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1. Introduction
As is known, the spectra of real analog signals are calculated 
using the Fourier Transform (FT). The FT calculated as a definite 
integral over time over the duration of the signal. The kernel of 
the transformation is the exponential to the power of a complex 
number -iωt, where i – imaginary unit of a complex number, ω 
– circular frequency, t – time. The exponential to the power of a 
complex number can be represented by Euler's formula as a sum of 
harmonic functions:  exp{-iωt} = cos(ωt) - isin(ωt). Integrating a 
signal over time allows us to calculate what portion of the signal's 
energy is concentrated at certain frequencies. Therefore, FT gives 
us a representation of the analog signal in the form of harmonic 
components with the corresponding amplitude and phase. The 
phase of harmonics is determined by the amplitudes of the cosine 
and sine values on the orthogonal coordinate axes of the complex 
plane, i.e., by the angle of the corresponding vector. The length of 
the vector is calculated using the Pythagorean theorem from the 
value of the amplitudes of the cosine and sine.

Since real signals are used in radio engineering, only the real part 
was extracted from the complex representation of signals. The 
transmission line of complex signals using both real and imaginary 
parts in matrix representation is considered [1]. It is shown that 
in this case the signal energy is the sum of the scalar and vector 
product. Therefore, a complex signal combines energies of 
different nature: potential and kinetic. Since the signal on the 
complex plane is defined by coordinates on two orthogonal axes, 
in matrix representation we obtain a MIMO 2x2 scheme. As a 
result, a gain of 2 times in noise immunity was achieved compared 
to BPSK. This result is also obtained in the Alamouti scheme [2].

A transmission line with a single-frequency quaternion is 
considered [3]. A quaternion in algebraic notation has the 
form: q=s+ix+jy+kz, where i, j, k are imaginary units, s, x, y, z 
are real numbers. In polar representation, a single-frequency 

quaternion is written as  ˆ ˆ( , ) cos sini tq t e t i tωω ω ω= = + , where  

ˆ ( ) 3i i j k= + +  is the imaginary unit of the single-frequency 

quaternion,  2ˆ 1i = − . Imaginary units i, j, k together with the real 
number (scalar) s form a 4D space and, accordingly, increase the 
separability (diversity) of signals. Since each point in 4D space is 
defined by 4 coordinates, in the matrix representation we obtain a 
MIMO 4x4 channel, which allows increasing the communication 
line capacity by 4 times.

In general, the quaternion FT is calculated as an integral in a 4D 
domain. FT of a single-frequency quaternion signal in matrix 
representation was considered in [4]. It is known that multiplying 
a quaternion by another quaternion also results in a quaternion. 
Therefore, the integral of a quaternion can be divided into the sum 
of the integrals for the scalar part and for the imaginary parts. In 
matrix representation, quaternion multiplication can be performed 
by multiplying a quaternion, in vector form, by a quaternion, 
in matrix form. As a result, we obtain a vector that can also be 
considered as a quaternion in vector representation. Therefore, the 
calculation of the FT of a single-frequency quaternion in matrix 
representation can be represented as an integral of each element 
of the resulting vector, and not as a volume integral in 4D. Using 
this representation, quaternion Fourier transforms (QFT) and 
corresponding inverse transforms of various impulses are obtained 
[4]. The properties of the shift of the elements of the quaternion 
vector over different time and frequency intervals are also obtained. 
The validity of Parseval's equality is demonstrated. Using the QFT 
technique for a single-frequency quaternion, similar calculations 
are shown for the discrete quaternion Fourier transform [5].

When solving technical problems, there are often cases where 
elements of some systems interact with each other, creating 
vibrations with different frequencies. These vibrations interact 
with each other to form a common frequency spectrum. When 
analyzing this spectrum using conventional single-frequency 
Fourier transforms, the core of which is complex variables, it is 
difficult to determine the contribution of the generating frequencies 
to the resulting spectrum and, accordingly, to determine the degree 
of influence of various elements of the system on the overall 
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spectrum.
For example, in color image processing tasks, the entire spectrum 
of color images is formed using three primary colors, such as 
RGB (red, green, blue) or CMY (cyan, magenta, yellow) [6]. 
These models are associated with the peculiarities of human color 
perception and the presence of three types of cone receptors in the 
eye, sensitive to three primary colors. 

Three primary colors with a positive sign RGB and a negative 
sign CMY form the so-called color cube. Each point of the cube 
represents a certain color, obtained by adding together in 3D space 
the constituent colors, i.e., spatial frequencies, on the axes.

A communication line with a three-frequency quaternion is 

considered [7]. It is shown that the use of three different angular 
frequencies for each imaginary coordinate axis of 4D space 
increases the possibilities of using the frequency resource to 
increase throughput.

The purpose of this paper is to present a method for the quaternion 
Fourier transform of a three-frequency quaternion.

2. Materials and Methods for Solving the Problem
The use of a three-frequency quaternion for the Fourier transform 
causes certain difficulties, since the exponential of such a 
quaternion is the product of the cosines and sines of different 
angular frequencies  ωi, ωj , ωk  on the axes i, j, k [7]:
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 e expq
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   e cos sin cos sin cos sins
i i j j k kt i t t j t t k t         . 

After multiplying the expressions in parentheses in formula (1) and grouping by real and 

imaginary parts, we obtain an exponential function in the form of a three-frequency quaternion, 

which we denote as 

 ( , , , )i j kf q t     (2) 

( , , , ) ( , , , ) ( , , , ) ( , , , )i j k i j k i j k i j kp t iu t jv t kw t               . 

After reducing similar terms, the components in expression (2) will take the form: 

( , , , ) cos cos cos sin sin sini j k i j k i j kp t t t t t t t          , (3) 
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In matrix representation we obtain the fundamental matrix: 
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calculations of signal spectra are shown. It is obvious that calculating the integral over volume 

causes significant difficulties. 

A QFT technique is known for a single-frequency quaternion in a matrix representation, in which 

the integral over a 4D volume is presented in the form of 4 one-dimensional integrals for each 

orthogonal spatial axis s, i, j, k and the results of calculating the QFT of various 4D pulses are 

shown [4]. 

As can be seen from expressions (2), (3), (4), each element of the fundamental matrix (4) 

depends on 3 angular frequencies. Therefore, the calculation of 3-frequency QFT (3fQFT) must 

be performed for each frequency while fixing the values of the other 2 frequencies. Obviously, 

such a task is also complicated and does not allow obtaining a result in the form of a formula. 

