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Abstract
Uncertainty is a complex and ubiquitous phenomenon. Randomness is an important concept to describe uncertainty, 
and its quantitative tool is probability. Through an in-depth study of the distribution law of prime numbers, this paper 
finds that prime number distribution has both randomness and certainty, which is defined as incomplete randomness. 
The position of prime numbers in the integer sequence is random, but the number of prime numbers in a certain interval 
is certain. And there are two trend characteristics of prime number distribution. One big trend is that the density of 
prime numbers gradually decreases; the other trend is that the probability density in the opposite direction increases 
slightly. Prime number distribution has a certain randomness, and its distribution is completely controlled by natural 
laws. There is no accidental cover-up and interference caused by minor factors. The number of prime numbers is fixed. 
Although there is no accurate function expression, it has a certain degree of certainty. This special type of distribution 
presents a fixed result and is an incomplete random distribution. The total probability of a particular event is calculated 
as the cumulative probability: P (total) = ∑P(n). The total cumulative probability as a quantitative tool for incomplete 
randomness is a new concept. Unlike classical probability, its value is allowed to be greater than the constant 1.

The discovery of incomplete randomness helps to find the law of prime number distribution, deepen the understanding 
of the laws of the universe, and broaden the deeper thinking about the nature of nature.

Many conjectures involving prime numbers are unresolved problems, some of which have been around for 300 years. 
Incomplete randomness can provide a new and unique perspective. This article applies the incomplete random 
distribution theorem and attempts to give proofs of some of these problems, such as the Mersenne prime conjecture and 
the Collatz conjecture.
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Uncertainty is a complex and ubiquitous phenomenon, and also 
a broad concept. It refers to the fact that people cannot fully 
determine the possibility of an event or result in the future in 
experiments or observations, or cannot obtain enough information 
to accurately predict the outcome of an event.

Randomness is an important concept to describe uncertainty. It 
can be considered as a type of quantifiable uncertainty, usually 
referring to the unpredictable characteristics of an event or result 
under specific conditions. The quantification of randomness usually 
involves a mathematical description of the uncertainty of random 
events or processes, including probability and statistics, random 
processes, etc. Randomness and probability are closely related, 
and they play a central role in describing and explaining uncertain 

events. Probability is a mathematical tool used to quantify the 
probability of a random event. Probability is defined as a measure 
of a set of events, and its value is between 0 and 1, where 0 means 
that the event is impossible and 1 means that the event must occur. 
Randomness involves the probability distribution of an event, 
that is, the probability of an event, but the specific results of each 
time are unpredictable. For example, the result of rolling a dice 
is a random variable, because each time the dice is rolled, people 
cannot accurately predict which number will appear [1-5].

Classical probability theory believes that the cause of random 
distribution must have secondary factors that are not known 
or controlled by people; random distribution has complete 
randomness, and the existing probability calculation formula is 
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comprehensive. Therefore, the above randomness is a kind of 
complete randomness.

However, things in the world are complicated. Observation and 
analysis show that there are many possible classifications of 
randomness. For example, the randomness of prime numbers 
in mathematics in the natural number interval is essentially 
different from the randomness in the data obtained from physical 
experimental observations. There is no cover-up and interference 
of accidental factors caused by secondary factors. The randomness 
of prime numbers is determined by the inherent laws of natural 
numbers. Therefore, randomness can be divided into complete 
randomness and incomplete randomness. As a result, the 
mathematical tools to describe the two types of randomness will 
be different.

If determinism and complete randomness are regarded as two 
extreme cases, incomplete randomness can be regarded as between 
the two. If the deterministic description can be regarded as infinite, 
and the probability description of complete randomness is between, 
then the probability description of incomplete randomness in the 
middle can be any non-negative finite real number, that is, its 
quantitative tool can extend the traditional definition and is not 
limited by the classical probability space [1].

The concept of transcending the classical probability model gives 
us a new perspective and handy tools.

1. Discovery of the Law of Incomplete Random Distribution
Through in-depth research on the distribution of prime numbers, 
it is found that the distribution of prime numbers has two 
characteristics: randomness and determinism. The position of 
prime numbers in the integer sequence is random, but the number 
of prime numbers in a certain interval is deterministic. In addition, 
there are two trend characteristics of prime number distribution: 
there is a large trend that the prime number density gradually 
decreases; there is also a reverse small trend of probability density 
change. Therefore, the distribution of prime numbers has some 
special characteristics [6,7]. The prime number distribution type 
does not belong to a completely random distribution, so the 
distribution type of prime numbers needs to be redefined.

