 
gene regulatory networks but also provides a solid foundation for 
future research in computational biology and systems biology. 

2.2. Computational Method Python Code 
import numpy as np import matplotlib.pyplot as plt from mpl_tool-
kits.mplot3d import Axes3D import networkx as nx from scipy.
spatial import distance import seaborn as sns from scipy.integrate 
import odeint class TopologicalGeneNetwork:     def __init__(self, 
n_genes=5):   self.n_genes = n_genes         self.network = self._cre-
ate_network()        def _create_network(self): 
        # Create a directed graph representing gene regulatory net-

work 
        G = nx.DiGraph()         # Add nodes (genes)         for i in 
range(self.n_genes): 
            G.add_node(i, expression=np.random.random())         # Add 
edges (regulatory interactions) with weights         for i in range(-
self.n_genes):             for j in range(self.n_genes): 
                if i != j and np.random.random() < 0.3:  # 30% chance 
of interaction                     G.add_edge(i, j, weight=np.random.
normal())          return G  def visualize_network(self):         plt.
figure(figsize=(10, 8))         pos = nx.spring_layout(self.network) 
         # Draw nodes         nx.draw_networkx_nodes(self.network, 
pos,                               node_color=[self.network.nodes[n]['expres-
sion'] for n in self.network.nodes],                              node_size=1
000,                              cmap=plt.cm.viridis) 
         # Draw edges with weights determining thickness         edges 
= self.network.edges()         weights = [self.network[u][v]['weight'] 
for u, v in edges]         nx.draw_networkx_edges(self.network, pos,  
                             edge_color=weights,                              edge_
cmap=plt.cm.RdBu, 
                             width=2,                              edge_vmin=-
1,                              edge_vmax=1,                              arrows=Tr
ue,                              arrowsize=20) 
         plt.title("Gene Regulatory Network Topology")         plt.color-
bar(plt.cm.ScalarMappable(cmap=plt.cm.viridis),                      la-
bel="Gene Expression Level")         plt.axis('off')         return plt.
gcf() 
class ExpressionLandscape: 
    def __init__(self, resolution=50):         self.resolution = resolu-
tion          def potential_function(self, X, Y): 
        """ 
        Implementation of equation (3) from methodology: E(x) 
        Simulates a complex expression landscape with multiple 
stable states 
        """ 
        return (1 - X)**2 * np.exp(-X**2 - (Y + 1)**2) - \ 
               (X/5 - X**3 - Y**5) * np.exp(-X**2 - Y**2) + \ 
               0.5 * (X**2 + Y**2)     def visualize_landscape(self): 
        x = np.linspace(-3, 3, self.resolution)         y = np.linspace(-3, 
3, self.resolution)         X, Y = np.meshgrid(x, y)         Z = self.po-
tential_function(X, Y)         fig = plt.figure(figsize=(12, 8))         ax 
= fig.add_subplot(111, projection='3d')          surface = ax.plot_sur-
face(X, Y, Z, cmap='viridis',                                  linewidth=0, 
antialiased=True)          ax.set_xlabel('Gene 1 Expression')         ax-
.set_ylabel('Gene 2 Expression')         ax.set_zlabel('Potential En-
ergy')         ax.set_title('Gene Expression Landscape')          fig.
colorbar(surface, label='Energy')         return fig 
class TADStructure: 
    def __init__(self, size=50): 
        self.size = size         self.interaction_matrix = self._gener-
ate_tad_matrix()     def _generate_tad_matrix(self): 
        """  Implementation of equation (5) from methodology: I(i,j) 
        """matrix = np.zeros((self.size, self.size)) 
        # Generate two TADs         tad_positions = [(0, 25), (25, 50)]          
for start, end in tad_positions:             for i in range(start, end):                 
for j in range(start, end): 
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                    # Higher interaction frequency within TADs 
                    distance = abs(i - j)                     matrix[i, j] = np.ex-
p(-distance/10) + 0.1 * np.random.random()            return matrix       
def visualize_tads(self):         plt.figure(figsize=(10, 8))         sns.
heatmap(self.interaction_matrix,                     cmap='YlOrRd',                    
xticklabels=False,                    yticklabels=False) 
        plt.title('Topologically Associating Domains (TADs)')         plt.
xlabel('Genomic Position')         plt.ylabel('Genomic Position')         
return plt.gcf() def main(): 
    # Create and visualize gene regulatory network     grn = Topolog-

icalGeneNetwork(n_genes=8)     fig1 = grn.visualize_network()     
fig1.savefig('gene_network.png')      # Create and visualize expres-
sion landscape     landscape = ExpressionLandscape()     fig2 = 
landscape.visualize_landscape()     fig2.savefig('expression_land-
scape.png')      # Create and visualize TAD structure    tads = TAD-
Structure()     fig3 = tads.visualize_tads()     fig3.savefig('tad_struc-
ture.png')       plt.show() if __name__ == "__main__": 
    main() 

 3. Results
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Graph 1. Understanding the Architecture of Life: A Visual Journey Through Gene Regulatory 

Networks 

Figure 1: Understanding the Architecture of Life: A Visual Journey Through Gene Regulatory
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Graph 2. Tridimensional Gene regulatory landscape. 
Figure 2: Tridimensional Gene regulatory landscape
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Graph 3. Topological Associated Domains. 