It is shown that it is possible to decompose the fundamental matrix (4) for three reference 

angular frequencies i , j , k  into combination frequencies n , 1,2,3,4n  , [7]. Positive 

combination frequencies are calculated as 
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1 1 2 2 3 3 4 4cos( ) sin( ) cos( ) sin( ) cos( ) sin( ) cos( ) sin( )t t t t t t t t                , 

1 2 3 44 ( , , , , )u t      

1 1 2 2 3 3 4 4cos( ) sin( ) cos( ) sin( ) cos( ) sin( ) cos( ) sin( )t t t t t t t t                 , 

1 2 3 44 ( , , , , )v t      

1 1 2 2 3 3 4 4cos( ) sin( ) cos( ) sin( ) cos( ) sin( ) cos( ) sin( )t t t t t t t t                , 

1 2 3 44 ( , , , , )w t      

1 1 2 2 3 3 4 4cos( ) sin( ) sin( ) cos( ) sin( ) cos( ) cos( ) sin( )t t t t t t t t                 . 

Using expressions (8), the fundamental matrix (4) for reference frequencies i , j , k  is 

presented as the sum of single-frequency matrices of positive combination frequencies 1 , 2 , 

3 , 4 : 

( , , , )i j k t   Φ  

1 2 3 4 1 1 2 2 3 3 4 4( , , , , ) ( , ) ( , ) ( , ) ( , )t t t t t            Φ Φ Φ Φ Φ , (9) 

where, 

         1 1 1 1 1 1
1( , ) cos sin cos sin
4

t t t t t          Φ E I  (10) 

              1 1 1 1cos sin cos sint t t t        J , 

         2 2 2 2 2 2
1( , ) cos sin cos sin
4

t t t t t         Φ E I  

              2 2 2 2cos sin cos sint t t t           J K , 

         3 3 3 3 3 3
1( , ) cos sin cos sin
4

t t t t t         Φ E I  

                3 3 3 3cos sin cos sint t t t         J K , 

         4 4 4 4 4 4
1( , ) cos sin cos sin
4

t t t t t          Φ E I  

                4 4 4 4cos sin cos sint t t t          J K . 

Since matrix ( , , , )i j k t  Φ  is orthogonal, matrix 1 2 3 4( , , , , )t   Φ  will also be orthogonal. 

The determinants of single-frequency matrices are calculated as 
4 2 2 4( , ) cos ( , ) 2cos ( , )sin ( , ) sin ( , )n n n n n nt t t t t        Φ  

          22 2cos ( , ) sin ( , ) 1n nt t     , where n=1,2,3,4. 

The matrices for the combination frequencies are also orthogonal, since 

Using expressions (8), the fundamental matrix (4) for reference frequencies iω  ,  jω ,  kω  is presented as the sum of single-frequency 

matrices of positive combination frequencies  1Ω ,  2Ω , 3Ω  , 4Ω  :
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convenience of consideration, the frequencies of vectors ω and Ω are taken without 

multiplication by 2π. 

Figure 1 shows a multi-frequency signal modulated by an information vector. 
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We obtain the same graphs by summing the elements of the vectors obtained using formula (11) 

by multiplying the information vector by single-frequency matrices of combination frequencies. 

Figure 2 shows the graphs of the elements of the output modulated vectors (11) for the same 

combination frequencies considered above in the example, for the same information vector. 
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As can be seen from (10) and (11), as a result of modulation 

we obtain the sum of phase-modulated subcarriers  1 1( , )tΩy , 

2 2( , )tΩy  ,  3 3( , )tΩy ,  4 4( , )tΩy . Examples of signals obtained 
using formula (11) are shown in [7].

When modulating by multiplying the information vector by 
the matrix (4) for reference frequencies, we obtain a signal 
vector, each element of which consists of the sum of different 

elements at different frequencies for the case ω [ ]T6 2 1= − −ù  

, Ω [ ]T3 5 7 9=Ù . For convenience of consideration, the 
frequencies of vectors ω and Ω are taken without multiplication 
by 2π.

Figure 1 shows a multi-frequency signal modulated by an 

information vector. [ ](0) 1 1 1 1= −x  .
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We obtain the same graphs by summing the elements of the vectors 
obtained using formula (11) by multiplying the information vector 
by single-frequency matrices of combination frequencies.

Figure 2 shows the graphs of the elements of the output modulated 
vectors (11) for the same combination frequencies considered 
above in the example, for the same information vector.7 

 

 

 

 

 
Figure 2. Phase-modulated signals obtained by multiplying the initial vector x(0)=[11-11] by 

single-frequency matrices of combination frequencies (10) 

 

Using the obtained results, we will consider the method of calculating 3fQFT 

2. Method of Obtaining a Three-Frequency Fourier Transform of a Vector of Pulses 

Since the multi-frequency fundamental matrix (9) can be decomposed into four single-frequency 

matrices (10), to obtain 3fQFT we will use QFT with a transform kernel in the form of a single-

frequency fundamental matrix for each combination frequency. The method for obtaining QFT is 

presented in [4]. The QFT and IQFT formulas for reference frequencies ω are: 

QFT:  T( ) ( , ) ( )dt t t 



 g Φ q , (12) 

IQFT: 1( ) ( , ) ( )d
2

t t  





 q Φ g , (13) 

where   T
0 1 2 3( ) ( ) ( ) ( )s x y zt x q t x q t x q t x q t   q  is the vector of analog pulses of a given 

shape, the sign and amplitude of which is determined by the information vector (0)x , 

T
( ) ( ) ( ) ( ) ( )s x y zg g g g       g  is the vector of spectra for the frequency ω. 

The indices of the vector elements correspond to the elements in the algebraic notation of the 

quaternion. The difference is that in [4] single-frequency matrices were considered with elements 

Figure 2. Phase-modulated signals obtained by multiplying the initial vector x(0)=[11-11] by single-frequency matrices of combination 
frequencies (10)
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Using the obtained results, we will consider the method of 
calculating 3fQFT

3. Method of Obtaining a Three-Frequency Fourier Transform 
of a Vector of Pulses
Since the multi-frequency fundamental matrix (9) can be 

decomposed into four single-frequency matrices (10), to obtain 
3fQFT we will use QFT with a transform kernel in the form of 
a single-frequency fundamental matrix for each combination 
frequency. The method for obtaining QFT is presented in [4]. The 
QFT and IQFT formulas for reference frequencies ω are:
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0 1 2 3( ) ( ) ( ) ( )s x y zt x q t x q t x q t x q t =  q

 
is the 

vector of analog pulses of a given shape, the sign and amplitude 
of which is determined by the information vector  x(0),   

( ) ( ) ( ) ( ) ( )s x y zg g g gω ω ω ω ω =  g
 
is the vector of spectra 

for the frequency ω.