Incompletely random distribution: The random events that occur 
are completely controlled by natural laws and the results are fixed. 
They cannot be normalized, and the total sum of probabilities can 
be greater than the value 1.

Completely random distribution: The results of random events 
that occur are not fixed and can be normalized. The total sum of 
probabilities is 1.

The results presented by the random distribution of prime 
numbers are fixed, but there is no accurate function expression. 
In any specified interval, the results of prime number detection 

experiments are certain. Although it is impossible to predict the 
exact location of prime numbers, it is possible to predict the lower 
bound of the number of prime numbers in a certain interval; the 
random distribution of dice and coin tossing experiments can 
be affected by uncontrollable secondary factors, and the results 
presented are not fixed. It is impossible to predict a specific 
result in a certain experiment, nor is it possible to predict the 
minimum number of times a specific result will appear in a certain 
experimental interval. The results of the dice rolling experiment 
are uncertain in any range of experimental times. Prime numbers 
are a special type of distribution, and the results presented 
are fixed as incomplete random distribution. In an incomplete 
random distribution, the total probability of a particular event is 
calculated as the cumulative probability: P (total) = ∑P (n). The 
total cumulative probability is a new and special concept different 
from simple probability, and its value is allowed to be greater than 
the constant 1.

2. Proof of the Incomplete Random Distribution Theorem 
For incomplete random distribution, the total probability of a 
particular event is calculated as the cumulative probability: P 
(total) = ∑P (n).

Proof Method:
Assume that the prime number distribution type belongs to 
completely random distribution.

According to the prime number theorem, the average probability 
that an integer less than the integer x is a prime number is 1/Ln(x). 
Now calculate the probability that there is a prime number among 
the integers less than the integer 100.

Calculate according to the probability theory of completely 
random distribution:
The probability that each integer less than 100 is not a prime 
number is 1-1/Ln(100), and the probability that there is a prime 
number among the integers less than the integer 100 is 1-(1-1/
Ln(100))100 = 0.9999999999977.

The result shows that the probability of a prime number is less than 
the value 1, that is, a prime number does not necessarily exist.

Use the incomplete random distribution theorem to calculate:

The total cumulative probability P (total) = ∑P (n).

Because the prime number theorem shows that 1/Ln(x) is the 
lower bound of the average probability that an integer less than x 
is prime, the lower bound probability that there is a prime number 
among integers less than 100 is 100 1/Ln(100) added together to 
21.7.

As a result, the event of the existence of prime numbers has 
occurred at least 21 times, that is, prime numbers must exist.
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The real situation: There are 25 prime numbers among integers 
less than 100. Anyone who verifies the existence of 25 prime 
numbers is a fact, and prime numbers are a must. The assumption 
contradicts the real situation, so it is proved that the prime number 
distribution type is a new type of distribution, that is, it belongs to 
an incomplete random distribution.

3. Application of the Incomplete Random Distribution 
Theorem in Mathematics
Incomplete randomness and its cumulative probability calculation 
tools can be used to effectively solve many difficult problems in 
number theory. Here are some examples.

Example 1: Proof of the Mersenne prime conjecture [8].

The Mersenne prime conjecture was proposed in 1644 [9]. It refers 
to whether there are infinite Mersenne primes among positive 
integers of the form 2n-1.

3.1 Proof Method
Let n>1 be any positive integer. According to the prime 
number theorem, the probability that 2n-1 is a prime number is 
conservatively estimated to be approximately 1/Ln(2n-1), so the 
lower bound function (cumulative probability) of the number of 
Mersenne primes less than 2n is conservatively estimated to be 
approximately

Because when x increases, Ln(2x-1) approaches Ln(2x), so the 
above formula can be simplified to

Because when n approaches infinity, the harmonic series in the 
above formula diverges. The function value, that is, the number of 
Mersenne primes, also tends to infinity. This proves the Mersenne 
prime conjecture, that is, there are infinite Mersenne primes.

