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Abstract
This paper offers a detailed examination of entropy generation within a porous medium that is saturated with Casson fluid during 
the process of natural convection. The governing equations comprising momentum, energy, and entropy are solved numerically 
using the finite element method. The research explores various significant parameters, including the Casson fluid parameter, 
thermal radiation, Rayleigh number, and Prandtl number, to evaluate their effects on entropy generation. Findings indicate 
that the Darcy and Rayleigh numbers primarily dictate the strength of natural convection, while the Casson fluid parameter 
has a considerable impact on both flow dynamics and heat transfer characteristics. This analysis delivers essential insights 
for optimizing flow and thermal behaviors in systems utilizing Casson fluids. Furthermore, the Prandtl number highlights the 
significance of heat transport relative to viscous effects. A near thermal stratification is observed at β=0.001, and the isotherms 
undergo substantial changes as temperature gradients increase to β = 1. The average Nusselt number and total entropy are 
influenced by the temperature distribution, with a consistent flow pattern emerging over time. As the Rayleigh number in the flow 
configuration rises, the velocity decreases, leading to the emergence of uniform flow phenomena.
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1. Introduction
In porous media, natural convection involving non-Newtonian 
Casson fluids has attracted considerable interest due to its relevance 
in various industrial and environmental applications. Analyzing 
entropy generation in such systems is essential for understanding 
the irreversibilities and inefficiencies inherent in heat transfer 
processes. In this regard, the Finite Element Method (FEM) stands 
out as a potent numerical tool for in-depth analysis. This study 
focuses on entropy generation within the framework of natural 
convection in a porous medium using Casson fluid, emphasizing 
the significance of FEM as a computational approach to explore 
the complex interactions of fluid dynamics and heat transfer. By 
investigating entropy generation, researchers can derive critical 
insights that enhance energy transfer efficiency and overall 

performance in natural convection processes, which are crucial for 
a range of engineering and environmental applications [1, 2].

Casson fluids, known for their shear-thinning properties, return 
to their original state upon the removal of applied shear stress, 
classifying them as viscoelastic. This rheological model has 
found successful applications in various sectors, such as food 
processing, pharmaceuticals, cosmetics, and oil drilling, to better 
understand and predict the flow behavior of non-Newtonian 
materials. However, its application in natural convection and 
entropy generation within the Darcy-Forchheimer model remains 
relatively unexplored. Pop et al. [3] conducted a pioneering study 
investigating heat transfer systems of Casson fluid in a square 
enclosure under thermal gradients, providing insights into the 
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convective heat transfer characteristics that can be leveraged to 
optimize systems involving Casson fluids subjected to thermal 
radiation and viscous dissipation effects. Furthermore, Hamid et al. 
[4] examined fluid flow phenomena within a trapezoidal enclosure 
containing a Casson fluid, while Aneja et al. [5] studied buoyancy-
induced convective phenomena involving a heated porous hollow 
with Casson fluid. The findings from these investigations have 
significant implications for various engineering applications 
involving non-Newtonian fluids, such as energy systems, 
environmental engineering, and materials processing. Aghighi et 
al. [6] explored double-diffusive natural convection, highlighting 
the concurrent transport of heat and mass due to density differences 
and revealing the effects of double diffusion and Casson fluid 
behavior on flow and temperature distributions. Additionally, 
Shah et al. [7] analyzed the behavior of Casson fluids in a curved 
corrugated cavity, considering the influences of convective heat 
and mass transport.

Entropy generation, being an irreversible natural process, is 
present in all heat transport processes as described by the second 
law of thermodynamics. It serves as a qualitative representation 
of energy loss in many systems, quantifying the rate at which 
useful energy transforms into less useful forms, such as thermal 
energy dissipation. By examining entropy generation, valuable 
insights can be obtained regarding the efficiency and performance 
of convective heat transfer systems. Moreover, studying entropy 
creation in natural convection sheds light on the irreversibilities 
and energy losses associated with these processes. Gireesha et al. 
[8] evaluated entropy generation and heat transfer in the flow of 
Casson fluids within an inclined porous microchannel, looking at 
the effects of viscous and Joule heating. Kotha et al. [9] explored 
the behavior of Casson fluid on a convectively heated surface 
and examined its entropy generation characteristics, considering 
viscous dissipation resulting from the fluid's internal friction that 
converts mechanical energy into heat. Sohail et al. [10] further 
investigated Casson fluid dynamics and its associated entropy 
generation characteristics. Alzahrani et al. [11] studied the posture 
of Casson fluids in an enclosure while analyzing convection and 
thermal radiation characteristics, focusing on entropy generation 
as a measure of irreversibility and energy dissipation. Hossain et 
al. [12] concentrated on Casson fluids in a staggered cavity and 
studied entropy generation in the context of double diffusive 
free convection, considering magnetic effects that can influence 
heat transfer and entropy generation, representing irreversible 
energy loss within the system. In porous media, where fluid flows 
through a solid matrix characterized by interconnected voids, the 
Brinkman-Forchheimer model is frequently utilized to describe 
fluid flow behavior. This model incorporates both viscous and 
inertial effects and has been shown to effectively capture the flow 
characteristics within such systems. 

The Darcy-Forchheimer model is particularly useful for analyzing 
natural convection in porous media, where the convective flow 
is largely influenced by the porous structure. It is essential to 
note that many practical fluids exhibit non-Newtonian behavior, 
diverging from the classical assumption of Newtonian viscosity. 