The indices of the vector elements correspond to the elements 
in the algebraic notation of the quaternion. The difference is that 
in [4] single-frequency matrices were considered with elements  
cos(ωt) for the real part of the quaternion and sin(ωt)  for the 
imaginary part. A single-frequency quaternion can be viewed as 

a complex number with an imaginary unit ( )ˆ 3= + +I I J K   in 
matrix representation, only in 4D space. In this case, we consider 

three-frequency matrices (10) with elements ( ) ( )cos sinn nt t± Ω ± Ω
 for 

combination frequencies, where n=1,2,3,4.

To simplify the calculations, we group the matrices (10) by cosines 
and sines and denote the resulting sums of the basis (5) matrices as  

0
ˆ = + +I I J K ,  1

ˆ = − + −I I J K , 2
ˆ = − −I I J K  ,  3

ˆ = − − +I I J K .These 
matrices have constant combination frequencies and we will use 
them to obtain the modulated output vector (11), so we will call 
them modulating and designate them with the index m:
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cos( )t  for the real part of the quaternion and sin( )t  for the imaginary part. A single-

frequency quaternion can be viewed as a complex number with an imaginary unit 

 ˆ 3  I I J K  in matrix representation, only in 4D space. In this case, we consider three-

frequency matrices (10) with elements    cos sinn nt t     for combination frequencies, 

where n=1,2,3,4. 

To simplify the calculations, we group the matrices (10) by cosines and sines and denote the 

resulting sums of the basis (5) matrices as 0
ˆ   I I J K , 1

ˆ    I I J K , 2
ˆ   I I J K , 

3
ˆ    I I J K . These matrices have constant combination frequencies and we will use them to 

obtain the modulated output vector (11), so we will call them modulating and designate them 

with the index m: 

     m,1 1 1 1 1 0
1 ˆ ˆ( , ) cos sin
4

t t t        Φ E I E I ,  (14) 

     m,2 2 2 2 2 3
1 ˆ ˆ( , ) cos sin
4

t t t         Φ E I E I , 

     m,3 3 3 0 3 1
1 ˆ ˆ( , ) cos sin
4

t t t         Φ E I E I ,  

     m,4 4 4 3 4 2
1 ˆ ˆ( , ) cos sin
4

t t t        Φ E I E I . 

Modulation of the quaternion carrier is performed, in accordance with (11), by multiplying the 

information vector (0)x  by the modulating matrices (14): 

       1 1 m,1 1 1 1 0 1
1 ˆ ˆ( , ) ( , ) ( ) cos ( ) sin ( )
4

t t t t t t t          y Φ q E I q E I q , (15) 

       2 2 m,2 2 2 2 3 2
1 ˆ ˆ( , ) ( , ) ( ) cos ( ) sin ( )
4

t t t t t t t           y Φ q E I q E I q , 

       3 3 m,3 3 0 3 1 3
1 ˆ ˆ( , ) ( , ) ( ) cos ( ) sin ( )
4

t t t t t t t           y Φ q E I q E I q , 

       4 4 m,4 4 3 4 2 4
1 ˆ ˆ( , ) ( , ) ( ) cos ( ) sin ( )
4

t t t t t t t          y Φ q E I q E I q , 

where   T
, , , ,, ( , ) ( , ) ( , ) ( , )n n n s n n x n n y n n z nt y t y t y t y t       y  - vectors of modulated 

radio pulses on subcarriers n , n=1,2,3,4.  

In general, pulses  tq  can have different shapes [4,5]. Here we will consider rectangular pulses 

with the same amplitude and duration.  

For rectangular pulses, when multiplying the information vector (0)x  by single-frequency 

matrices (14), the resulting vectors of the cosine and sine amplitudes are determined for the 
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Modulation of the quaternion carrier is performed, in accordance with (11), by multiplying the information vector x(0) by the modulating 
matrices (14):



  Volume 2 | Issue 2 | 7J Res Edu, 2024

where  ( ) T
, , , ,, ( , ) ( , ) ( , ) ( , )n n n s n n x n n y n n z nt y t y t y t y t Ω = Ω Ω Ω Ω y  - vectors of 

modulated radio pulses on subcarriers  Ωn, n=1,2,3,4. 
In general, pulses  q(t) can have different shapes [4,5]. Here we will 
consider rectangular pulses with the same amplitude and duration. 
For rectangular pulses, when multiplying the information vector 
x(0)  by single-frequency matrices (14), the resulting vectors of 
the cosine and sine amplitudes are determined for the frequency 

Ω1  by the products ( ),1 1
1 ˆ (0)
4c = +a E I x   and ( ),1 0

1 ˆ (0)
4s = +a E I x  

, respectively. Also for frequency Ω2 : ( ),2 2
1 ˆ (0)
4c = +a E I x    and 

( ),2 3
1 ˆ (0)
4s = − −a E I x  , for frequency Ω3: ( ),3 0

1 ˆ (0)
4c = +a E I x   

and ( ),3 1
1 ˆ (0)
4s = − −a E I x  , for frequency  Ω4:   ( ),4 3

1 ˆ (0)
4c = +a E I x  

and 

( ),4 2
1 ˆ (0)
4s = +a E I x  .

The corresponding phase vectors θn, where n=1,2,3,4, are 
calculated as the arctangent of the amplitude ratio. The found 
initial phases of the modulated signals for the corresponding 
combination frequency can be compared using the signals shown 
in Figure 2. For example, for the vector x(0) = [1 1  -1 1] and  Ω1 
we obtain the following values of amplitudes and phases:
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frequency 1  by the products  ,1 1
1 ˆ (0)
4c  a E I x  and  ,1 0

1 ˆ (0)
4s  a E I x , respectively. Also 

for frequency 2 :  ,2 2
1 ˆ (0)
4c  a E I x  and  ,2 3

1 ˆ (0)
4s   a E I x , for frequency 3 : 

 ,3 0
1 ˆ (0)
4c  a E I x  and  ,3 1

1 ˆ (0)
4s   a E I x , for frequency 4 :  ,4 3

1 ˆ (0)
4c  a E I x  and 

 ,4 2
1 ˆ (0)
4s  a E I x . 

