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Abstract 
This paper studies the examples of electromagnetic field and electromagnetic wave of plane-sheet current. Through this example, the 
author explains why the theory of mutual energy flow transmitting electromagnetic wave energy should be used to replace the theory 
of self energy flow transmitting energy. For radiated electromagnetic fields, both self energy flow and mutual energy flow are active 
power, that is conflicted with the energy conservation law. The author believes that self energy flow does not transfer energy, so Maxwell 
electromagnetic theory is properly re-interpretated. So far, the classical electromagnetic theory can not explain the energy flow from 
the primary coil to the secondary coil of the transformer. This paper achieves this goal for the first time. This example also tells us that 
the mutual energy flow is generated at the source of the electromagnetic wave and annihilated at the sink of the electromagnetic wave, 
which is very similar to the photon described by Cramer’s transactional interpretation of quantum mechanics. Therefore, the mutual 
energy theory proposed by the author can be regarded as the concrete realization of the transactional interpretation. The interpretation 
of mutual energy flow proposed by the author is also a further development of transactional interpretation.

1. Introduction
The author knows that there are some problems in the classical 
electromagnetic field theory, such as the classical electromagnetic 
field theory can not describe photons and the collapse of waves. 
Wave particle duality problem, whether the wave is a probability 
wave or an energy wave. These problems seem to be problems 
of quantum mechanics, which do not belong to classical 
electromagnetic theory. In fact, these problems have not been 
solved by quantum mechanics. The author hopes to answer these 
questions in the framework of classical electromagnetic theory 
by establishing electromagnetic mutual energy theory. This 
paper introduces the solution of electromagnetic field plane-sheet 
current. Answer these questions through an example. The author 
found a method to solve the retarded vector potential of plane-
sheet current. The answer of this method is consistent with the 
method of calculating magnetic field and electric field by Ampere-
Maxwell circuital theorem. In this way, the result is verified, so it 
should be correct.

1.1 Problems of Classical Electromagnetic Theory
The author believes that electromagnetic radiation should not 

be radiated to the outside of the universe. There should not be a 
completely outward energy radiation. However, we know that 
according to the solution of Maxwell’s equations, a current element 
can be regarded as an antenna. If viewed as an antenna, it can 
produce radiation. This radiation according to the self-energy flow 
(or Poynting vector) has been toward the outside of the universe.

The energy flow of mutual inductance is the mutual energy 
flow, the energy flow of self-inductance is self-energy flow. In 
the transformer, the energy exchange can reach almost 100%, 
which is completed through mutual inductance phenomena. This 
shows the energy flow of a transformer is mutual energy flow 
instead of self-energy flow. This conclusion is derived under the 
theoretical environment of magnetic quasi-static electromagnetic 
field. The author believes that an antenna system including a 
transmitting antenna and a receiving antenna should be consistent 
with the transformer system. Self energy flow (corresponding 
to Poynting vector) does not transfer energy, but mutual energy 
flow transfers energy. In other words, the transmitting antenna 
should be consistent with the primary coil of the transformer 
as a radiation source. The receiving antenna shall be consistent 
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with the secondary coil of the transformer as a radiation sink. 
However, because radiation is involved, we must consider the 
radiated electromagnetic field satisfying Maxwell’s equations, 
not the equation of the magnetic quasi-static field. According to 
the electromagnetic field determined by Maxwell’s equations, self 
energy flow transfers energy. This can be seen from the fact that 
the Poynting vector of the electromagnetic field of any antenna is a 
real number. At this time, the energy of self energy + energy of the 
mutual energy will be greater than the total energy of the current of 
the primary coil can offer. This is certainly wrong.

What went wrong with Maxwell’s theory? this is considered by the 
author. 1) Maxwell’s equations are right, and the solution we get is 
wrong. 2) The solution of Maxwell’s equation is correct, and there 
is a problem in the physical sense of Maxwell’s equations. Firstly, 
an example is given to illustrate that Maxwell’s equations can be 
solved accurately. Therefore, if there is an error, it can only be an 
error in the interpretation of the physical meaning of Maxwell’s 
equations.

1.2 Physical Theory and Electromagnetic Theory Including 
Advanced Wave
In the field of physics and quantum physics, Wheeler Feynman 
put forward the absorber theory in 1945 [1,2]. This theory is based 
on the action-at-a-distance reaction theory [3-5]. Stephenson put 
forward his own advanced wave theory about 1980 [6]. Cramer 
established the transactional interpretation of quantum mechanical 
on the basis of absorber theory [7, 8].

In the domain of electromagnetic field, Welch gave Welch’s 
reciprocity theorem in 1960, involving advanced wave [9]. Rumsey 
gave a new reciprocity theorem in 1963 [10]. In 1987, the author 
proposed the mutual energy theorem, and de Hoop proposed the 
cross-correlation reciprocal theorem at the end of 1987 [11-13] . 
All these theorems can be connected by Fourier transform, so they 
can be regarded as one theorem. The difference between the author 
and the other three people is that this theorem can be interpreted 
not only a reciprocity theorem, but also an energy theorem.
Welch’s reciprocity theorem,

de Hoop’s correlation reciprocity theorem,

The author’s mutual energy theorem and Rumsey’s reciprocity 
theorem[10],

1.3 Introduction to the Mutual Energy Theory Proposed by 
the Author
The author have developed the mutual energy theory [14-17]. It 
introduced 3 Axioms and a few theorems.

Axiom 1, law of conservation of energy,

This axiom is self-evident. It shows that when the power of one 
current element of a system increase, the power of another current 
element will decrease, so the total power remains unchanged.
Axiom 2, mutual energy principle, with N current elements 
Ji,i=1,...N. The following mutual energy principle exists,

The principle of mutual energy is equivalent to N sets of Maxwell’s 
equations,

The corresponding electromagnetic field and current elements are,

Maxwell equation operator is defined as,

The principle of mutual energy can be derived from Maxwell’s 
equations, and Maxwell’s equations can also be derived from 
the principle of mutual energy. However, the principle of mutual 
energy is not completely equivalent to Maxwell’s equations. This 
is because the last formula N ≥ 2. For the principle of mutual 
energy, N = 1 is impossible. But for Maxwell’s equations, of 
course, N can be 1. Both retarded wave or advanced wave is the 
solution of Maxwell’s equations. However, only when the retarded 
wave and the advanced wave form a pair of Maxwell’s equations 
synchronously, it is the solution of the mutual energy principle.

Axiom 3, energy flow must not overflow the universe. Set a sphere 
with infinite radius Γ, Stotal is the total energy flow, including self 
energy flow and mutual energy flow.