Non-Newtonian fluids demonstrate complex flow characteristics 
due to phenomena such as shear-thinning, shear-thickening, yield 
stress, and viscoelasticity. Seth et al. [13] examined the behavior 
of Casson fluid in a rotating system within a porous enclosure, 
considering the impact of Darcy-Forchheimer porous media. 
They observed interactions between fluid rotation and porosity 
that affected the flow characteristics. Qawasmeh et al. [14] 
investigated buoyancy-driven convective heat transfer of Casson 
fluid in Darcy-Forchheimer porous media. Additionally, Farooq et 
al. [15] explored the flow of Casson fluid within an enclosure using 
a non-Darcy model. Zhang et al. [16] studied the flow of Darcy-
Forchheimer Casson fluid over an extending sheet. Likewise, Li 
et al. [17] analyzed the effects of activation energy on Darcy-
Forchheimer flow of a Casson fluid through a channel.

The finite element method (FEM) will be employed as a numerical 
tool to solve the governing equations, accounting for the non-
Newtonian characteristics of the Casson fluid. This study aims 
to enhance understanding of how properties of the Casson fluid, 
such as yield stress and flow behavior index, affect convective 
flow patterns, heat transfer features, and entropy generation rates. 
Finite element analysis (FEA) divides the domain into smaller 
finite elements to compare solutions. Over the past few decades, 
researchers have harnessed FEM to analyze fluid flow interactions 
in complex scenarios. For instance, Raju et al. [18] used FEM to 
explore the free convective flow of Casson fluid over a vertically 
inclined plate, demonstrating the plate's angle relative to the 
horizontal axis. Reddy et al. [19] investigated the dissipation 
effects on fluid flow behavior, which can significantly influence 
the fluid's temperature distribution. Consequently, Goud et al. 
[20] examined the flow of Casson fluid in a vertically oscillating 
plate situated in a porous enclosure, where the oscillatory motion 
introduces time-dependent behavior into the flow. Rehman et al. 
[21] applied finite element analysis as a numerical technique to 
investigate the thermal behavior of a Casson liquid suspension. 
Shahzad et al. [22] explored Casson fluid flow in a bifurcated 
channel, which divides into two or more branches, and includes a 
stenosis, characterized by a constriction in the channel geometry.

Natural convection occurs as a heat transfer process induced by 
density differences in a fluid resulting from temperature gradients. 
This phenomenon plays a vital role in various engineering and 
environmental systems. A thorough understanding of buoyancy-
driven convection is essential for optimizing heat transfer and energy 
efficiency across numerous applications, including geothermal 
systems, solar collectors, building ventilation, and electronic 
cooling. Recent noteworthy research has zeroed in on natural 
convection, as evidenced by substantial contributions in the field of 
buoyancy-driven convection. Khan et al. [23] investigated the effects 
of several factors on natural convection using Casson fluid flow over 
a porous plate. Alwawi et al. [24] focused on the natural convection 
of a Casson nanofluid within an enclosure. Following this, Devi et 
al. [25] studied the natural convection of viscoelastic Casson fluid 
flows. Anwar et al. [26] explored the behavior of Casson fluid under 
variable wall conditions, taking into account thermal radiative flux 
and heat injection processes alongside natural convection.
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Expanding the scope of the investigation to encompass additional 
non-Newtonian fluids, such as power-law and viscoplastic 
fluids, can significantly broaden the findings' applicability by 
exploring the unique rheological behaviors exhibited by these 
fluids. Power-law fluids are characterized by shear-thinning or 
shear-thickening properties and are prevalent in industries like 
food processing, polymer manufacturing, and biological systems. 
Viscoplastic fluids are distinguished by their yield stress, which 
separates solid-like behavior from flow regimes; these fluids are 
crucial in applications such as mining slurries, cement flow, and 
enhanced oil recovery. By analyzing entropy generation and heat 
transfer characteristics, researchers can assess how factors like 
flow indices, yield stress, and thermal properties influence system 
efficiency and irreversibilities. This comprehensive exploration 
could result in optimized designs for processes such as thermal 
management systems, chemical reactors, and heat exchangers, 
bolstered by sophisticated numerical modeling and experimental 
data, thereby deepening the understanding of non-Newtonian fluid 
dynamics across diverse practical applications [27-35].

This study aims to enhance the understanding of thermodynamic 
efficiency within convective heat transfer systems involving Casson 
fluids. The results from this research can inform the design and 
optimization of various engineering and environmental systems, 
promoting improved energy efficiency and sustainability alongside 
entropy generation. The research has enhanced existing models by 
revising the Darcy-Forchheimer model in the momentum equation. 
Additionally, the radiation term has been integrated into the energy 

and entropy equations using the Roseland approximation. The 
study also examined the effects of key dimensionless parameters.

2. Mathematical Formulation and Physical Representation
The present study investigates the behavior of buoyant convective 
unsteady laminar flow within a square two-dimensional cavity of 
length (H). This cavity is filled with a Casson liquid, which flows 
through a porous medium as illustrated in Fig. (1). In this analysis, 
the left wall of the cavity maintains a constant higher temperature 
(Th), while the right wall maintains a constant lower temperature 
(Tc). The horizontal walls of the enclosure are treated as adiabatic. 
Gravity is incorporated into the y-momentum equation, and 
thermal radiation is taken into account in the energy equation. In 
the buoyancy equation, the thermal properties of the liquid are 
considered constant, with the exception of the density term, which 
adheres to the Boussinesq approximation, where the density of the 
liquid is related to its thermal expansion coefficient.