The corresponding phase vectors nθ , where n=1,2,3,4, are calculated as the arctangent of the 

amplitude ratio. The found initial phases of the modulated signals for the corresponding 

combination frequency can be compared using the signals shown in Figure 2. For example, for 

the vector  (0) 1 1 1 1 x  and 1  we obtain the following values of amplitudes and 

phases: 

 T T
,1 ,1,0 ,1,1 ,1,2 ,1,3 0,5 0,5 0,5 0,5c c c c ca a a a     a ,  

 T T
,1 ,1,0 ,1,1 ,1,2 ,1,3 0,5 0,5 0,5 0,5s s s s sa a a a     a ,  

 T T
1 1,0 1,1 1,2 1,3 135 45 135 45        θ . 

To calculate 3fQFT for each combination frequency, we use formula (12). In this case, we will 

use transposed matrices corresponding to matrices (14) with index f: 

     T TT
f ,1 f ,1 f ,1 1 f ,1 0

1 ˆ ˆ( , ) cos sin
4

t t t         
Φ E I E I ,  (16) 

     T TT
f ,2 f ,2 f ,2 2 f ,2 3

1 ˆ ˆ( , ) cos sin
4

t t t          
Φ E I E I , 

     T TT
f ,3 f ,3 f ,3 0 f ,3 1

1 ˆ ˆ( , ) cos sin
4

t t t          
Φ E I E I ,  

     T TT
f ,4 f ,4 f ,4 3 f ,4 2

1 ˆ ˆ( , ) cos sin
4

t t t         
Φ E I E I . 

As with the calculation of any FT, the frequency of the transformation kernel, in our case for all 

matrices, will take values from -∞ to +∞, and integration will be carried out over the duration of 

the signal. 

Let us rewrite (12) for each combination frequency, n=1,2,3,4, according to the designations 

made in (14) and (16) for 3fQFT: 

3fQFT:   T
f , f , f ,( , ) ( , ) ( , )d

QFT

n n n n n n nt t t



    g Φ y , (17) 

where modulated radio pulses ( , )n n ty  are calculated using formulas (15). 
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frequency 1  by the products  ,1 1
1 ˆ (0)
4c  a E I x  and  ,1 0

1 ˆ (0)
4s  a E I x , respectively. Also 

for frequency 2 :  ,2 2
1 ˆ (0)
4c  a E I x  and  ,2 3

1 ˆ (0)
4s   a E I x , for frequency 3 : 

 ,3 0
1 ˆ (0)
4c  a E I x  and  ,3 1

1 ˆ (0)
4s   a E I x , for frequency 4 :  ,4 3

1 ˆ (0)
4c  a E I x  and 

 ,4 2
1 ˆ (0)
4s  a E I x . 

The corresponding phase vectors nθ , where n=1,2,3,4, are calculated as the arctangent of the 

amplitude ratio. The found initial phases of the modulated signals for the corresponding 

combination frequency can be compared using the signals shown in Figure 2. For example, for 

the vector  (0) 1 1 1 1 x  and 1  we obtain the following values of amplitudes and 

phases: 

 T T
,1 ,1,0 ,1,1 ,1,2 ,1,3 0,5 0,5 0,5 0,5c c c c ca a a a     a ,  

 T T
,1 ,1,0 ,1,1 ,1,2 ,1,3 0,5 0,5 0,5 0,5s s s s sa a a a     a ,  

 T T
1 1,0 1,1 1,2 1,3 135 45 135 45        θ . 

To calculate 3fQFT for each combination frequency, we use formula (12). In this case, we will 

use transposed matrices corresponding to matrices (14) with index f: 

     T TT
f ,1 f ,1 f ,1 1 f ,1 0

1 ˆ ˆ( , ) cos sin
4

t t t         
Φ E I E I ,  (16) 

     T TT
f ,2 f ,2 f ,2 2 f ,2 3

1 ˆ ˆ( , ) cos sin
4

t t t          
Φ E I E I , 

     T TT
f ,3 f ,3 f ,3 0 f ,3 1

1 ˆ ˆ( , ) cos sin
4

t t t          
Φ E I E I ,  

     T TT
f ,4 f ,4 f ,4 3 f ,4 2

1 ˆ ˆ( , ) cos sin
4

t t t         
Φ E I E I . 

As with the calculation of any FT, the frequency of the transformation kernel, in our case for all 

matrices, will take values from -∞ to +∞, and integration will be carried out over the duration of 

the signal. 

Let us rewrite (12) for each combination frequency, n=1,2,3,4, according to the designations 

made in (14) and (16) for 3fQFT: 

3fQFT:   T
f , f , f ,( , ) ( , ) ( , )d

QFT

n n n n n n nt t t



    g Φ y , (17) 

where modulated radio pulses ( , )n n ty  are calculated using formulas (15). 
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frequency 1  by the products  ,1 1
1 ˆ (0)
4c  a E I x  and  ,1 0

1 ˆ (0)
4s  a E I x , respectively. Also 

for frequency 2 :  ,2 2
1 ˆ (0)
4c  a E I x  and  ,2 3

1 ˆ (0)
4s   a E I x , for frequency 3 : 

 ,3 0
1 ˆ (0)
4c  a E I x  and  ,3 1

1 ˆ (0)
4s   a E I x , for frequency 4 :  ,4 3

1 ˆ (0)
4c  a E I x  and 

 ,4 2
1 ˆ (0)
4s  a E I x . 

The corresponding phase vectors nθ , where n=1,2,3,4, are calculated as the arctangent of the 

amplitude ratio. The found initial phases of the modulated signals for the corresponding 

combination frequency can be compared using the signals shown in Figure 2. For example, for 

the vector  (0) 1 1 1 1 x  and 1  we obtain the following values of amplitudes and 

phases: 

 T T
,1 ,1,0 ,1,1 ,1,2 ,1,3 0,5 0,5 0,5 0,5c c c c ca a a a     a ,  

 T T
,1 ,1,0 ,1,1 ,1,2 ,1,3 0,5 0,5 0,5 0,5s s s s sa a a a     a ,  

 T T
1 1,0 1,1 1,2 1,3 135 45 135 45        θ . 