Note that this axiom is not satisfied for the self energy flow 
corresponding to the Poynting vector. 
Therefore, the classical electromagnetic theory is imperfect.
Mutual energy flow theorem,

where,
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The author’s mutual energy theorem and Rumsey’s reciprocity theorem[10], 

 

 −∭� (𝑱𝑱� ⋅ 𝑬𝑬�
∗)𝑑𝑑𝑑𝑑 =∭� (𝑱𝑱�

∗ ⋅ 𝑬𝑬�)𝑑𝑑𝑑𝑑 (3) 
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Γ is any close surface or infinite surface which is a segmentation of 
the the two volumes V1 and V2. In the frequency domain the mutual 
energy flow theorem can be written as,

1.4 Problems of Classical Electromagnetic Theory

We know that Poynting’s theorem can be derived from Maxwell’s 
equations,

Considering the superposition principle,

Therefore, the Poynting theorem of N current elements is,

But the mutual energy principle of N current elements is Eq.(5) 
and above formula both are the energy conservation laws of 
N current elements. If they are true, their difference should not 
transfer energy. That is,

does not transfer energy. Or request,

does not transfer energy. The above formula is Poynting’s theorem, 
Ji is the current element of an antenna. For an antenna, the Poynting 
vector must not be zero. Therefore, the above formula is to transfer 
energy. This creates a contradiction.

1.5 Solution of Electromagnetic Field of Plane-Sheet Current
For the solution of the electromagnetic field of the plane-sheet 
current, the traditional method is to obtain the magnetic field from 
the Ampere circuital law, and then obtain the electric field from 
the magnetic field. However, the author is always dissatisfied with 
the above method, hoping to solve the electromagnetic field by 
magnetic vector potential, and then compare it with the former 
method. If the same result is obtained, the answer is considered 
reliable. In this paper, the author has found an analytical method 
to solve the electromagnetic field by vector potential. This method 
increases the author’s confidence in Maxwell’s equations. Readers 
may ask why the author doubts Maxwell’s equations. Because 
the wave particle duality problem has not been solved. The 
conservation of energy flow has not been solved, and the problem 
that radiation does not overflow the universe has not been solved. 
The author once doubted whether there was a problem with the 
solution method of Maxwell’s equations. That is, Maxwell’s 

equations are correct, but the problem is that we made a mistake in 
solving them. The solution of electromagnetic field of plane-sheet 
current tells the author that there is no problem in solving Maxwell 
equations. At least for this example. That is, there is no problem in 
mathematics. Then the problem can only be Maxwell’s equations 
or the classical electromagnetic theory itself. We must propose 
amendments to this physical theory.

2. Magnetic Quasistatic Electromagnetic Field
Consider Maxwell’s equations, displacement current    
Maxwell’s equations at this time is,

Above is the magnetic quasi-static Maxwell’s equations. For the 
vector potential and scalar potential of quasi-static electromagnetic 
field,

magnetic field,

electric field,

2.1 Magnetic Quasi-Static Electromagnetic Field of Plane-
Sheet Current

Figure 1: Electromagnetic Field of Single Plane-Sheet Current

As shown in the figure 1, the finite plane Oxz has current density 
J = J0 exp(-jωt), now calculate the electromagnetic field intensity 

Γ is any close surface or infinite surface which is a segmentation of the the two volumes 𝑉𝑉� and 

𝑉𝑉�. In the frequency domain the mutual energy flow theorem can be written as, 
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2. Magnetic Quasistatic Electromagnetic Field 

Consider Maxwell’s equations, displacement current �
��
𝑫𝑫 ≅ 0. Maxwell’s equations at this time 

is,  

 ∇ ⋅ 𝑬𝑬 = �
��

 (20) 

  

 ∇ ⋅ 𝑩𝑩 = 0 (21) 

 

 

 ∇ × 𝑬𝑬 = − �
��
𝑩𝑩 (22) 

  

 ∇ × 𝑯𝑯 = 𝑱𝑱 (23) 

 

Above is the magnetic quasi-static Maxwell’s equations. For the vector potential and scalar 

potential of quasi-static electromagnetic field,  

 𝜙𝜙 ≅ �
����

∭�
�
�
𝑑𝑑𝑑𝑑 (24) 

  

 𝑨𝑨 ≅ ��
��∭�

𝑱𝑱
�
𝑑𝑑𝑑𝑑 (25) 

 

magnetic field,  

 𝑩𝑩 = ∇ × 𝑨𝑨 (26) 

 

electric field,  

 𝑬𝑬 = − �
��
𝑨𝑨 − ∇𝜙𝜙 (27) 
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 𝜉𝜉� = [𝑬𝑬�, 𝑯𝑯�]�,⋯ 𝜏𝜏� = [𝑱𝑱�, 0]� (7) 

 

Maxwell equation operator is defined as,  

 𝐿𝐿 = �
−𝜖𝜖�

�
��
, ∇ ×

−∇ × −𝜇𝜇�
�
��

� (8) 

 

 

 𝑁𝑁 ≥ 2 (9) 

 

The principle of mutual energy can be derived from Maxwell’s equations, and Maxwell’s 

equations can also be derived from the principle of mutual energy. However, the principle of 

mutual energy is not completely equivalent to Maxwell’s equations. This is because the last 

formula 𝑁𝑁 ≥ 2 . For the principle of mutual energy, 𝑁𝑁 = 1  is impossible. But for Maxwell’s 

equations, of course, 𝑁𝑁  can be 1. Both retarded wave or advanced wave is the solution of 

Maxwell’s equations. However, only when the retarded wave and the advanced wave form a pair 

of Maxwell’s equations synchronously, it is the solution of the mutual energy principle. 

Axiom 3, energy flow must not overflow the universe. Set a sphere with infinite radius Γ, 𝑺𝑺�����  

is the total energy flow, including self energy flow and mutual energy flow.  

 ∯ 𝑺𝑺����� ⋅ 𝑛𝑛�𝑑𝑑Γ� = 0 (10) 

 Note that this axiom is not satisfied for the self energy flow corresponding to the Poynting vector. 

Therefore, the classical electromagnetic theory is imperfect. 

Mutual energy flow theorem, 
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Considering the superposition principle, 

 

 𝑬𝑬 = ∑�
��� 𝑬𝑬� 𝑯𝑯 = ∑�

��� 𝑯𝑯� 𝑱𝑱 = ∑�
��� 𝑱𝑱� (16) 
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The principle of mutual energy can be derived from Maxwell’s equations, and Maxwell’s 
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at (0, y, 0). Therefore, it is necessary to find the vector potential 
A, then B, and finally E. On the plane of Oxz, a small section of 
current Jdxdz which has the distance l from the origin. This current 
changes with time. Therefore, the phase delay from this point to 
(0, y, 0) is                  The retarded vector potential in integral form 
can be obtained,

Using polar coordinates on the Oxz plane,

Under the assumption of magnetic quasi-static situation, the 
retarded factor can be regarded as 1

The condition of that is,

Considering                     the above can be written as,

Where λ is the wavelength, and J = J0 exp(jωt), so,

We know,

In this case, consider ∇ϕ=0, hence there is,

"∼" is symbol does not care the value, but only care the phase and 
direction.