The Casson fluid rheological model is obtained as Eq. (1)

Where the rate of deformation (critical)is πc,the stress yeild 
for the liquid py and π = eij ⋅ eij for (i,j) th are the deformation 
componentsand the dynamic viscosity of the liquid is μB [11,34].
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Figure 1: Schematic depiction of the problem statement. 

2.1. Governing equations 
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2.1. Governing Equations
The dimensionless equations for this problem are given below,

Eq. (6) represents the dimensionless variables.

where               is the Forchheimer number,           is Grashof number,           
          is Prandtl number, where          is the kinematic viscosity, 
                  is the Rayleigh number,           is the inverse Darcy 
number.              the parameter for Darcy number and radiation 
respectively,and                is the Eckert number [29,30,31,32,33,34].

When assessing conductive heat transfer alone, the Nusselt value 
indicates the improvement offered by convective heat transfer. A 
high Nusselt number signifies effective heat transfer, whereas a 
low Nusselt number indicates lower heat transfer.

Throughout the surface, the average Nusselt number (Nuavg) is 
employed in situations where the Nusselt number experiences 
fluctuations. It indicates the average convective heat transfer 
coefficient across the entire surface. This is calculated by 
integrating the local Nusselt number over the surface and then 
dividing by the surface area:

2.2. Boundary Condition
For the criteria given for the initial and boundary, the dimensionless 
variables are [29,30,31,35]

for t = 0

3. Entropy Generation
Entropy generation is a fundamental aspect of thermodynamics, 
and it is crucial in finding the effectiveness and irreversibility 
of processes. In practical applications, minimizing entropy 

generation is desirable to improve efficiency and reduce energy 
losses. Heat transfer happens from the hotter body to the colder 
body when there is a temperature differential between the two 
bodies. This heat transfer process leads to an increase in entropy. 
The magnitude of entropy creation due to heat transfer depends on 
the temperature difference, the nature of the heat transfer process 
(conduction, convection, or radiation), and the efficiency of the 
process. Friction between surfaces results in energy dissipation 
and heat generation. This energy dissipation contributes to an 
increase in entropy. When two surfaces slide or rub against each 
other, the frictional forces convert mechanical energy into heat. 
The magnitude of entropy creation due to friction depends on 
the frictional forces, the relative velocity of the surfaces, and the 
nature of the frictional contact. The total entropy creation in a 
system or a process is the sum of entropy contributions from all 
the sources involved. If there are multiple heat transfer processes 
and frictional interactions occurring simultaneously, the creation 
of overall entropy is the sum of entropy generated due to each 
individual source. Mathematically, Eq. (11) to Eq. (13) shows 
entropy lead by heat, friction, and overall entropy expressed by: 
[32,33,34]

Where we classify the temperature difference                 , modified
Eckert as               and                    

4. Numerical Simulation and Validation of Code
For this computation, we employed the finite element method as 
our numerical scheme. The domain was discretized into smaller, 
geometrically simple sections called finite elements to model the 
behavior of the Casson fluid and derive valuable insights. We 
utilized quadrilaterals within each element to represent the behavior 
of unknown quantities of interest. These quadrilaterals enable us to 
estimate the solution using a finite number of nodal points, leading 
to more efficient calculations. The computed average Nusselt 
numbers were compared against available experimental data and 
established benchmark solutions from Alzahrani et al. [11], Fusegi 
et al. [27], and Ho et al. [28] for various Rayleigh numbers (Ra 
=103, 104, 105, 106), as shown in Table 1. This comparison included 
a comprehensive analysis of deviations, evaluating the agreement 
between the computational results and reference works. The 
outcomes for the average Nusselt number showed good alignment 
with existing findings, exhibiting minimal error. The errors were 
determined by comparing the current work to the existing literature 
[11,27,28].

error = Present - existing
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3. Entropy Generation 

Entropy generation is a fundamental aspect of thermodynamics, and it is crucial in 
finding the effectiveness and irreversibility of processes. In practical applications, 
minimizing entropy generation is desirable to improve efficiency and reduce energy 
losses. Heat transfer happens from the hotter body to the colder body when there is 
a temperature differential between the two bodies.This heat transfer process leads to 
an increase in entropy. The magnitude of entropy creation due to heat transfer depends 
on the temperature difference, the nature of the heat transfer process (conduction, 
convection, or radiation), and the efficiency of the process. Friction between surfaces 
results in energy dissipation and heat generation. This energy dissipation contributes to 
an increase in entropy. When two surfaces slide or rub against each other, the frictional 
forces convert mechanical energy into heat. The magnitude of entropy creation due to 
friction depends on the frictional forces, the relative velocity of the surfaces, and the 
nature of the frictional contact. The total entropy creation in a system or a process is the 
sum of entropy contributions from all the sources involved. If there are multiple heat 
transfer processes and frictional interactions occurring simultaneously, the creation of 
overall entropy is the sum of entropy generated due to each individual source. 
Mathematically, Eq. (11) to Eq. (13) shows entropy leadby heat, friction, and overall 
entropy expressed by: [32,33,34] 
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Eq. (6) represents the dimensionless variables. 
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𝜈
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𝑇 − 𝑇�
𝑇� − 𝑇�
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𝐻𝑈, 𝑣 =
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𝐻 𝑉, 𝑃

=
𝐻�
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where Γ = �����
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√�
 is the Forchheimer number, Gr = ��
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 is Grashof number, Pr = �

�
 is 

Prandtl number, where 𝜈 = �
�

 is the kinematic viscosity, Ra = ����(�����)
��

 is the 

Rayleigh number, 𝛾 = ����

�
 is the inverse Darcy number. Da = �

��
, Rd = ��∗���

���
the 

parameter for Darcy number and radiationrespectively, and Ec = ��

��(�����)��
 is the 

Eckert number [29,30,31,32,33,34]. 