To calculate 3fQFT for each combination frequency, we use formula (12). In this case, we will 

use transposed matrices corresponding to matrices (14) with index f: 

     T TT
f ,1 f ,1 f ,1 1 f ,1 0

1 ˆ ˆ( , ) cos sin
4

t t t         
Φ E I E I ,  (16) 

     T TT
f ,2 f ,2 f ,2 2 f ,2 3

1 ˆ ˆ( , ) cos sin
4

t t t          
Φ E I E I , 

     T TT
f ,3 f ,3 f ,3 0 f ,3 1

1 ˆ ˆ( , ) cos sin
4

t t t          
Φ E I E I ,  

     T TT
f ,4 f ,4 f ,4 3 f ,4 2

1 ˆ ˆ( , ) cos sin
4

t t t         
Φ E I E I . 

As with the calculation of any FT, the frequency of the transformation kernel, in our case for all 

matrices, will take values from -∞ to +∞, and integration will be carried out over the duration of 

the signal. 

Let us rewrite (12) for each combination frequency, n=1,2,3,4, according to the designations 

made in (14) and (16) for 3fQFT: 

3fQFT:   T
f , f , f ,( , ) ( , ) ( , )d

QFT

n n n n n n nt t t



    g Φ y , (17) 

where modulated radio pulses ( , )n n ty  are calculated using formulas (15). 

To calculate 3fQFT for each combination frequency, we use formula (12). In this case, we will use transposed matrices corresponding 
to matrices (14) with index f:

As with the calculation of any FT, the frequency of the 
transformation kernel, in our case for all matrices, will take values 
from -∞ to +∞, and integration will be carried out over the duration 
of the signal.

Let us rewrite (12) for each combination frequency, n=1,2,3,4, 
according to the designations made in (14) and (16) for 3fQFT:

where modulated radio pulses  ( , )n n tΩy  are calculated using formulas (15).
As a result of the calculations, we obtain spectral vectors for various combination frequencies (subcarriers)  Ωn, n=1,2,3,4:
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As a result of the calculations, we obtain spectral vectors for various combination frequencies 

(subcarriers) n , n=1,2,3,4: 

T
f , , f , , f , , f , , f ,( , ) ( , ) ( , ) ( , ) ( , )n n n n s n n n x n n n y n n n z n ng g g g            g . 

Note that the frequencies f ,n  for all vectors typically range from -∞ to +∞. The spectrum 

obtained from a radio pulse ( , )n n ty  by integrating over time within the duration of the radio 

pulse for a given combination frequency n  is a function of frequency f ,n . 

We rewrite IQFT (13) according to the notations made (14), (16), in the form 3fIQFT: 

3fIQFT:  
1

f , f , f , f ,
1( , ) ( , ) ( , )d

2n n n n n n n n
QFT

t t





     y Φ g , (18) 

The signal found from the spectrum f ,( , )n n n g  for a given combination frequency n  by 

integrating over the frequency f ,n  is a function of time. 

Thus, it is shown that using the decomposition of a 3-frequency quaternion in a matrix 

representation, the fundamental matrix of which consists of products of cosines and sines of 

reference angular frequencies i , j , k  in different combinations, by the sum of cosines and 

sines of reference frequencies n , n=1,2,3,4, it is possible to find the spectral characteristics of a 

3-frequency quaternion using the known single-frequency quaternion Fourier transform (12), 

(13). The difference is that 3fQFT is calculated for radio pulses at combination frequencies. 

Moreover, for each combination frequency, its own fundamental matrix (16) is used as the 

transformation kernel. 

Let us consider the question of finding the 3fQFT of radio pulses (15), obtained by multiplying 

the modulating matrix m, ( , )n n tΦ , n=1,2,3,4, by the vectors of analog pulses ( )tq  with the 

amplitudes of the information vector (0)x . Let us substitute the expressions for radio pulses (15) 

into 3fQFT (17) and write down the cosine and sine components separately: 

   T
,1 1 f ,1 f ,1 f ,1 1 1

1 ˆ( , ) ( , ) cos ( )d
4c t t t t




     g Φ E I q ,  (19) 

   T
,1 1 f ,1 f ,1 f ,1 0 1

1 ˆ( , ) ( , ) sin ( )d
4s t t t t




     g Φ E I q , 

   T
,2 2 f ,2 f ,2 f ,2 2 2

1 ˆ( , ) ( , ) cos ( )d
4c t t t t




     g Φ E I q , 

   T
,2 2 f ,2 f ,2 f ,2 3 2

1 ˆ( , ) ( , ) sin ( )d
4s t t t t




      g Φ E I q , 
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As a result of the calculations, we obtain spectral vectors for various combination frequencies 

(subcarriers) n , n=1,2,3,4: 

T
f , , f , , f , , f , , f ,( , ) ( , ) ( , ) ( , ) ( , )n n n n s n n n x n n n y n n n z n ng g g g            g . 

Note that the frequencies f ,n  for all vectors typically range from -∞ to +∞. The spectrum 

obtained from a radio pulse ( , )n n ty  by integrating over time within the duration of the radio 

pulse for a given combination frequency n  is a function of frequency f ,n . 

We rewrite IQFT (13) according to the notations made (14), (16), in the form 3fIQFT: 

3fIQFT:  
1

f , f , f , f ,
1( , ) ( , ) ( , )d

2n n n n n n n n
QFT

t t





     y Φ g , (18) 

The signal found from the spectrum f ,( , )n n n g  for a given combination frequency n  by 

integrating over the frequency f ,n  is a function of time. 

Thus, it is shown that using the decomposition of a 3-frequency quaternion in a matrix 

representation, the fundamental matrix of which consists of products of cosines and sines of 

reference angular frequencies i , j , k  in different combinations, by the sum of cosines and 

sines of reference frequencies n , n=1,2,3,4, it is possible to find the spectral characteristics of a 

3-frequency quaternion using the known single-frequency quaternion Fourier transform (12), 

(13). The difference is that 3fQFT is calculated for radio pulses at combination frequencies. 

Moreover, for each combination frequency, its own fundamental matrix (16) is used as the 

transformation kernel. 