The direction phase of the magnetic field obtained by the above 
formula is consistent with that obtained by Ampere circuital law. 
Poynting vector is,

Therefore, Poynting vector is an imaginary number and is reactive 
power. If Poynting’s theorem represents the transmission of 
energy, there is no energy transmission in this case. This is correct 
according to the author’s mutual energy theory, Poynting vector is 
not energy flow. The real energy flow is mutual energy flow. The 
next section studies mutual energy flow.

2.2 Electromagnetic Field Between Two Coils of Transformer
Assume there is a two plate transformer as following figure 2. The 
primary coil and the secondary coil are all plane-sheet currents. 
The primary coil has connected to current source, the secondary 
coil has connected to a resistance.

Figure 2: Double plate transformer
 
The last section told us for the primary coil of the transformer,

Suppose a plane-sheet current is the primary coil, and another 
plane-sheet current is the secondary coil on the right side of the 
primary coil. Current of secondary coil is,

         is the induced electromotive force generated by the primary coil 
on the secondary coil, R2 + jωL2 Is the impedance of the secondary 
coil. L2 is the secondary coil inductance. R2 is the resistance of the 
secondary coil, if

In this case, the secondary coil current is in phase with the 
electromotive force of the primary coil which act on the secondary 
coil,

or

 
 

Figure 1: Electromagnetic Field of Single Plane-Sheet Current 
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Therefore, Poynting vector is an imaginary number and is reactive power. If Poynting’s theorem 

represents the transmission of energy, there is no energy transmission in this case. This is correct 

according to the author’s mutual energy theory, Poynting vector is not energy flow. The real energy 

flow is mutual energy flow. The next section studies mutual energy flow. 
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The Poynting vector on the secondary coil is reactive power. Mixed Poynting vector corresponding 
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 𝑺𝑺� = 𝑬𝑬� × 𝑯𝑯�
∗ + 𝑬𝑬�∗ × 𝑯𝑯� 

 

 ∼ (𝐸𝐸�𝐻𝐻�∗ + 𝐸𝐸�∗𝐻𝐻�)𝑦𝑦� 
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The mutual energy flow is active and from the primary coil pointing to the secondary coil. 

Therefore, we can explain the energy flow from the primary coil to the secondary coil by the 

mutual energy flow. This cannot be done by the self energy flow corresponding to the Poynting 
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Since the magnetic field is reversed on both sides of the plane-sheet current, when the mutual 

energy flows to the right of the secondary coil, the mutual energy flow cancels out because the 
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The secondary plane-sheet current is at the place of 𝑦𝑦 = 𝐿𝐿. 𝛿𝛿 is a very small amount. 𝐿𝐿 + 𝛿𝛿 is 
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According to the formula, E2 =           A2= -jωA2 and A2 ∼ J2 we 
have,

Same as Eq.(38), the magnetic field can be obtained by using the 
Ampere circuital law

The Poynting vector on the secondary coil is reactive power. 
Mixed Poynting vector corresponding to mutual energy flow,

The mutual energy flow is active and from the primary coil pointing 
to the secondary coil. Therefore, we can explain the energy flow 
from the primary coil to the secondary coil by the mutual energy 
flow. This cannot be done by the self energy flow corresponding to 
the Poynting vector.

2.3 Mutual Energy Flow Outside Two Coils of Transformer
Since the magnetic field is reversed on both sides of the plane-
sheet current, when the mutual energy flows to the right of the 
secondary coil, the mutual energy flow cancels out because the 
magnetic field of the secondary coil is reversed,

The secondary plane-sheet current is at the place of y = L. δ is a 
very small amount. L + δ is at the right side of the plane-sheet 
current. L - δ is at the left side of the plane-sheet current. We know,

Similarly, on the left side of the primary coil, due to the change of 
magnetic field direction,

The primary coil is at the place y = 0, considering,

There is,

Therefore, the mutual energy flow is,

Therefore, it is clear from the above formula that the transformer 
mutual energy flow is generated on the primary coil and annihilated 
on the secondary coil. Mutual energy flow is the only energy flow 
of transformer. The self energy flow corresponding to the Poynting 
vector is reactive power,

Here    means taking the real part of a complex number. Therefore, 
the self-energy flow corresponding to Poynting vector does not 
transfer energy. At least it is correct for this example.

3. Radiated Electromagnetic Field
Maxwell’s equations at this case is,

Considering current density J = J0 exp(jωt), ρ = ρ0 exp(jωt)) . 
In the above formula, we use lowercase letters to represent the 
radiated electromagnetic field. Capital letters indicate magnetic 
quasi-static electromagnetic fields and a new defined radiation 
field that is an seamless extentiaon of magnetic quasi-static 
electromagnetic fields. The author believes that the magnetic 
quasi-static electromagnetic field and the radiated electromagnetic 
field are two different systems. Their properties are very different. 
So use different symbols to distinguish them.

3.1 Retarded Potential
The retarded potential can be written as,

Above is the magnetic quasi-static Maxwell’s equations. As 
shown in the figure 1, the finite plane Oxz has current density J 
= J0 exp(jωt), now calculate the electromagnetic field intensity 
at (0, y, 0). Therefore, it is necessary to find the vector potential 
a(+), then b, and finally e. On the plane of Oxz, a small section of 
current Jdxdz which has the distance l from the origin. This current 
changes with time. Therefore, the phase delay from this point to 
(0, y, 0) is                    Polar cordinate is used on the integral, the 
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know,  

 𝑺𝑺�� = 𝑬𝑬� × 𝑯𝑯�
∗  (51) 

  

 𝑺𝑺��(𝑦𝑦 = 𝐿𝐿 + 𝛿𝛿) = −𝑺𝑺��(𝑦𝑦 = 𝐿𝐿 − 𝛿𝛿) (52) 
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The primary coil is at the place 𝑦𝑦 = 0, considering, 
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0 −∞ < 𝑦𝑦 < 0
𝑦𝑦� 0 ≤ 𝑦𝑦 ≤ 𝐿𝐿
0 0 < 𝑦𝑦 < ∞

 (56) 

 

Therefore, it is clear from the above formula that the transformer mutual energy flow is generated 

on the primary coil and annihilated on the secondary coil. Mutual energy flow is the only energy 

flow of transformer. The self energy flow corresponding to the Poynting vector is reactive power,  

 ℜ(𝑺𝑺��) = ℜ(𝑬𝑬� × 𝑯𝑯�
∗) = 0 (57) 

  

 ℜ(𝑺𝑺��) = ℜ(𝑬𝑬� × 𝑯𝑯�
∗) = 0 (58) 