When compared to only conductive heat transmission, the Nusselt value displays how 
much better convective heat transfer is. A high Nusselt number implies efficient heat 
transfer, while a low Nusselt number suggests inefficient heat transfer. 
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4
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∂𝑋����
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Throughout the surface, average Nusselt number (Nuavg) is utilized when there are 
fluctuations in the Nusselt number. It represents the average convective heat transfer 
coefficient over the entire surface. It is computed by dividing the local Nusselt number 
by the surface area after integrating it over the surface: 

𝑁𝑢avg = �  
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𝑁𝑢𝑑𝑌                                                                                                      (9) 

2.2. Boundary condition 

For the criteria given for the initial and boundary, the dimensionless variables are 
[29,30,31,35] 

for 𝑡 = 0 

𝑢 = 𝑣 = 𝜃 = 0 for 𝑡 = 0 0 ≤ 𝑥, 𝑦 ≤ 𝐻,                                                                                
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finding the effectiveness and irreversibility of processes. In practical applications, 
minimizing entropy generation is desirable to improve efficiency and reduce energy 
losses. Heat transfer happens from the hotter body to the colder body when there is 
a temperature differential between the two bodies.This heat transfer process leads to 
an increase in entropy. The magnitude of entropy creation due to heat transfer depends 
on the temperature difference, the nature of the heat transfer process (conduction, 
convection, or radiation), and the efficiency of the process. Friction between surfaces 
results in energy dissipation and heat generation. This energy dissipation contributes to 
an increase in entropy. When two surfaces slide or rub against each other, the frictional 
forces convert mechanical energy into heat. The magnitude of entropy creation due to 
friction depends on the frictional forces, the relative velocity of the surfaces, and the 
nature of the frictional contact. The total entropy creation in a system or a process is the 
sum of entropy contributions from all the sources involved. If there are multiple heat 
transfer processes and frictional interactions occurring simultaneously, the creation of 
overall entropy is the sum of entropy generated due to each individual source. 
Mathematically, Eq. (11) to Eq. (13) shows entropy leadby heat, friction, and overall 
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Table 1: Average Nusselt Number Comparison for Pr=0.71,Rd=0,β=∞

5. Results and Discussion
The result of this investigation is presented in this section. The 
parameters under study includes Rayleigh number (103

 ≤ Ra 
≤ 106 ), Eckert number (10-6 ≤ Ec ≤ 10-4 ), Forchheimer number 
(0 ≤ Γ ≤ 1), inverse Darcy (0 ≤ γ ≤ 1), radiation (0 ≤ Rd ≤ 10), 
Prandtl number (Pr = 0.7,1.0,7.0,10) and Casson fluid parameters 
(0.001 ≤ β ≤ 1). Figure (2 - 10) shows the effects of dimensionless 
parameters on streamlines, isotherms, isolines of entropy, velocity, 
Nusselt number, and total entropy.

5.1. Effects of Rayleigh Number
Figure 2 illustrates the streamline patterns, isotherms, and total 
entropy isolines for various Rayleigh numbers, while holding 
certain parameters constant Pr = 10, Ec = 10-6, Rd = 1, σ = 0.5, β 
= 1 and γ = 0.25. The Rayleigh number plays a significant role in 
determining the flow patterns and the arrangement of streamlines 
in a fluid. At low Rayleigh numbers (Ra = 103), the flow is 
generally steady and laminar, with streamlines tracing relatively 
smooth trajectories. As the Rayleigh number increases from 103 to 
106, the isotherms transition from a smooth, circular configuration 
indicative of a single convective core regime to patterns that 
display unsteady, intricate, and chaotic behavior, indicative of a 
double convective core regime. Figure 2 shows a near thermal 
stratification at a specified Rayleigh number Ra = 103. As the 
Rayleigh number rises, the isotherms exhibit greater temperature 

variations and more distinct gradients, which is attributed to 
intensified convective heat transfer in the context of natural 
convection. The Rayleigh number also influences the entropy 
distribution within the fluid indirectly by affecting temperature 
distribution. As the Rayleigh number increases from 103 to 106, 
entropy isolines become more concentrated along the walls of the 
cavity, as depicted in Figure 2  [32,33].