Let us consider the question of finding the 3fQFT of radio pulses (15), obtained by multiplying 

the modulating matrix m, ( , )n n tΦ , n=1,2,3,4, by the vectors of analog pulses ( )tq  with the 

amplitudes of the information vector (0)x . Let us substitute the expressions for radio pulses (15) 

into 3fQFT (17) and write down the cosine and sine components separately: 

   T
,1 1 f ,1 f ,1 f ,1 1 1

1 ˆ( , ) ( , ) cos ( )d
4c t t t t




     g Φ E I q ,  (19) 

   T
,1 1 f ,1 f ,1 f ,1 0 1

1 ˆ( , ) ( , ) sin ( )d
4s t t t t




     g Φ E I q , 

   T
,2 2 f ,2 f ,2 f ,2 2 2

1 ˆ( , ) ( , ) cos ( )d
4c t t t t




     g Φ E I q , 

   T
,2 2 f ,2 f ,2 f ,2 3 2

1 ˆ( , ) ( , ) sin ( )d
4s t t t t




      g Φ E I q , 
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As a result of the calculations, we obtain spectral vectors for various combination frequencies 

(subcarriers) n , n=1,2,3,4: 

T
f , , f , , f , , f , , f ,( , ) ( , ) ( , ) ( , ) ( , )n n n n s n n n x n n n y n n n z n ng g g g            g . 

Note that the frequencies f ,n  for all vectors typically range from -∞ to +∞. The spectrum 

obtained from a radio pulse ( , )n n ty  by integrating over time within the duration of the radio 

pulse for a given combination frequency n  is a function of frequency f ,n . 

We rewrite IQFT (13) according to the notations made (14), (16), in the form 3fIQFT: 

3fIQFT:  
1

f , f , f , f ,
1( , ) ( , ) ( , )d

2n n n n n n n n
QFT

t t





     y Φ g , (18) 

The signal found from the spectrum f ,( , )n n n g  for a given combination frequency n  by 

integrating over the frequency f ,n  is a function of time. 

Thus, it is shown that using the decomposition of a 3-frequency quaternion in a matrix 

representation, the fundamental matrix of which consists of products of cosines and sines of 

reference angular frequencies i , j , k  in different combinations, by the sum of cosines and 

sines of reference frequencies n , n=1,2,3,4, it is possible to find the spectral characteristics of a 

3-frequency quaternion using the known single-frequency quaternion Fourier transform (12), 

(13). The difference is that 3fQFT is calculated for radio pulses at combination frequencies. 

Moreover, for each combination frequency, its own fundamental matrix (16) is used as the 

transformation kernel. 

Let us consider the question of finding the 3fQFT of radio pulses (15), obtained by multiplying 

the modulating matrix m, ( , )n n tΦ , n=1,2,3,4, by the vectors of analog pulses ( )tq  with the 

amplitudes of the information vector (0)x . Let us substitute the expressions for radio pulses (15) 

into 3fQFT (17) and write down the cosine and sine components separately: 

   T
,1 1 f ,1 f ,1 f ,1 1 1

1 ˆ( , ) ( , ) cos ( )d
4c t t t t




     g Φ E I q ,  (19) 

   T
,1 1 f ,1 f ,1 f ,1 0 1

1 ˆ( , ) ( , ) sin ( )d
4s t t t t




     g Φ E I q , 

   T
,2 2 f ,2 f ,2 f ,2 2 2

1 ˆ( , ) ( , ) cos ( )d
4c t t t t




     g Φ E I q , 

   T
,2 2 f ,2 f ,2 f ,2 3 2

1 ˆ( , ) ( , ) sin ( )d
4s t t t t




      g Φ E I q , 

Note that the frequencies Ω f, n  for all vectors typically range from -∞ to +∞. The spectrum obtained from a radio pulse  ( , )n n tΩy  by 
integrating over time within the duration of the radio pulse for a given combination frequency Ωn  is a function of frequency Ω f, n .
We rewrite IQFT (13) according to the notations made (14), (16), in the form 3fIQFT:

The signal found from the spectrum  f ,( , )n n nΩ Ωg  for a given 

combination frequency  Ωn by integrating over the frequency  f ,nΩ  
is a function of time.

Thus, it is shown that using the decomposition of a 3-frequency 
quaternion in a matrix representation, the fundamental matrix 
of which consists of products of cosines and sines of reference 
angular frequencies ωi, ωj , ωk  in different combinations, by the 
sum of cosines and sines of reference frequencies Ωn , n=1,2,3,4, 
it is possible to find the spectral characteristics of a 3-frequency 
quaternion using the known single-frequency quaternion Fourier 

transform (12), (13). The difference is that 3fQFT is calculated 
for radio pulses at combination frequencies. Moreover, for each 
combination frequency, its own fundamental matrix (16) is used as 
the transformation kernel.

Let us consider the question of finding the 3fQFT of radio pulses 

(15), obtained by multiplying the modulating matrix Φ m, ( , )n n tΩÖ , 
n=1,2,3,4, by the vectors of analog pulses q(t)  with the amplitudes 
of the information vector x(0) . Let us substitute the expressions 
for radio pulses (15) into 3fQFT (17) and write down the cosine 
and sine components separately:
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Expressions (19) represent 3fQFT products of functions  cos nt  and  sin nt  for 

combinational subcarriers n  with n=1, 2, 3, 4, and the vector of analog pulses ( )tq . As is 

known, the spectrum of the product of cosines and sines on the elements of a vector corresponds 

to the spectrum of their convolution [10]. Therefore, to obtain spectra using formulas (19), it is 

sufficient to calculate the spectra of the analog elements of the vector ( )tq  and then perform the 

convolution of these spectra with the spectra of the sine and cosine. Since the sine and cosine 

spectra represent frequency delta pulses, the spectra of analog vector pulses ( )tq  are simply 

shifted along the frequency axis by the value of the subcarrier. 

Thus, to calculate 3fQFT of known pulses, it is necessary to multiply a vector of four analog 

pulses ( )tq  by the corresponding basis matrices, then multiply the resulting vector by the 

transposed fundamental matrices for a given combination frequency and integrate over the pulse 

duration. The obtained spectra are shifted along the frequency axis by the value of the 

combination frequency. 

To understand what result will be obtained when calculating 3fQFT for a known signal, let us 

consider 3fQFT using formula (17), substituting expression (15) into it: 
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We multiply the matrices inside the integral (20) and as a result we obtain matrices, which we 

denote by indices f,m: 
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Expressions (19) represent 3fQFT products of functions cos(Ωnt)  
and   for combinational subcarriers  Ωn with n=1, 2, 3, 4, and 
the vector of analog pulses  q(t). As is known, the spectrum 
of the product of cosines and sines on the elements of a vector 
corresponds to the spectrum of their convolution [10]. Therefore, 
to obtain spectra using formulas (19), it is sufficient to calculate the 
spectra of the analog elements of the vector q(t)  and then perform 
the convolution of these spectra with the spectra of the sine and 

cosine. Since the sine and cosine spectra represent frequency delta 
pulses, the spectra of analog vector pulses  q(t) are simply shifted 
along the frequency axis by the value of the subcarrier.