 Here ℜ  means taking the real part of a complex number. Therefore, the self-energy flow 

corresponding to Poynting vector does not transfer energy. At least it is correct for this example. 
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3 Radiated Electromagnetic Field 

 

Maxwell’s equations at this case is,  

 ∇ ⋅ 𝒆𝒆 = �
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 ∇ ⋅ 𝒃𝒃 = 0 (60) 

 

 

 ∇ × 𝒆𝒆 = − �
��
𝒃𝒃 (61) 

  

 ∇ × 𝒉𝒉 = 𝑱𝑱 + �
��
𝒅𝒅 (62) 

 

Considering current density 𝑱𝑱 = 𝑱𝑱�exp(𝑗𝑗𝑗𝑗𝑗𝑗), 𝜌𝜌 = 𝜌𝜌�exp(𝑗𝑗𝑗𝑗𝑗𝑗)) . In the above formula, we use 

lowercase letters to represent the radiated electromagnetic field. Capital letters indicate magnetic 

quasi-static electromagnetic fields and a new defined radiation field that is an seamless extentiaon 

of magnetic quasi-static electromagnetic fields. The author believes that the magnetic quasi-static 

electromagnetic field and the radiated electromagnetic field are two different systems. Their 

properties are very different. So use different symbols to distinguish them. 

 

3.1 Retarded Potential 

 

The retarded potential can be written as, 
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Above is the magnetic quasi-static Maxwell’s equations. As shown in the figure 1, the finite plane 

𝑂𝑂𝑂𝑂𝑂𝑂  has current density 𝑱𝑱 = 𝑱𝑱�exp(𝑗𝑗𝑗𝑗𝑗𝑗) , now calculate the electromagnetic field intensity at 

(0, 𝑦𝑦, 0). Therefore, it is necessary to find the vector potential 𝒂𝒂(�), then 𝒃𝒃, and finally 𝒆𝒆. On the 
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current changes with time. Therefore, the phase delay from this point to (0, 𝑦𝑦, 0) is 𝑗𝑗𝑗𝑗�𝑦𝑦� + 𝑙𝑙�. 

Polar cordinate is used on the integral, the retarded vector potential in integral form is, 
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or

electric field,

In the latter term, when R → ∞, the rapid vibration is divergent, but 
the average value is zero. Therefore, it can be ignored.

In the above we have considered that 
The magnetic field,

When R → ∞ is considered, the latter term of magnetic field tends 
to zero, so

This result is same as that obtained by the Ampere circuital law. 
We calculate electric field from h,
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used to verified the electromagentic field obtained by the vector 
potential. After the verification we should believe the mathematic 
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In the latter term, when 𝑅𝑅 → ∞, the rapid vibration is divergent, but the average value is zero. 

Therefore, it can be ignored. 
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integral form,

R → ∞, there is

When R → ∞ is considered, the latter term of magnetic field tends 
to zero, so

The above result is same as the magnetic field obtained from 
Ampere circuital law. Let’s find the electric field from h,

Formula Eq.(91) is consistent with formula Eq.(86). For the 
advanced wave, the electric field and current direction are the 
same,

This is inconsistent with the retarded wave. The electric field of the 
retarded wave is in the opposite direction of the current,

For the Poynting vector direction of the advanced wave,

The direction of Poynting vector is pointing to - y ̂. This is correct. 
Energy is transmitted to the plane-sheet current. In short, whether 
it is an advanced wave or a retarded wave, the direction of the 
magnetic field near the current boundary is always determined by 
the Ampere circuital law. The direction of the electric field, if it is 
a retarded wave, is opposite to the direction of the current. If it is 
an advanced wave, it is consistent with the direction of the current.

3.3 Energy Flow of Transformer
It is assumed that the primary coil is a plane-sheet current and 
the secondary coil is also a plane-sheet current. The secondary 
coil is on the right side of the primary coil. The two plane-sheet 
current are infinite large. The primary coil is at the palce y = 0. 
The secondary coil is at the palce y = L, but for simplity, asume L 
is very small so L = 0. From last section we obtained that, for the 
primary coil with retarded wave,

Suppose the secondary coil is close to the primary coil, the two 
coil are close together. For the secondary coil, we assume that the 
current is in the same direction as the induced electric field of the 
primary coil and points to the -z ̂ direction. For the advanced wave 
on the left side of the plate, the direction of motion of the wave is 
to the right. Current direction of secondary coil J2 and the electric 
field e1 are consistent, so there are,

σ is the conductivity of the secondary coil. e1 is the electric field on 
the secondary coil produced by the primary coil. We assume the 
load resistance of the secondary coil is because of this conductivity.

From Eq.(97, 98), there is,

The electric field of the secondary coil can be calculated same as e1 
but consider it is advanced wave. for advanced wave e2 should has 
the same direction with the current J2.

The phase term exp(j(ωt - ky) is because e2 is advanced wave to the 
left. The amount of J20 is determined by the load resistance on the 
secondary coil. We do not give the specific value of this resistance, 
but only tell that the resistance is large enough, so the secondary 
coil is almost pure resistive impedance. So this current J2 is in 
the same direction and phase as the electric field e1. The above 
formula tell us the advanced wave of the secondary coil has the 
same direction with the electric field of the primary coil.

The direction of the magnetic field is determined by Ampere’s 
circuital law,
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current direction are the same,  
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The direction of the electric field, if it is a retarded wave, is opposite to the direction of the current. 

If it is an advanced wave, it is consistent with the direction of the current. 

 

3.3 Energy Flow of Transformer 
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It is considered that the advanced wave on the left side of the plate 
is the wave running to the right. Hence the mutual energy flow is,

Now let us calculate the power offered by the current J1

and

Thus, the mutual energy flow theorem is satisfied,

or

Where n ̂ = y ̂. The above verifies that the mutual energy flow 
theorem is strictly satisfied for this example.

On the other hand, Poynting vector can not explain the energy 
flow from the primary coil to the secondary coil of the transformer. 
For the primary coil, Poynting’s theorem tells us that the primary 
coil has an energy flow to the left and right at the same time. 
For the secondary coil, there is also an energy flow into the coil 
from left and right at the same time. However, these energy flows 
obviously do not explain any problem. Since the conductivity on 
the secondary coil can be arbitrarily determined, the amount of 
energy flow received by the secondary coil can be completely 
inconsistent with the output energy flow of the primary coil. 
Therefore, Poynting’s theroem is indeed worthless, especially 
for devices such as transformers. The energy flow represented 
by Poynting vector seems to be expressed as its energy flow only 
when there is perfect energy absorption around the primary coil 
(left and right sides).