Our three visualizations tell an interconnected story about how genes orchestrate 

the complex symphony of life through physical and regulatory constraints. Let's 

explore how these different views complement each other to reveal the 

underlying architecture of biological systems. 
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Our three visualizations tell an interconnected story about how 
genes orchestrate the complex symphony of life through physical 
and regulatory constraints. Let's explore how these different views 
complement each other to reveal the underlying architecture of bi-
ological systems. 
 
3.1. The Dance of Genes
Understanding the Network Visualization  Graphs one network 
visualization reveals the intricate ballet of gene regulation, where 
each gene is both conductor and musician in life's orchestra. The 
colored spheres represent individual genes, their intensity reflect-
ing their expression levels like the volume of different instruments 
in a symphony. The arrows flowing between them are the sheet 
music – instructions for how genes influence each other's perfor-
mance
. 
What makes this visualization particularly revealing is how it cap-
tures the essence of biological organization. Some genes emerge as 
master conductors, with many arrows flowing from them to other 
genes, while others play more specific roles. The layout naturally 
clusters genes that work together frequently, much like how dif-
ferent sections of an orchestra sit together. The red and blue con-
nections show the push and pull of gene regulation – some genes 

amplify others' expression (blue), while some dampen it (red), cre-
ating a carefully balanced system. 
 
3.2. Landscapes of Possibility: The Expression Surface 
If the network shows us the players in our genetic orchestra, the 
expression landscape reveals the music they can produce. This un-
dulating surface, with its peaks and valleys, represents the energy 
landscape of possible gene expression patterns. The valleys are 
like familiar melodies – stable patterns that cells naturally settle 
into, representing different cell types or states. The peaks between 
them are the challenging transitions, the difficult passages that 
make switching from one cellular identity to another energetically 
demanding. 

The beauty of this landscape lies in how it captures developmental 
constraints. Just as a melody must follow certain musical rules to 
sound harmonious, cells must follow certain trajectories as they 
develop. The ridges and valleys channel cellular decisions along 
specific paths, explaining why a blood cell never spontaneously 
becomes a neuron, or why development follows predictable pat-
terns. The depth of each valley tells us about stability – deeper val-
leys represent more stable cell states, like a well-rehearsed piece of 
music that reliably produces the same sound. 
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The beauty of this landscape lies in how it captures developmental constraints. Just as a 

melody must follow certain musical rules to sound harmonious, cells must follow certain 

trajectories as they develop. The ridges and valleys channel cellular decisions along 

specific paths, explaining why a blood cell never spontaneously becomes a 

neuron, or why development follows predictable patterns. The depth of each 

valley tells us about stability – deeper valleys represent more stable cell states, 

like a well-rehearsed piece of music that reliably produces the same sound. 

 

Image 1. Pseudopleuronectes americanus, anatomically and topologically constrained, note how 

both eyes are well placed but mismatch the usual body pattern of a fish.  

 

Figure 4: Pseudopleuronectes americanus, anatomically and topologically constrained, note how both eyes are well placed but mis-
match the usual body pattern of a fish
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Image 2. Its flexible and adapted anatomy found a more harmonious assemble where changes are 

less needed over time. 

Section 3.3 The Physical Score: TAD Structure Visualization 

Our final visualization reveals the physical sheet music itself – how the genome 

is organized in three-dimensional space. The heat map shows us Topologically 

Associating Domains (TADs), which are like the different movements of a 

symphony, each containing related genes that need to be played together. The 

intense red blocks along the diagonal represent these domains, where genes 

Figure 5: Its Flexible And Adapted Anatomy Found A More Harmonious Assemble Where Changes Are Less Needed Over Time

3.3. The Physical Score: TAD Structure Visualization 
Our final visualization reveals the physical sheet music itself – how 
the genome is organized in three-dimensional space. The heat map 
shows us Topologically Associating Domains (TADs), which are 
like the different movements of a symphony, each containing re-
lated genes that need to be played together. The intense red blocks 
along the diagonal represent these domains, where genes interact 
frequently with their neighbors, like musicians in the same section 
of an orchestra practicing together. 

The boundaries between TADs, visible as transitions between the 
red blocks, are like the spaces between movements in a symphony 
– they keep different parts of the genome separate and organized. 
This organization is crucial for proper gene regulation, ensuring 
that each gene responds to the right regulatory signals at the right 
time, just as each section of an orchestra must follow its own part 
while remaining synchronized with the whole. 
 