Figure 3 presents the velocity, Nusselt number, and total entropy. 
The Rayleigh number significantly influences the flow velocity 
distribution in a fluid system. In the context of natural convection, 
as the Rayleigh number rises, buoyancy-driven flow becomes 
increasingly dominant over viscous forces. Figure 3a demonstrates 
that higher Rayleigh numbers tend to generate stronger convective 
currents, resulting in enhanced fluid movement and mixing. As the 
Rayleigh number increases, the Nusselt number reflects a more 
significant role of convective heat transfer, resulting in greater 
temperature differences across the fluid and more pronounced 
temperature gradients (refer to Figure 3b). Typically, higher 
Rayleigh numbers lead to increased heat transfer rates and more 
vigorous thermal mixing [31,34]. The convective currents and 
mixing associated with elevated Rayleigh numbers play a crucial 
role in altering entropy generation levels, which are particularly 
evident along the walls of the cavity, as shown in Figure 3.
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stronger convective heat transfer in natural convection. The Rayleigh number indirectly 
affects the entropy distribution within the fluid by influencing the temperature 
distribution. As 𝑅𝑎 increase from 10� to 10� the isolines of entropy are observed to 
concentrate more on the walls of the cavity as in figure 2 [32,33]. 
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number also influences the flow velocity distribution in a fluid system. In natural 
convection, as the rises in Rayleigh number, the buoyancy-driven flow becomes more 
dominant compared to viscous forces. Figure 3a shows that higher Rayleigh numbers 
tend to induce stronger convective currents, leading to enhanced fluid motion and 
mixing. For Nusselt number as the Rayleigh number increases, the convective heat 
transfer becomes more prominent. This leads to larger temperature differences across 
the fluid and more pronounced temperature gradients (see figure 3b). Higher Rayleigh 
numbers often result in increased heat transfer rates and more vigorous thermal mixing 
[31,34]. The convective currents and mixing associated with higher Rayleigh numbers 
contribute to changes in the levels of entropy generation. The effects of entropy are 
noticed more along the walls of the cavity due to changes in Rayleigh numbers as in 
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Figure 2: Streamline ψ, Isotherms θ, total Entropy Isolines ST at, Pr = 10, Ec = 10−6, Rd = 1 , σ = 0.5, β = 1 and γ = 0.25 for Various Ra
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For this computation the numerical scheme adopted is finite element method. We 
discretized the domain into smaller, geometrically simple portions known as finite 
elements to model the behavior of the Casson fluid and achieve enlightening findings. 
We use quadrilaterals within each element to depict the behavior of the unknown 
quantities of interest. These quadrilaterals allow us to estimate the solution with a finite 
number of nodal points, resulting in more efficient calculations. The computed average 
Nusselt numbers were compared to available experimental data and established 
benchmark solutions from Alzahrani et al. [11], Fusegi et al [27], and Ho et al. [28] for 
different Rayleigh numbers of (𝑅𝑎 = 10�, 10�, 10�, 10�) in table 1. The comparison 
involved a thorough analysis of the deviations, assessing the agreement between the 
computational and reference work. The results obtained for the average Nusselt number 
agreed with existing findings showing minimal error. The errors are calculated by 
comparing present work to existing literature [𝟏𝟏,𝟐𝟕,𝟐𝟖] 

 error =  present −  existing  

 

Table 1: Average Nusselt number comparison for Pr = 0.71,𝑅𝑑 = 0,𝛽 = ∞ 

𝑁𝑢avg   

𝑅𝑎 [𝟏𝟏] [𝟐𝟕] [𝟐𝟖] Present error [𝟏𝟏] error [𝟐𝟕] error [𝟐𝟖] 

10� 1.103 1.106 1.118 1.1168 0.0138 0.0108 0.0012 

10� 2.292 2.302 2.246 2.2414 0.0506 0.0606 0.0016 

10� 4.628 4.646 4.522 4.5190 0.0109 0.1270 0.0030 

10� 8.935 9.012 8.825 8.8247 0.1103 0.1873 0.0030 

 

5. Results and Discussion 

The resultof this investigation is presented in this section. The parameters under study 
includes Rayleigh number (10� ≤ 𝑅𝑎 ≤ 10�) , Eckert number (10�� ≤ 𝐸𝑐 ≤10��) , 
Forchheimer number (0 ≤ Γ ≤ 1), inverse Darcy (0 ≤ 𝛾 ≤ 1) , radiation (0 ≤ 𝑅𝑑 ≤
10), Prandtl number (Pr = 0.7,1.0,7.0,10) and Casson fluid parameters (0.001 ≤ 𝛽 ≤
1) . Figure (2− 10)  shows the effects of dimensionless parameters on streamlines, 
isotherms, isolines of entropy, velocity, Nusselt number, and total entropy. 

5.1. Effects of Rayleigh number 

Figure 2 shows for various Rayleigh numbers the streamline, isotherms, and total 
entropy isoline at fixed parameters Pr = 10,𝐸𝑐 = 10��,𝑅𝑑 = 1,𝜎 = 0.5,𝛽 = 1  and 
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Figure 2: Streamline ψ, isotherms θ, total entropy isolines ST at, Pr= 10,Ec= 10−6,Rd= 
1 , σ = 0.5, β = 1 and γ = 0.25 for various Ra. 
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Figure 3: a) Vertical velocity at vertical mid plane, b) Nusselt number at horizontal 
mid plane c) Total Entropy at vertical mid plane for Rd = 2, Ec= 10−6,Pr= 
0.7, γ = Γ = 0.75 

5.2. Effects of Radiation parameter 

Figure 4 shows streamline, isotherm, and total entropy isolines at fixed parameters 
Pr = 10,𝐸𝑐 = 10��,𝑅𝑎 = 10�,𝜎 = 0.5,𝛽 = 1 and 𝛾 = 0.25  for various radiation 
parameters of (𝑅𝑑 = 0,1,5,10). Streamlines are primarily determined by the fluid's 
motion and the forces acting upon it, such as pressure gradients and buoyancy. 
However, radiation influences the temperature allocation within the fluid, which 
consequently influences the density distribution and thus the flow patterns. Figure 4 
shows that in the absence of radiation (Rd = 0) a double convective core regime is 

Figure 3: a) Vertical Velocity at Vertical Mid Plane, b) Nusselt Number at Horizontal Mid Plane c) Total Entropy at vertical Mid Plane 
for Rd = 2, Ec = 10−6, Pr = 0.7, γ = Γ = 0.75