3.4 Energy Flow Outside the Transformer
In the right side of the secondary coil, the field of the primary coil 
is retarded wave, the field of the secondary have two possibility 
retarded wave or advanced wave. If it is advanced wave, the retarded 

wave of the primary coil and the advanced wave of secondary coil 
can only build zero mutual energy flow that is because the retarded 
wave reach the infinite far place at future time and the advanced 
wave reach the infinite far place at past time, these two wave will 
not nonzero in the same time. Hence E1×H2* |y=∞ =0. The mutual 
energy theorem tell us that E1×H2* |y>L = 0. 

Another possibility is that on the right of the secondary coil, the 
secondary coil sends the retarded wave. This is the case that for 
the flat plane-sheet current, a rightward wave or a leftward wave 
can be generated. For the rightward wave, the retarded wave is 
on the right side of the current and, the advanced wave is on the 
left side of the current. For the leftward wave, there is a retarded 
wave on the left side of the current and an advanced wave on the 
right side of the current. For the primary coil, because there is a 
secondary coil on its right side, a rightward wave is generated, 
and the leftward wave is an invalid wave. For the secondary coil, 
because there is a primary coil on its left to provide energy, it has 
an advanced wave on its left and a retarded wave on its right. Such 
a wave is also a rightward wave. Therefore, the waves of both coils 
are rightward. Therefore, the two waves can be synchronized.

However, the sign of the magnetic field is reversed when the wave 
passes through the plane-sheet current. The two terms of mutual 
energy flow just offset after passing through the plane-sheet 
currents (both primary and secondary coils). Suppose the primary 
coil is at y = 0. The secondary coil is at y = L. L can be large or very 
small (close to 0). Mutual energy flow

This shows that the mutual energy flow is generated on the primary 
coil and annihilated on the secondary coil. It conforms to the 
properties of photons. Therefore, the author has always adhered 
to the belief that mutual energy flow is photon. If we use Poynting 
energy flow, we can’t describe the nature of energy flow generated 
and annihilated somewhere.

Although we use the transformer as an example above, in 
fact, because L can be large, the primary coil plays the role of 
transmitting antenna and the secondary coil plays the role of 
receiving antenna. In the author’s mutual energy theory, the primary 
coil of transformer, transmitting antenna and radiator charge are 
the source of electromagnetic wave or light; The secondary coil of 
the transformer, the receiving antenna and the absorber charge are 
the sinks of electromagnetic waves or light. Mutual energy theory 
is the theory of interaction between source and sink. It obey the 
law of conservation of energy, the principle of mutual energy and 
the theorem of mutual energy flow. Here, the primary coil of the 
transformer, the transmitting antenna and the radiator charge are 
essentially the same. Generate retarded wave and send energy. The 
secondary coil of the transformer, the receiving antenna and the 
absorber charge are the sinks of electromagnetic wave or light, 
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Thus, the mutual energy flow theorem is satisfied,  
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 −𝒆𝒆�∗ ⋅ 𝑱𝑱� = (𝒆𝒆� × 𝒉𝒉�∗ + 𝒆𝒆�∗ × 𝒉𝒉�) ⋅ 𝑛𝑛� = 𝒆𝒆� ⋅ 𝑱𝑱�∗  (105) 

 Where 𝑛𝑛� = 𝑦𝑦�. The above verifies that the mutual energy flow theorem is strictly satisfied for this 

example. 

 

On the other hand, Poynting vector can not explain the energy flow from the primary coil to the 

secondary coil of the transformer. For the primary coil, Poynting’s theorem tells us that the primary 

coil has an energy flow to the left and right at the same time. For the secondary coil, there is also 

an energy flow into the coil from left and right at the same time. However, these energy flows 

obviously do not explain any problem. Since the conductivity on the secondary coil can be 

arbitrarily determined, the amount of energy flow received by the secondary coil can be completely 

inconsistent with the output energy flow of the primary coil. Therefore, Poynting’s theroem is 

indeed worthless, especially for devices such as transformers. The energy flow represented by 
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and the essence is the same, generating advanced wave to absorb 
energy.

3.5 Problems
For the above transformer, the mutual energy flow represents the 
energy flow, which correctly describes the fact that the energy 
flow from the primary coil to the secondary coil. It also describes 
the fact that the energy flow is generated on the primary coil and 
annihilated on the secondary coil.

Self energy flow is also correct. For example, Poynting vector 
of primary coil e1×h1* it describes the energy flow if there 
are secondary coils on both sides of the primary coil. The two 
secondary coils must can absorb all the energy flow of the primary 
coil send out.

Another example is the Poynting vector for the secondary coil 
e2×h2* represents the energy flow when there are primary coils on 
both sides of the secondary coil. This energy flow is directed to the 
current of the secondary coil, so it absorbs energy.

However, it makes no sense to add the energy flow transmitted 
by self energy flow to the energy flow of mutual energy flow. The 
energy of the total energy flow is more than that of the output of the 
current. The author is an advocate of the theory of mutual energy. 
Of course, he supports that mutual energy flow is the real carrier of 
energy flow. Then self energy flow should not transfer energy flow.
Poynting energy cannot describe the nature of energy flow 
generated from one coil and annihilated on another coil.

The author has introduced the concept of time-reversal wave which 
is additional wave added to the top of classical electromagnetic 
field theory. The time-reversal wave can cancel the self-energy 
flow [16].

If we do not introduce the time-reversal wave, we can just say 
the electromagnetic field is a auxiliary function, hence, it does 
not carry energy. The energy flow is the mutual energy flow. The 
above example shows the author’s view of point is correct.

4. Interpretation of Quantum Mechanics
The author puts forward the mutual energy flow interpretation 
of quantum mechanics, which is very close to the transactional 
interpretation proposed by Cramer [16] [7,8].

This paper provides an example of electromagnetic field. From 
this example, we can further see the similarities and differences 
between the author’s interpretation of mutual energy flow and 
transactional interpretation. The formula (56,107) can be regarded 
as that photons are generated on the source and annihilated on the 
sink. Annihilation is caused by the reversal of the direction of the 
magnetic field on the plane-sheet current.

In Cramer’s transactional interpretation of quantum mechanics, on 
the right side of the light sink, the retarded wave emitted by the 
light sink and the retarded wave emitted by the light source have 

a phase difference of 180 degrees, so the waves are offset. On the 
left side of the light source, the advanced wave emitted by the 
light source and the advanced wave emitted by the light sink have 
a phase difference of 180 degrees, so the waves are offset. But the 
reason why there is a 180 degree phase difference cannot be given. 
In the author’s mutual energy flow theory, two mutual energy flow 
components S12= e1 × h2* and S21= e2* × h1 are superimposed. 
Between two plane-sheet currents, these two components can be 
superimposed. Outside the two plane-sheet currents, due to the 
reversal of the magnetic field, the two components change from 
addition to elimination. The reverse of the magnetic field direction 
naturally explains the cancellation of the two components.