Because the last digits of a positive integer of type 2n-1 can only 
be 1, 3, 5, and 7; and because the probability that a positive integer 
m is prime when the last digits are 1, 3, 7, and 9 is 10/4*1/Ln(m), 
so the probability that a positive integer m is prime when the last 
digits are 1, 3, 5, and 7 is 10/4*1/Ln(m)*3/4. After simplification, 
the more accurate probability that a positive integer of type 2n-1 
is prime is approximately 15/8*/Ln(2n-1). Therefore, when n>1 is 
an arbitrary positive integer, the number of Mersenne primes less 
than 2n (cumulative probability) is more accurately estimated to be 
approximately

Example 2: Proof of the Collatz Conjecture [10].

The Collatz conjecture, also known as the 3x+1 conjecture, states 
that for a natural number x, if it is an odd number, it is multiplied 
by 3 and then added to 1. If it is an even number, an even factor 
2n is extracted. After several operations, it will always return to 1. 
This conjecture was proposed by German mathematician Lothar 
Collatz in 1937 and has not yet been thoroughly proved.

3.2 Proof Method
Each operation of the Collatz conjecture, whether it is an odd 
number or an even number, can be represented by the mathematical 
model (k*2n)*3+2n, which can be simplified to (3k+1)*2n. The 
distribution of the odd factor k is controlled by natural laws and 
is not completely random. Because after any positive integer is 
determined and different people perform operations, the odd factor 
after each operation is exactly the same, and there is determinism.

Let 2t be a perfect square number just less than 3k, then 2t < (3k+1) 
≤ 2*2t. Since k is an arbitrary odd number, the value of (3k+1) 
fluctuates between greater than 2t and less than or equal to 2*2t, and 
is randomly distributed in the area close to 2*2t. Since (3k+1) does 
not exist in the area greater than 2t and less than 3k, and (3k+1) is 
an even number, the probability that (3k+1) is equal to 2*2t after 
each operation is conservatively estimated to be 1/(2*2t-2t)=1/2t. 
Function Σ1/2t is the lower bound function of the number of times 
(3k+1) is a perfect square number.

In fact, k is an arbitrary odd number, and (3k+1) must be an even 
number after each operation. Even numbers exist in many forms, 
because n is an arbitrary positive integer in the even number k*2n, 
and the number of operations to extract an even number is different. 
As a result, the k value at the next operation fluctuates, and there 
is no monotonically increasing trend. Therefore, the probability 
value 1/2t that (3k+1) is a perfect square number fluctuates up 
and down in the initial stage. When (3k+1) is a perfect square, 
each item of the probability value is 1/2, because the odd factor k 
is 1 at this time. The probability value of (3k+1) being a perfect 
square is 1/(22-21)=1/2 when the operation continues, and there is 
no trend of gradually decreasing with the increase of the number 
of operations. The value of the cumulative probability function 
Σ1/2t that (3k+1) is a perfect square is monotonically increasing, 
but the rising slope of the function curve is sometimes high and 
sometimes low in the initial stage. When (3k+1) is a perfect square, 
the rising slope of the function curve is fixed and there is no trend 
of gradually decreasing.

Comparing the cumulative probability function Σ1/2t with the 
harmonic function Σ1/n, each item 1/n of the harmonic function 
Σ1/n has a trend of gradually decreasing value as the number of 
items n increases. This causes the rising slope of the harmonic 
function Σ1/n curve to gradually decrease.

For any positive integer k*2n, no matter how large it is, the odd 
factor k in it is a fixed value. Therefore, the value of t in the perfect 
square number 2t just less than 3k is a finite value. When the value 
of n in the harmonic function Σ1/n is greater than 2t, the value of 
the corresponding function 1/2t will gradually become greater than 
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the value of the function 1/n. That is, when the value of n is less 
than 2t, the value of the function 1/n is greater than the value of the 
function 1/2t; when the value of n is greater than 2t, the value of the 
function 1/n is less than the value of the function 1/2t.

The number 2t is a finite value, and the number of times the value 
of function 1/n is greater than the function 1/2t is finite; the number 
of times the value of function 1/n is less than the function 1/2t is 
infinite.