5.2. Effects of Radiation Parameter
Figure 4 shows streamline, isotherm, and total entropy isolines 
at fixed parameters Pr = 10, Ec = 10-6, Ra=106, σ = 0.5, β =1 
and γ =0.25 for various radiation parameters of (Rd=0,1,5,10). 
Streamlines are primarily determined by the fluid's motion and the 
forces acting upon it, such as pressure gradients and buoyancy. 
However, radiation influences the temperature allocation within 
the fluid, which consequently influences the density distribution 
and thus the flow patterns. Figure 4 shows that in the absence of 
radiation (Rd = 0) a double convective core regime is observed and 
this changes to a smooth and single circular core regime as radiation 
increases to Rd = 10. These effects are generally attributed to the 
fluid movements due to convective heat transmission. The effect 
on the isotherms as per our case is not showing much significance, 
this is due to the slow fluid movement caused by the viscoelastic 
nature of the Casson fluid parameter. Consequently, in figure 4 the 
isotherms are noticed to deviate as Rd increase which is solely 
based on the convection heat transfer. As radiation contributes to 
heat transfer, it as well impacts the local entropy production and 
distribution. Figure 4 shows that higher radiation levels can lead to 
increased heat transfer rates and entropy creation within the fluid. 

Entropy generation analysis is along the walls of the cavity for 
various radiation parameters.

Figure 5 depicts the variation of velocity, Nusselt number and 
overall, for distinct radiation parameters with Pr = 10, Ec = 
10−6, Ra = 106, σ = 0.5, β = 1 and γ = 0.25. Radiation contributes 
to energy exchange within the fluid, resulting in changes in 
temperature distribution. These temperature variations will 
affect the fluid density, which in turn influences fluid motion and 
velocity. Changes in temperature due to radiation drives buoyancy 
forces and induce convective currents, altering the fluid velocity 
field as presented in figure 5a. The absorption of radiation by the 
fluid can increase its temperature, The Nusselt number is affected 
by the changes in temperature. Figure 5b shows that as radiation 
increases so does the Nusselt number. The absorption and emission 
of radiation can lead to local changes in temperature and therefore 
entropy production within the fluid, which is presented in figure 
5c. Additionally, radiation can influence the entropy exchange 
between the fluid and its surroundings, contributing to changes in 
total entropy.
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Figure 5: a) Vertical Velocity at Vertical Mid Plane, B) Nusselt Number at Horizontal 

Mid Plane C) Total Entropy at Vertical Mid Plane for Different Radiation Parameters 

with Fixed ParametersPr= 10, Ec= 10−6, Ra = 106, σ = 0.5, β = 1 and γ = 0.25 

 

5.3. Effects of Prandtl Number 

Figure 6 depicts streamline, isotherms and total entropy isolines for various Prandtl 

numbers at fixed parameters Ec= 10−6, Ra = 106, Rd = 1,σ = 0.5, β = 1 and γ = 0.25. The 

Prandtl number affects the velocity distribution and the thickness boundary layer in a 

fluid flow. A higher Prandtl number implies a higher thermal diffusivity relative to the 

kinematic viscosity. As Prandtl changes from Pr= 0.1 to Pr= 10 the streamlines are 

more influenced by thermal effects than momentum effects. As a result, with a high 

Prandtl number, the boundary layer of velocity is thinner compared to the layer of 

thermal boundary. For isotherms, the temperature gradients in the fluid are less 

pronounced, and heat conduction is more dominant compared to convective heat 

transfer. Consequently, with a high Prandtl number, the isotherms tend to be smoother 

and less affected by convection (see figure 6). Similarly, for isolines of entropy, at a 

higher Prandtl number, the heat transfer is relatively more significant than momentum 

transfer. As a result, the isolines of entropy tend to be more aligned with the isotherms, 

reflecting the dominance of thermal effects in the system. Figure 6 shows that isolines 

cluster around the walls and become more pronounced as Prandtl changes from Pr= 0.1 

to Pr= 10 [30,33]. 

 

Figure 7 presents velocity, Nusselt number and total entropy at fixed parameter are 

Ec= 10−6, Ra = 106, Rd = 1, σ = 0.5, β = 1 and γ = 0.25. At high Prandtl number (Pr= 

10), the velocity boundary layer becomes lean, and the velocity gradients near the solid 

boundaries are more pronounced (see figure 7a). The Prandtl number plays an important 

role in finding the Nusselt number. The Prandtl number appears as an exponent in the 

Nusselt number correlation, indicating its influence on convective heat transfer. Figure 

7b shows that a higher Prandtl number generally leads to a higher Nusselt number, 

Figure 5: a) Vertical Velocity at Vertical Mid Plane, B) Nusselt Number at Horizontal Mid Plane C) Total Entropy at Vertical Mid Plane 
for Different Radiation Parameters with Fixed Parameters Pr = 10, Ec = 10−6, Ra = 106, σ = 0.5, β = 1 and γ = 0.25

5.3. Effects of Prandtl Number
Figure 6 depicts streamline, isotherms and total entropy isolines 
for various Prandtl numbers at fixed parameters Ec = 10−6, Ra = 
106, Rd = 1,σ = 0.5, β = 1 and γ = 0.25. The Prandtl number affects 
the velocity distribution and the thickness boundary layer in a fluid 
flow. A higher Prandtl number implies a higher thermal diffusivity 
relative to the kinematic viscosity. As Prandtl changes from Pr 
= 0.1 to Pr = 10 the streamlines are more influenced by thermal 
effects than momentum effects. As a result, with a high Prandtl 
number, the boundary layer of velocity is thinner compared to the 
layer of thermal boundary. For isotherms, the temperature gradients 
in the fluid are less pronounced, and heat conduction is more 
dominant compared to convective heat transfer. Consequently, 
with a high Prandtl number, the isotherms tend to be smoother and 
less affected by convection (see figure 6). Similarly, for isolines of 
entropy, at a higher Prandtl number, the heat transfer is relatively 
more significant than momentum transfer. As a result, the isolines 
of entropy tend to be more aligned with the isotherms, reflecting 
the dominance of thermal effects in the system. Figure 6 shows that 
isolines cluster around the walls and become more pronounced as 

Prandtl changes from Pr= 0.1 to Pr= 10 [30,33].