In addition, the sink proposed by Cramer generates a confirmation 
wave, which is also answered by the electromagnetic field 
generated by the induced current of the plane-sheet current of the 
secondary coil. Therefore, the author’s mutual energy theory is a 
concrete realization of Cramer’s transactional interpretation. The 
interpretation of mutual energy flow can also be regarded as a 
further development of transactional interpretation.

5. The Author’s View of Point 
Chapters 2 and 3 describe the magnetic quasi-static magnetic 
field and the radiated electromagnetic field. For the magnetic 
quasi-static magnetic field, the self energy flow (the energy flow 
corresponding to the Poynting vector) is reactive power, so it does 
not transfer energy. Energy is always transferred by mutual energy 
flow. The mutual energy flow can be used to describe the energy 
flow from the primary coil to the secondary coil of the transformer.
Corresponding to radiated electromagnetic field. Both self-energy 
flow and mutual energy flow transfer energy. The self energy flow 
of the primary coil describes the energy flow if the surrounding is 
full of secondary coils which can absorb all energy flow sent out 
by the primary coil. The following is the author’s guess.

(1a) the magnetic quasi-static magnetic field is correct. Therefore, 
when developing the radiated electromagnetic field theory, we 
must modify the electromagnetic field theory so that the self energy 
flow still maintains the radiated reactive power. The corresponding 
plane-sheet current is easy to realize, as long as we determine 
the electromagnetic field on the surface of the plate according to 
magnetic quasi-static magnetic field, and then let the electric field 
and magnetic field propagate according to plane wave, so that 
the electromagnetic field and magnetic field still meet the phase 
difference of 90 degrees. In other cases, such as dipole antenna, 
the author still doesn’t know how to extend from magnetic quasi-
static magnetic field to radiated electromagnetic field, and keep the 
phase difference between the newly defined the far field of electric 
field and the far field of magnetic field at 90 degrees.

(1b) the electromagnetic field calculated according to Maxwell’s 
equations, and then the self energy flow of Poynting vector 
calculated is not self energy flow, but a kind of mutual energy 
flow, which represents a kind of mutual energy flow when the 
surrounding of the radiation source is full of absorbing materials. 
in other words,
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or

Where e1, h1 are the electromagnetic fields of the source 
obtained according to Maxwell’s equations, and the far field of 
this electromagnetic field maintains the same phase. e1 × h1* is 
Poynting vector. E1, H1 are a new definition of electromagnetic 
field that the author is looking for. This electromagnetic field 
maintains a 90 degree phase difference in the far field. E2, H2 are 
the electromagnetic field generated by the sink covered around the 
source. E1 × H2*, E2 × H1* are parts of the mutual energy flow of 
the two fields. In this way, we actually reinterpret the meaning 
of the solution of Maxwell’s equations. Maxwell’s equations 
remains intact. In actual calculation, we only consider e1, h1 , do 
not consider E1, H1, E2, H2. Here E1, H1, E2 , H2 are only useful in 
the interpretation of Maxwell’s equations.

For (1a), we need to find E1, H1, E2, H2, for (1b), we give up looking 
for E1,H1,E2,H2, the author thinks their usefulness lies only in the 
reinterpretation of Maxwell’s theory. This interpretation will also 
extend to quantum mechanics.

(2) It is assumed that the radiated electromagnetic field calculated 
according to Maxwell’s theory is correct. Then due to the self 
energy flow radiation becomes redundant. The time reversal wave 
must be added to counteract the self energy flow. Ensure that 
the self energy flow does not transfer energy. This idea was put 
forward by the author in his 2017 paper on the interpretation of 
quantum mechanics by mutual energy flow [16].

However, method (2) needs to add a time reversal wave, and the 
modification of Maxwell’s theory is quite large. Time reversal 
wave needs experimental verification.

However, the author of the first method (1a) has not found a general 
method. Describe all cases, such as the reception and transmission 
of dipole antenna. The theory will change a lot. At this time, the 
author’s next task. For (1b), give up finding a new definition of 
electromagnetic field and use it only as an interpretation. Imagine 
the existence of an electromagnetic field. The advantage is that we 
don’t have to look for the time reversal wave like method (2).

6. Re-Interpretation of the Electromagnetic Field Theory 
of Maxwell
6.1 The Electric Field and Magnetic Field are in Phase

e and h satisfy the Maxwell’s equations.

However, for this definition, the time reversal wave is needed 
to counteract the self energy flow. In addition, the conversion of 
electromagnetic field energy at a certain point in space cannot be 
explained. If the phase difference of electromagnetic magnetic 
field at a certain point in space is 90 degrees, we can say that the 
decrease of electromagnetic field is just the increase of magnetic 
field. Therefore, energy is conserved at every point in space, 
which is a kind of local conservation. On the contrary, if the 
electromagnetic field is in the same phase, the electric field and 
magnetic field increase and decrease at one point in space, we can 
only say that the decrease of the electric field at this point causes 
the increase of the magnetic field at other points around. This is no 
longer local energy conservation.

6.1.1 Step Function
If the current is a step function and the current is the current in an 
infinite plane,

We imagine that the magnetic field should eventually stabilize at,

If the influence of the current is transmitted to a certain point in 
space, the magnetic field at this point will produce a jump, so the 
magnetic field is,

Where c is the speed of light. If the electric field and magnetic 
field are in phase, it means that the phase of the electric field and 
magnetic field is the same at all frequencies, and the waveform of 
the electric field should be the same as that of the magnetic field.

In this way, the remote secondary coil or receiving antenna will 
always have an electromotive force, which is not in line with our 
experience. Faraday experiment tells us that only dynamic current 
of primary coil can cause a induced current in the secondary coil, 
and constant current will not produce electric field in the distance.

6.1.2 Time Reversal Wave is Required
Time reversal wave is needed to counteract the self energy flow. 
If there is no time reversal wave to counteract the self energy 
flow. If there is no time reversal wave, for the primary coil of 
the transformer, the energy flowing out of the primary coil of the 
transformer plus the mutual energy flow to the secondary coil is 
greater than the output energy of the current plate. This is because 
the Poynting energy flow of the primary coil has been equal to 
the output power of the primary coil. If the mutual energy flow 
is increasing part of the energy output, the energy of self energy 
flow and mutual energy flow is greater than that generated by the 
primary coil. This does not conform to the law of conservation of 
energy.

In addition, we know that the secondary coil of the transformer 
will affect the primary coil. Mutual energy flow can reflect this. 
Self energy flow cannot reflect this. Therefore, the self energy flow 
does not transfer energy, so there should be a time reversal wave to 
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In this way, the remote secondary coil or receiving antenna will always have an electromotive 

force, which is not in line with our experience. Faraday experiment tells us that only dynamic 
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and mutual energy flow is greater than that generated by the primary coil. This does not conform 
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In addition, we know that the secondary coil of the transformer will affect the primary coil. Mutual 

energy flow can reflect this. Self energy flow cannot reflect this. Therefore, the self energy flow 

does not transfer energy, so there should be a time reversal wave to counteract the self energy flow. 