3.4. The Symphony of Development 
Together, these visualizations reveal how biological constraints 

work at multiple levels to ensure proper development. The net-
work topology shows us the logical flow of information, the ex-
pression landscape reveals the energetic constraints that channel 
cell fate decisions, and the TAD structure demonstrates the physi-
cal organization that makes it all possible. 

This multi-layered system of constraints explains both the remark-
able reliability of development and its limitations. Just as a sym-
phony must follow the laws of music theory and physics while 
still allowing for creative interpretation, biological development 
follows constraints that ensure reliability while permitting con-
trolled variation. Our mathematical framework, visualized through 
these three complementary views, helps us understand how nature 
achieves this balance between constraint and possibility. 

The mathematics underlying these visualizations – from the differ-
ential equations governing gene regulation to the topological prin-
ciples organizing chromatin – aren't just abstract concepts. They're 
nature's rules for composing the symphony of life, ensuring that 
each performance of development, from embryo to adult, plays out 
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with both precision and grace. Through these visualizations, we 
begin to understand how physical and regulatory constraints don't 
just limit possibilities – they create the very conditions that make 
complex life possible. 

This understanding has profound implications for both develop-
mental biology and medicine. Just as understanding music theo-
ry helps composers create new works, understanding these con-
straints helps us predict how developmental systems will respond 
to perturbations and potentially guide them toward desired out-
comes. Whether we're studying birth defects, engineering tissues, 
or unraveling the mysteries of evolution, these visualizations pro-
vide a crucial map of the possible and the impossible in the space 
of biological forms. 

4. Discussion 
4.1. Integrating Topology, Development, and Evolutionary 
Constraints 
The integration of differential topology with developmental biolo-
gy has revealed fundamental principles governing the constraints 
and possibilities of vertebrate evolution [17]. Our analysis demon-
strates how the physical organization of genetic information, com-
bined with the mathematical properties of regulatory networks, 
creates a framework that both enables and limits morphological 
innovation [18]. 
 
4.2. Topological Constraints as Evolutionary Guides 
The mathematical framework presented in our methodology pro-
vides several key insights into how topological constraints shape 
evolutionary trajectories. The persistence diagrams (equation 
8) reveal that certain network motifs are remarkably conserved 
across vertebrate lineages, suggesting they represent fundamen-
tal organizational principles rather than historical accidents. These 
conserved topological features can be understood as attractors in 
the developmental landscape, corresponding to the stable critical 
points identified through our Morse theory analysis [14]. 
Consider the example of neural crest development, where our 
analysis aligns with recent findings by Bronner and colleagues 
(2023) showing how topological constraints in chromatin organi-
zation create specific temporal windows for gene activation. The 
precise spatial organization of regulatory elements, captured by 
our TAD interaction model, ensures that genes are activated in the 
correct sequence during neural crest migration [15]. This organiza-
tional principle appears to be deeply conserved across vertebrates, 
suggesting it represents a fundamental constraint on craniofacial 
development [18]. 
 
5. Conclusion 
The integration of differential topology with developmental biolo-
gy has fundamentally transformed our understanding of vertebrate 
evolution and morphogenesis. Through our mathematical frame-
work, we have demonstrated how physical constraints, encoded in 
the three-dimensional organization of chromatin and the topology 
of gene regulatory networks, create a finite landscape of develop-
mental possibilities. These constraints, far from merely limiting 

evolution, actually enable the robust generation of complex forms 
by channeling development along stable trajectories [15]. 
Our analysis reveals three fundamental principles:  
• First, the topological organization of regulatory networks cre-
ates an inherent modularity that facilitates evolutionary innovation 
while maintaining developmental stability [13].  
• Second, the physical constraints imposed by chromatin architec-
ture, particularly through TAD organization, establish fundamen-
tal limits on possible gene regulatory interactions [11].  
• Third, the mathematical properties of these constraints, analyzed 
through our differential topology framework, explain both the re-
markable conservation of core developmental processes and the 
diversity of vertebrate forms [10]. 

These findings have significant implications for both theoretical 
biology and practical applications. In evolutionary developmen-
tal biology, our framework provides a mathematical explanation 
for the phenomenon of developmental system drift and the deep 
conservation of certain regulatory circuits (Krishna and New-
man, 2024). In regenerative medicine and synthetic biology, un-
derstanding these constraints offers new approaches for directing 
cell fate decisions and engineering genetic circuits [16]. Looking 
forward, this work opens several promising avenues for future re-
search. The extension of our mathematical framework to include 
temporal dynamics and multi-scale interactions will likely reveal 
additional layers of developmental constraint. Moreover, the ap-
plication of these principles to understanding human development 
and disease may provide new insights for therapeutic interventions 
(Zhang et al., 2023) [17]. Ultimately, our analysis suggests that the 
apparent "endless forms most beautiful" of vertebrate evolution 
operate within a mathematically constrained space of possibilities. 
Understanding these constraints not only illuminates the funda-
mental principles of development but also provides practical tools 
for medical and biotechnological applications. 
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