Thus, to calculate 3fQFT of known pulses, it is necessary to 
multiply a vector of four analog pulses q(t)  by the corresponding 
basis matrices, then multiply the resulting vector by the transposed 
fundamental matrices for a given combination frequency and 



  Volume 2 | Issue 2 | 9J Res Edu, 2024

integrate over the pulse duration. The obtained spectra are shifted 
along the frequency axis by the value of the combination frequency.
To understand what result will be obtained when calculating 

3fQFT for a known signal, let us consider 3fQFT using formula 
(17), substituting expression (15) into it:
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pulses ( )tq  by the corresponding basis matrices, then multiply the resulting vector by the 

transposed fundamental matrices for a given combination frequency and integrate over the pulse 
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We multiply the matrices inside the integral (20) and as a result we obtain matrices, which we denote by indices f,m:
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T
f,m,4 4 f ,4 f ,4 m,4 4 f ,4 4 f ,4 4

1( , ) ( , ) ( , ) cos[( ) ] sin[( ) ]
4

t t t t t           Φ Φ Φ E K . 

According to the frequency shift property, modulating matrices m, ( , )n n tΦ  simply shift the 

spectra of analog signals by combination frequencies n . As can be seen from formulas (21), 

the frequency shift is to the right of zero, i.e., the spectrum exists only for positive frequencies. 

This is due to the fact that when calculating the spectra inside the 3fQFT integral we have a 

product of matrices that have the same structures for each frequency n . Matrices (21) contain 

both cosine and sine components. The cosine components are located on the main diagonal, and 

the sine components are on the secondary diagonal. When matrix multiplication occurs, negative 

frequencies are compensated. When considering only cosine or sine carriers separately, as in 

(19), we get both positive and negative frequencies. As a result of adding the results, negative 

frequencies also cancel out, as do imaginary parts of the conjugate complex signals. 

As is known, when transmitting information using the MIMO scheme, each pulse at the output of 

the communication channel is formed by summing all other input pulses. The calculation of the 

FT of the summed pulses for a single-frequency quaternion was considered in [4, 5]. 

The spectra of individual rectangular pulses with duration iT  and symmetrical to zero of the time 

axes have the form  i isinc 2T T  [10]. For a vector of rectangular pulses that are transmitted 

sequentially, there must be a shift in time positions 0 i 2t T , 1 i3 2t T , 2 i5 2t T , 3 i7 2t T , 

accordingly. When adding up the vector pulses, we obtain a sequence of pulses following one 

another, and when adding up their spectra, we obtain the spectrum of a quaternion in the vector 

representation of a sequence of pulses that do not intersect in time. Since the phase relationships 

in the spectra change when the pulses shift over time, adding up the spectra produces a 

diffraction pattern [4]. 

Figure 3 shows the spectra of analog rectangular pulses when they are shifted in time for serial 

transmission. The spectrum of the 1st pulse in the vector is indicated by the red line, the 2nd by 

the blue line, the 3rd by the green line, and the 4th by the brown line. The spectrum of one pulse, 

symmetrical to the 0 time axis, is indicated by the turquoise line. 
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and negative frequencies. As a result of adding the results, negative 
frequencies also cancel out, as do imaginary parts of the conjugate 
complex signals.

As is known, when transmitting information using the MIMO 
scheme, each pulse at the output of the communication channel is 
formed by summing all other input pulses. The calculation of the 
FT of the summed pulses for a single-frequency quaternion was 

considered in [4, 5].

The spectra of individual rectangular pulses with duration Ti  and 
symmetrical to zero of the time axes have the form Ti sinc(Tiω/2)  
[10]. For a vector of rectangular pulses that are transmitted 

sequentially, there must be a shift in time positions 0 i 2t T=  ,  

1 i3 2t T= ,  2 i5 2t T= , 3 i7 2t T=  , accordingly. When adding up 
the vector pulses, we obtain a sequence of pulses following one 
another, and when adding up their spectra, we obtain the spectrum 
of a quaternion in the vector representation of a sequence of pulses 
that do not intersect in time. Since the phase relationships in the 
spectra change when the pulses shift over time, adding up the 
spectra produces a diffraction pattern [4].

Figure 3 shows the spectra of analog rectangular pulses when they 
are shifted in time for serial transmission. The spectrum of the 1st 
pulse in the vector is indicated by the red line, the 2nd by the blue 
line, the 3rd by the green line, and the 4th by the brown line. The 
spectrum of one pulse, symmetrical to the 0 time axis, is indicated 
by the turquoise line.
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Figure 3. Spectra of the vector of analog rectangular pulses of the same length, during serial 

transmission, for different combination frequencies, with an amplitude corresponding to the 

value of the information vector x(0)=[11-11] 

 

As can be seen from Figure 3, the spectrum of time-shifted pulses does not change in width for 

the first zeros of the spectrum of a single rectangular pulse, but only acquires oscillations in 

amplitude. Moreover, for each frequency the spectra of the same pulses differ, since the 

modulating matrices (14) differ. Since Parseval's equality for QFT is satisfied, when the shape of 

the spectrum changes during successive transmission of pulses, the energy of the pulse spectrum 

remains the same [4]. Since Parseval's equality for QFT is satisfied, when the shape of the 

spectrum changes during successive transmission of pulses, the energy of the spectrum vector of 

pulses remains the same [4]. 

To obtain 3fIQFT we use formula (18). The results of the transformation are shown in Figure 4. 

 

 
Figure 4. Inverse three-frequency quaternion Fourier transform of the spectrum of a rectangular 

pulse sequence. 

13 
 

 

 

 

Figure 3. Spectra of the vector of analog rectangular pulses of the same length, during serial 

transmission, for different combination frequencies, with an amplitude corresponding to the 

value of the information vector x(0)=[11-11] 

 

As can be seen from Figure 3, the spectrum of time-shifted pulses does not change in width for 

the first zeros of the spectrum of a single rectangular pulse, but only acquires oscillations in 

amplitude. Moreover, for each frequency the spectra of the same pulses differ, since the 

modulating matrices (14) differ. Since Parseval's equality for QFT is satisfied, when the shape of 

the spectrum changes during successive transmission of pulses, the energy of the pulse spectrum 

remains the same [4]. Since Parseval's equality for QFT is satisfied, when the shape of the 

spectrum changes during successive transmission of pulses, the energy of the spectrum vector of 

pulses remains the same [4]. 