This makes us have to introduce another new electromagnetic field 

 

 ∇ ⋅ 𝒆𝒆(�) = �
��

 (114) 

  

 ∇ ⋅ 𝒃𝒃(�) = 0 (115) 

 

point will produce a jump, so the magnetic field is, 

 

 ℎ(𝑡𝑡) = ��
�
𝑈𝑈(𝑡𝑡 − 𝑦𝑦/𝑐𝑐) 

Where 𝑐𝑐 is the speed of light. If the electric field and magnetic field are in phase, it means that 

the phase of the electric field and magnetic field is the same at all frequencies, and the waveform 

of the electric field should be the same as that of the magnetic field.  

 𝑒𝑒(𝑡𝑡) = 𝜂𝜂�ℎ(𝑡𝑡) =
����
�
𝑈𝑈(𝑡𝑡 − 𝑦𝑦/𝑐𝑐) 

In this way, the remote secondary coil or receiving antenna will always have an electromotive 

force, which is not in line with our experience. Faraday experiment tells us that only dynamic 

current of primary coil can cause a induced current in the secondary coil, and constant current will 

not produce electric field in the distance. 

 

6.1.2 Time Reversal Wave is Required 

Time reversal wave is needed to counteract the self energy flow. If there is no time reversal wave 

to counteract the self energy flow. If there is no time reversal wave, for the primary coil of the 

transformer, the energy flowing out of the primary coil of the transformer plus the mutual energy 

flow to the secondary coil is greater than the output energy of the current plate. This is because the 

Poynting energy flow of the primary coil has been equal to the output power of the primary coil. 

If the mutual energy flow is increasing part of the energy output, the energy of self energy flow 

and mutual energy flow is greater than that generated by the primary coil. This does not conform 

to the law of conservation of energy. 

In addition, we know that the secondary coil of the transformer will affect the primary coil. Mutual 

energy flow can reflect this. Self energy flow cannot reflect this. Therefore, the self energy flow 

does not transfer energy, so there should be a time reversal wave to counteract the self energy flow. 

This makes us have to introduce another new electromagnetic field 

 

 ∇ ⋅ 𝒆𝒆(�) = �
��

 (114) 

  

 ∇ ⋅ 𝒃𝒃(�) = 0 (115) 

 



Volume 2 | Issue 4 | 11Eng OA, 2024

counteract the self energy flow.

This makes us have to introduce another new electromagnetic field

The time reversal wave has a corresponding Poynting vector,

The self-energy flow of time reversal wave can offset the self-
energy flow,

The problem is that the time reversal wave of the primary coil and 
the time reversal wave of the secondary coil can also produce a 
mutual energy flow of the time reversal wave. This time-reversal 
mutual energy flow can also offset the normal mutual energy 
flow. Therefore, the final electromagnetic field is completely zero. 
I haven’t found a good explanation to allow the time reversal 
wave only offsets the self energy flow, not the mutual energy 
flow. Therefore, the time reversal wave is not reliable. The author 
slowly tends to deny the time reversal wave and prefers that the 
phase difference between the electric field and the magnetic field 
is 90 degrees, as shown in the next section.

6.2 The Electric Field and Magnetic Field have Different 
Phases, and the Phase Difference is 90 Degrees
In this case, the electromagnetic field to the plane-sheet current 
is obtained by the magnetic quasi-static electromagnetic field 
method,

Hence,

Because if we integrate according to the vector potential, there 
will be divergence. The impedance considering electric field and 
magnetic field is η0 let’s assume that the electric field is,

Then assume that both the electric and magnetic fields are plane 
waves, so there are,

Where k =  . For this method, at the point y = 0, that is, near the 
plane-sheet current, the phase of the electric field and magnetic field 
is determined by the quasi-static magnetic field. The magnitude is 
calculated according to Maxwell’s electromagnetic radiation field. 
Then calculate the electromagnetic field at any time and at any 
position according to a plane wave.

Although this method does not satisfy Maxwell’s equation, 
it satisfies Maxwell’s equation of magnetic quasi-static 
electromagnetic field at point (y = 0). Because in fact, only the 
magnetic quasi-static equation Eq.(122-125) has been verified 
by experiments. Maxwell’s equations are obtained by assuming 
displacement current. In fact, the method of displacement current 
is consistent with Lorenz’s method of retarded potential. That 
is, the Maxwell’s equation method only ensures that the vector 
potential and scalar potential are retarded,
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to the retarded of potential? Perhaps it should be based on the 
retardation of the magnetic field, and the propagation of the electric 
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the magnetic field. in other words,

Of course, the above formula is only applicable to plane-sheet 
current case. If it is a general situation, it needs specific analysis.
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that we can take the electromagnetic field obtained by Maxwell 
equation as h1 and reinterpreted as,
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of the electric field and magnetic field is determined by the quasi-static magnetic field. The 

magnitude is calculated according to Maxwell’s electromagnetic radiation field. Then calculate 

the electromagnetic field at any time and at any position according to a plane wave. 

Although this method does not satisfy Maxwell’s equation, it satisfies Maxwell’s equation of 

magnetic quasi-static electromagnetic field at point (𝑦𝑦 = 0). Because in fact, only the magnetic 

quasi-static equation Eq.(122-125) has been verified by experiments. Maxwell’s equations are 

obtained by assuming displacement current. In fact, the method of displacement current is 

consistent with Lorenz’s method of retarded potential. That is, the Maxwell’s equation method 

only ensures that the vector potential and scalar potential are retarded,  
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But why should the electromagnetic field be obtained according to the retarded of potential? 

Perhaps it should be based on the retardation of the magnetic field, and the propagation of the 
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situation, it needs specific analysis. 
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That is to say, the magnetic field calculated by Maxwell’s 
electromagnetic field theory h1 that is, current J1 produces the 
magnetic field H1. However, the electric field calculated by 
Maxwell’s equation e1, in fact, it is not the electric field of the 
primary coil itself, but assuming that there is a secondary coil on 
the right side of the primary coil (in the positive direction of the 
y-axis), and the value of the current of this secondary is exactly the 
same as that of the primary coil. The electric field E2 is generated 
by this secondary coil. As for Poynting vector e1* × h1 In fact, it is 
also a mutual energy flow, E2* × H1 So, that we have,

Hence,

We know that the current J2 on the secondary coil has same phase 
with the electric motive force of the primary coil E1 (Here we have 
assumed that the load resistance R2 of the secondary coil is huge, 
i.e., R2≫ ωL2. L2 is the inductance of the secondary coil)

Hence,

or

This section tells us that there is nothing wrong with the solution of 
Maxwell’s equations, but we must make a different interpretation 
of it. Magnetic field in Maxwell’s Theory h1 is still the magnetic 
field of the real electromagnetic field H1. For Maxwell’s electric 
field e1, it’s actually an electric field E2. E2 is the electric field of 
the secondary coil of the transformer (or receiving antenna). We 
assume that the value of the current of the secondary coil is exactly 
the same as that of the primary coil. To find E1 We also have to 
consider a phase difference, E1 = jE2.