Figure 7 presents velocity, Nusselt number and total entropy 
at fixed parameter are Ec = 10−6, Ra = 106, Rd = 1, σ = 0.5, β = 
1 and γ = 0.25. At high Prandtl number (Pr = 10), the velocity 
boundary layer becomes lean, and the velocity gradients near 
the solid boundaries are more pronounced (see figure 7a). The 
Prandtl number plays an important role in finding the Nusselt 
number. The Prandtl number appears as an exponent in the Nusselt 
number correlation, indicating its influence on convective heat 
transfer. Figure 7b shows that a higher Prandtl number generally 
leads to a higher Nusselt number, which enhanced the convective 
heat transfer. Entropy is createdIn a fluid flow because of both 
heat transfer and fluid friction (viscous dissipation). The ratio 
between heat transfer and fluid friction is affected by the influences 
Prandtl number. A higher Prandtl number implies higher thermal 
diffusivity relative to the kinematic viscosity. Consequently, with a 
high Prandtl number, the heat transfer effects dominate over fluid 
friction effects, resulting in a higher total entropy generation in the 
system (see figure 7c).
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Figure 7: a) Vertical Velocity at Vertical Mid Plane, b) Nusselt Number at Horizontal 

Mid Plane c) Total Entropy at Vertical Mid Plane for Different Prandtl Numbers at Ec= 

10−6, Ra = 106, Rd = 1,σ = 0.5, β = 1 and γ = 0.25 

 

5.4. Effects of Casson Fluid Parameter 

Streamline, isotherms, and total entropy isolines for various Casson fluid parameters at 

Pr= 10, Ec= 10−6, Ra = 106, Rd = 1,σ = 0.5 and γ = 0.25 are presented in figure 8.The 

Casson fluid parameters, particularly the yield stress, significantly influence the 

streamlines in the flow. The lowest stress needed to start a fluid flow is represented by 

the yield stress . In regions where the applied stress is below the yield stress, the fluid 

remains stationary, creating a stagnant zone. Figure 8 indicates that as Casson fluid 

parameter changes from β = 0.001 to β = 1 the convective cell cores change from 

smooth and circular single cell cores to chaotic and double cell cores. The Casson fluid 

parameters generally have a limited effect on the isotherms, as they primarily describe 

the rheological behavior of the fluid rather than its thermal characteristics. A near 

thermal stratification is observed for β = 0.001 and the isotherms changes significantly 

for β = 1 as the temperature gradients increase. This can result in local variations in the 

temperature distribution and potentially influence the alignment of the isotherms in 

those regions. The isolines of entropy in a Casson fluid flow tend to exhibit more 

pronounced gradients and deviations due to the additional energy dissipation and flow 

complexity associated with the yield stress behavior as the casson fluid parameter 

increase (see figure 8) [34].  

 

Figure 9 depicts the velocity, Nusselt number and total entropy for various Casson fluid 

parameters with Pr= 10, Ec= 10−6, Ra = 106, Rd = 1, σ = 0.5 and γ = 0.25. Higher values 

of the Casson fluid parameter indicate a higher yield stress and a more significant 

resistance to flow. As a result, the velocity profile becomes more flattened near the 

boundaries, and the fluid tends to move with a higher velocity in the central region of 

Figure 7: a) Vertical Velocity at Vertical Mid Plane, b) Nusselt Number at Horizontal Mid Plane c) Total Entropy at Vertical Mid Plane 
for Different Prandtl Numbers at Ec= 10−6, Ra = 106, Rd = 1,σ = 0.5, β = 1 and γ = 0.25

5.4. Effects of Casson Fluid Parameter
Streamline, isotherms, and total entropy isolines for various Casson 
fluid parameters at Pr = 10, Ec = 10−6, Ra = 106, Rd = 1, σ = 0.5 
and γ = 0.25 are presented in figure 8.The Casson fluid parameters, 
particularly the yield stress, significantly influence the streamlines 
in the flow. The lowest stress needed to start a fluid flow is 
represented by the yield stress . In regions where the applied stress 
is below the yield stress, the fluid remains stationary, creating a 
stagnant zone. Figure 8 indicates that as Casson fluid parameter 
changes from β = 0.001 to β = 1 the convective cell cores change 
from smooth and circular single cell cores to chaotic and double 
cell cores. The Casson fluid parameters generally have a limited 
effect on the isotherms, as they primarily describe the rheological 
behavior of the fluid rather than its thermal characteristics. A near 
thermal stratification is observed for β = 0.001 and the isotherms 
changes significantly for β = 1 as the temperature gradients increase. 
This can result in local variations in the temperature distribution 
and potentially influence the alignment of the isotherms in those 
regions. The isolines of entropy in a Casson fluid flow tend to 
exhibit more pronounced gradients and deviations due to the 
additional energy dissipation and flow complexity associated with 
the yield stress behavior as the casson fluid parameter increase (see 
figure 8) [34]. 