To obtain 3fIQFT we use formula (18). The results of the transformation are shown in Figure 4. 

 

 
Figure 4. Inverse three-frequency quaternion Fourier transform of the spectrum of a rectangular 

pulse sequence. 

Figure 3. Spectra of the vector of analog rectangular pulses of the same length, during serial transmission, for different combination 
frequencies, with an amplitude corresponding to the value of the information vector x(0)=[11-11]

As can be seen from Figure 3, the spectrum of time-shifted pulses 
does not change in width for the first zeros of the spectrum of a 
single rectangular pulse, but only acquires oscillations in amplitude. 
Moreover, for each frequency the spectra of the same pulses differ, 
since the modulating matrices (14) differ. Since Parseval's equality 
for QFT is satisfied, when the shape of the spectrum changes 
during successive transmission of pulses, the energy of the pulse 

spectrum remains the same [4]. Since Parseval's equality for 
QFT is satisfied, when the shape of the spectrum changes during 
successive transmission of pulses, the energy of the spectrum 
vector of pulses remains the same [4].
To obtain 3fIQFT we use formula (18). The results of the 
transformation are shown in Figure 4.

Figure 4. Inverse three-frequency quaternion Fourier transform of the spectrum of a rectangular pulse sequence.
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As shown above, the frequencies of the three-frequency quaternion  
ωi, ωj, ωk are located in space on three orthogonal coordinate axes 
i, j, k. Therefore, just as the signals in Figure 2 were depicted in 
space 3D, the spectra of these signals can also be depicted [7]. 
To do this, using the transformation matrix (7), we calculate the 

change in the reference frequencies  ωi, ωj, ωk  when changing 
the combination frequencies Ωn, n=1,2,3,4. For example, when 
changing the combination frequency  Ω1 from -∞ to +∞, we obtain 
the values of changes in the reference frequencies for the case 
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Figure 5 shows the dependences of the values of reference frequencies on the change in 

combination frequencies n , 1,2,3,4n  . The changes i  are shown by the red line, the j  - 

blue line, and the k  - green line. 

 

  

  
Figure 5. Graphs of the dependence of reference frequencies i , j , k , when changing 

combination frequencies n , n=1,2,3,4 
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Figure 5. Graphs of the dependence of reference frequencies ωi, ωj, ωk when changing combination frequencies Ωn , n=1,2,3,4

Figure 6 shows the spectra depicted in Figure 3 for each frequency 
in the 3D frequency space of the reference frequencies. Since the 
quaternion, considering the scalar part, has a dimension of 4D, the 
amplitude of the spectra is depicted using the value of the point 

on the graph. Positive values are highlighted in red and negative 
values are highlighted in blue. In this case, each graph shows the 
spectra of all pulses. However, it is possible to show each pulse 
separately for each frequency.
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As can be seen from Figure 6, the spectra have different orientations in space and, consequently, 

the volume of frequency space and the efficiency of its use increase. In addition, when 

calculating the values of the reference frequencies for the zero values of the combination 

frequencies, it is shown that these values do not intersect: 

1

1

1

1 0

( ) 5.25
( ) 2.75
( ) 1.75

i

j

k





 

   
        
      

, 

2

2

2

2 0

( ) 4.75
( ) 3.25
( ) 0.25

i

j

k





 

   
        
      

, 

3

3

3

3 0

( ) 4.25
( ) 0.25
( ) 2.75

i

j

k





 

   
        
      

, 

15 
 

Figure 6 shows the spectra depicted in Figure 3 for each frequency in the 3D frequency space of 

the reference frequencies. Since the quaternion, considering the scalar part, has a dimension of 

4D, the amplitude of the spectra is depicted using the value of the point on the graph. Positive 

values are highlighted in red and negative values are highlighted in blue. In this case, each graph 

shows the spectra of all pulses. However, it is possible to show each pulse separately for each 

frequency. 

 

  

  
Figure 6. Spectra of rectangular pulses transmitted sequentially in the space of reference 

frequency values 

 

As can be seen from Figure 6, the spectra have different orientations in space and, consequently, 

the volume of frequency space and the efficiency of its use increase. In addition, when 

calculating the values of the reference frequencies for the zero values of the combination 

frequencies, it is shown that these values do not intersect: 

1

1

1

1 0

( ) 5.25
( ) 2.75
( ) 1.75

i

j

k





 

   
        
      

, 

2

2

2

2 0

( ) 4.75
( ) 3.25
( ) 0.25

i

j

k





 

   
        
      

, 

3

3

3

3 0

( ) 4.25
( ) 0.25
( ) 2.75

i

j

k





 

   
        
      

, 

Figure 6. Spectra of rectangular pulses transmitted sequentially in the space of reference frequency values
As can be seen from Figure 6, the spectra have different orientations 
in space and, consequently, the volume of frequency space and 
the efficiency of its use increase. In addition, when calculating 

the values of the reference frequencies for the zero values of the 
combination frequencies, it is shown that these values do not 
intersect:

16 
 

4

4

4

4 0

( ) 3.75
( ) 0.25
( ) 1.25

i

j

k





 

   
       
      

. 

It follows that the maximum values of the spectra also do not influence each other. 

 

3. Conclusion 

Existing mathematical methods for calculating the spectra of quaternion signals are based on 

calculating volume integrals in 4D space. In this case, as a rule, a single-frequency quaternion is 

used. Calculating a volume integral in 4D space causes certain difficulties and does not allow 

obtaining formulas for the spectra. The proposed method for calculating the spectra of 3-

frequency quaternion signals is based on the representation of the Fourier transform kernel of a 

quaternion in matrix form. In this case, the obtained products of cosines and sines of reference 

frequencies in different combinations are expanded into the sum of cosines and sines of the total 

reference frequencies, which form combination frequencies. Using this decomposition, the 3-

frequency quaternion Fourier transform is calculated as the sum of the single-frequency Fourier 

transforms of the combination frequencies. 

 

Using the connection of combination frequencies with reference frequencies, the possibility of 

representing the spectra of quaternion signals in 3D space is shown. This representation allows 

us to conclude that quaternion signals use the 3D frequency space more efficiently. 
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