Therefore, when the number of operations approaches infinity, 
the value of the cumulative probability function Σ1/2t is greater 
than the value of the harmonic function Σ1/n of the corresponding 
number. Because the value of the harmonic function Σ1/n tends to 
infinity when n tends to infinity, when the number of operations 
gradually increases, the cumulative probability function value 
Σ1/2t >>1 that (3k+1) is a perfect square number, and it also tends 
to infinity when the number of operations is infinite, and does not 
converge.

The cumulative probability function value Σ1/2t (lower bound 
function) represents the lower bound of the number of times 
(3k+1) is a perfect square number, and is much larger than the 
value 1 when the number of operations gradually increases. When 
the number of operations approaches infinity, the cumulative 
probability function value Σ1/2t is infinite and does not converge. 
This shows that the event that (3k+1) is a perfect square number is 
inevitable, which proves the Collatz conjecture.

4. Conclusion and Discussion
Starting from observation and analysis, this paper gives a 
classification of randomness and defines incomplete randomness, 

which is between determinism and complete randomness. The 
quantitative tool used is cumulative probability, whose value is 
allowed to be greater than the constant 1.

The discovery of incomplete randomness has deepened the 
understanding of the laws of the universe and broadened the 
deeper thinking about the nature of nature.

This discovery helps to find new laws of prime number distribution 
and create a new paradigm for mathematical research. Many 
conjectures involving prime numbers are unresolved problems, 
some of which have been around for 300 years. Incomplete 
randomness can provide a new and unique perspective. This paper 
applies the incomplete random distribution theorem and tries to 
give proofs of some of these problems, such as the Mersenne 
prime conjecture and the Collatz conjecture.

References
1. Rényi, A. (2007). Probability theory. Courier Corporation. 
2. Probability and statistics. https://www.britannica.com/

science/probability 
3. Randomness. https://en.wikipedia.org/wiki/Randomness.
4. Stochastic. https://en.wikipedia.org/wiki/Stochastic
5. Uncertainty. https://en.wikipedia.org/wiki/Uncertainty.
6. Hardy, G. H. (1979). An introduction to the theory of numbers. 

Oxford Science Publication.
7. Prime Counting Function. https://mathworld.wolfram.com/

PrimeCountingFunction.html 
8. Li, Z., Li, H. (2022). A Proof of Mersenne Prime Conjecture.
9. Niu, P., & Zhang, J. (2024). A Proof of Mersenne primes 

Conjecture. 
10. Li, Z. and Li, H. (2024). Proof of Collatz Conjecture.

Copyright: ©2025 Zhi Li, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

https://opastpublishers.com/

https://www.google.co.in/books/edition/Probability_Theory/V006AwAAQBAJ?hl=en&gbpv=0
https://www.britannica.com/science/probability
https://www.britannica.com/science/probability
https://en.wikipedia.org/wiki/Randomness
https://en.wikipedia.org/wiki/Stochastic
https://en.wikipedia.org/wiki/Uncertainty
https://www.google.co.in/books/edition/An_Introduction_to_the_Theory_of_Numbers/FlUj0Rk_rF4C?hl=en&gbpv=0
https://www.google.co.in/books/edition/An_Introduction_to_the_Theory_of_Numbers/FlUj0Rk_rF4C?hl=en&gbpv=0
https://mathworld.wolfram.com/PrimeCountingFunction.html
https://mathworld.wolfram.com/PrimeCountingFunction.html
https://www.researchgate.net/profile/Pengcheng-Niu/publication/382494473_A_Proof_of_Mersenne_primes_Conjecture/links/66a093e75919b66c9f683044/A-Proof-of-Mersenne-primes-Conjecture.pdf
https://www.researchgate.net/profile/Pengcheng-Niu/publication/382494473_A_Proof_of_Mersenne_primes_Conjecture/links/66a093e75919b66c9f683044/A-Proof-of-Mersenne-primes-Conjecture.pdf
https://www.researchgate.net/profile/Pengcheng-Niu/publication/382494473_A_Proof_of_Mersenne_primes_Conjecture/links/66a093e75919b66c9f683044/A-Proof-of-Mersenne-primes-Conjecture.pdf
https://www.researchgate.net/profile/Pengcheng-Niu/publication/382494473_A_Proof_of_Mersenne_primes_Conjecture/links/66a093e75919b66c9f683044/A-Proof-of-Mersenne-primes-Conjecture.pdf