Figure 9 depicts the velocity, Nusselt number and total entropy 
for various Casson fluid parameters with Pr = 10, Ec = 10−6, Ra 
= 106, Rd = 1,  = 0.5 and γ = 0.25. Higher values of the Casson 
fluid parameter indicate a higher yield stress and a more significant 
resistance to flow. As a result, the velocity profile becomes more 
flattened near the boundaries, and the fluid tends to move with a 
higher velocity in the central region of the flow. The yield stress 
acts as a barrier, requiring a certain amount of shear stress to 
initiate the flow. Therefore, a higher Casson fluid parameter leads 
to reduced velocities near the boundaries and increased velocities 
in the core region of the flow (see figure 9a). Higher values of the 
Casson fluid parameter leads to lower Nusselt numbers, indicating 
a reduced convective heat transfer as observed in figure 9b. The 
presence of a yield stress and non-Newtonian behavior leads to 
additional energy dissipation and increased entropy generation. 
The Casson fluid parameter sways the behavior of flow, velocity 
gradients, and shear stresses in the fluid. Figure 9c shows that 
higher values of the Casson fluid parameter generally result in 
increased overall entropy creation in the flow due to the greater 
resistance and energy dissipation associated with the yield stress 
behavior.
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5.5. Effects of Time
For varying Rayleigh values, the velocity,average Nusselt number, 
and over all entropy are presented against time in figure 10. The 
flow pattern increases over time with the Rayleigh number, the 
velocity diminishes and attained uniform flow phenomena. This is 
because, in convective heat transfer, velocity fluctuations promote 
the exchange of thermal energy between the fluid and solid 

surfaces, leading to enhanced heat transfer rates. In buoyancy-
driven flows, the Rayleigh number influences the changes in total 
entropy and average Nusselt number over time. When the flow 
starts, or the spread of temperatures varies the Nuavg and ST are 
observed to follow a uniform flow pattern as time evolves (see 
10(b-c)).

18 

 a b c 

 
Figure 9: a) Vertical Velocity at Vertical Mid Plane, b) Nusselt Number at Horizontal 

Mid Plane c) Total Entropy at Vertical Mid Plane for Different CassonFluid Parameters 

at Pr= 10, Ec= 10−6, Ra = 106, Rd= 1,σ = 0.5 and γ = 0.25 

 

5.5. Effects of Time 

For varying Rayleigh values, the velocity,average Nusselt number, and over all entropy 

are presented against time in figure 10. The flow pattern increases over time with the 

Rayleigh number, the velocity diminishes and attained uniform flow phenomena. This is 

because, in convective heat transfer, velocity fluctuations promote the exchange of 

thermal energy between the fluid and solid surfaces, leading to enhanced heat transfer 

rates. In buoyancy-driven flows, the Rayleigh number influences the changes in total 

entropy and average Nusselt number over time. When the flow starts, or the spread of 

temperatures varies the Nuavgand ST are observed to follow a uniform flow pattern as 

time evolves (see 10(b-c)). 

 a b c 

 
Figure 10: a) Velocity with Time, b) Average Nusselt Number with Time c) Total 

Entropy with Time at Pr= 10, Ec= 10−6, Rd = 1, β = 1, σ = 0.5 and γ = 0.25 

 

6. Conclusion 

Using the Finite Element Method, which offers precise modelling and simulation 

capabilities and permits a thorough inspection of the convoluted fluid flow and heat 

transfer, this study has effectively examined the entropy creation characteristics in a 

porous medium with Casson fluid during natural convection. The research has shed 

Figure 10: a) Velocity with Time, b) Average Nusselt Number with Time c) Total Entropy with Time at Pr = 10, Ec = 10−6, Rd = 1, β = 
1, σ = 0.5 and γ = 0.25

6. Conclusion
Using the Finite Element Method, which provides accurate 
modeling and simulation capabilities, this study has effectively 
analyzed the characteristics of entropy generation in a porous 
medium containing Casson fluid during natural convection. The 
research has illuminated the complex interactions between fluid 
movement, heat transfer, and entropy creation within these systems. 
Through numerical simulations and analysis, it was demonstrated 
that parameters such as the Rayleigh number, Darcy number, 
Prandtl number, and Casson fluid parameter significantly influence 
the rate of entropy generation. The Casson fluid parameter, which 
accounts for the fluid's non-Newtonian behavior, notably affects 
flow and heat transfer properties. The Prandtl number evaluates 
the relative significance of heat transport compared to viscous 
effects, while the Darcy and Rayleigh numbers govern the intensity 
of natural convection. Additionally, the temperature distribution 
influences the average Nusselt number and total entropy, 
revealing a consistent flow pattern over time. As the Rayleigh 
number increases, the velocity of the flow pattern decreases, 

ultimately leading to a uniform flow state. The findings of this 
study enhance the fundamental understanding of fluid dynamics, 
entropy formation, and heat transfer. The incorporation of a porous 
medium will be emphasized, underscoring its significant impact 
on the behavior of the system.

Future research could build on this work by including additional 
coupled phenomena, such as chemical reactions, electromagnetic 
effects, or phase change processes, to better simulate complex 
real-world scenarios involving Casson fluids. This would enhance 
our understanding of applications such as electrochemical 
energy systems, and thermal management in phase-changing 
materials, thereby expanding the applicability and relevance of the 
findings. Similarly, extending the work by Integrating real-world 
experimental validation with numerical simulations will be for 
ensuring the reliability of FEM results, especially in practical fields 
such as food processing, pharmaceuticals, and energy systems. 
Experimental setups serve as precise benchmarks for numerical 
models by capturing intricate real-world phenomena, including 
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non-Newtonian fluid behavior, thermal interactions, and boundary 
effects. This method not only bolsters the credibility of simulation 
predictions but also supports the development of optimized designs 
that address specific industry challenges and requirements.
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