6.4 Further Discussion
We initially obtained the magnetic quasi-static electromagnetic 
field through experiment and theoretical derivation,

But Maxwell modified the equation

After such correction, E, H and e, b are completely different 
systems.

The magnetic field corresponding to the plane-sheet current has no 
emission phase change from B to b, but we cannot guarantee that 
there will be no phase change from E to e.

6.5 Reconsider the Phase of Electric Field
We know that the electromagnetic field of the plane-sheet current 
is a plane wave, so we only need to find the electromagnetic 
field near the plane-sheet current, that is, next to the plate, the 
electromagnetic field at y = 0. Assume that the current is in the 
direction of z ̂.

The magnetic vector potential is,

electric field,

Define that the direction of the electric field is opposite to the 
direction of the current,

Obtained according to (161163)
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This section tells us that there is nothing wrong with the solution of Maxwell’s equations, but we 

must make a different interpretation of it. Magnetic field in Maxwell’s Theory 𝒉𝒉�  is still the 

magnetic field of the real electromagnetic field 𝑯𝑯�. For Maxwell’s electric field 𝒆𝒆�, it’s actually 

an electric field 𝑬𝑬�. 𝑬𝑬� is the electric field of the secondary coil of the transformer (or receiving 

antenna). We assume that the value of the current of the secondary coil is exactly the same as that 

of the primary coil. To find 𝐸𝐸� We also have to consider a phase difference, 𝐸𝐸� = 𝑗𝑗𝑗𝑗�. 

 

6.4 Further Discussion 

We initially obtained the magnetic quasi-static electromagnetic field through experiment and 

theoretical derivation, 

 

 ∇ × 𝑬𝑬 = −𝑗𝑗𝑗𝑗𝑗𝑗 (142) 

  

 ∇ × 𝑯𝑯 = 𝑱𝑱 (143) 

 

 

 𝑨𝑨 = ��
��∭�

𝑱𝑱
�
𝑑𝑑𝑑𝑑 (144) 

  

 𝑬𝑬 = −𝑗𝑗𝑗𝑗𝑗𝑗 (145) 

  

 𝑩𝑩 = ∇ × 𝑨𝑨 (146) 

 

But Maxwell modified the equation  

 ∇ × 𝒆𝒆 = −𝑗𝑗𝑗𝑗𝑗𝑗 (147) 

  

 ∇ × 𝒉𝒉 = 𝑱𝑱 + 𝑗𝑗𝑗𝑗𝑗𝑗 (148) 

  

 𝒂𝒂 = ��
��∭�

𝑱𝑱
�
exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 (149) 

  

 𝒆𝒆 = −𝑗𝑗𝑗𝑗𝑗𝑗 (150) 

This section tells us that there is nothing wrong with the solution of Maxwell’s equations, but we 

must make a different interpretation of it. Magnetic field in Maxwell’s Theory 𝒉𝒉�  is still the 

magnetic field of the real electromagnetic field 𝑯𝑯�. For Maxwell’s electric field 𝒆𝒆�, it’s actually 

an electric field 𝑬𝑬�. 𝑬𝑬� is the electric field of the secondary coil of the transformer (or receiving 

antenna). We assume that the value of the current of the secondary coil is exactly the same as that 

of the primary coil. To find 𝐸𝐸� We also have to consider a phase difference, 𝐸𝐸� = 𝑗𝑗𝑗𝑗�. 

 

6.4 Further Discussion 

We initially obtained the magnetic quasi-static electromagnetic field through experiment and 

theoretical derivation, 

 

 ∇ × 𝑬𝑬 = −𝑗𝑗𝑗𝑗𝑗𝑗 (142) 

  

 ∇ × 𝑯𝑯 = 𝑱𝑱 (143) 

 

 

 𝑨𝑨 = ��
��∭�

𝑱𝑱
�
𝑑𝑑𝑑𝑑 (144) 

  

 𝑬𝑬 = −𝑗𝑗𝑗𝑗𝑗𝑗 (145) 

  

 𝑩𝑩 = ∇ × 𝑨𝑨 (146) 

 

But Maxwell modified the equation  

 ∇ × 𝒆𝒆 = −𝑗𝑗𝑗𝑗𝑗𝑗 (147) 

  

 ∇ × 𝒉𝒉 = 𝑱𝑱 + 𝑗𝑗𝑗𝑗𝑗𝑗 (148) 

  

 𝒂𝒂 = ��
��∭�

𝑱𝑱
�
exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 (149) 

  

 𝒆𝒆 = −𝑗𝑗𝑗𝑗𝑗𝑗 (150) 

This section tells us that there is nothing wrong with the solution of Maxwell’s equations, but we 

must make a different interpretation of it. Magnetic field in Maxwell’s Theory 𝒉𝒉�  is still the 

magnetic field of the real electromagnetic field 𝑯𝑯�. For Maxwell’s electric field 𝒆𝒆�, it’s actually 

an electric field 𝑬𝑬�. 𝑬𝑬� is the electric field of the secondary coil of the transformer (or receiving 

antenna). We assume that the value of the current of the secondary coil is exactly the same as that 

of the primary coil. To find 𝐸𝐸� We also have to consider a phase difference, 𝐸𝐸� = 𝑗𝑗𝑗𝑗�. 

 

6.4 Further Discussion 

We initially obtained the magnetic quasi-static electromagnetic field through experiment and 

theoretical derivation, 

 

 ∇ × 𝑬𝑬 = −𝑗𝑗𝑗𝑗𝑗𝑗 (142) 

  

 ∇ × 𝑯𝑯 = 𝑱𝑱 (143) 

 

 

 𝑨𝑨 = ��
��∭�

𝑱𝑱
�
𝑑𝑑𝑑𝑑 (144) 

  

 𝑬𝑬 = −𝑗𝑗𝑗𝑗𝑗𝑗 (145) 

  

 𝑩𝑩 = ∇ × 𝑨𝑨 (146) 

 

But Maxwell modified the equation  

 ∇ × 𝒆𝒆 = −𝑗𝑗𝑗𝑗𝑗𝑗 (147) 

  

 ∇ × 𝒉𝒉 = 𝑱𝑱 + 𝑗𝑗𝑗𝑗𝑗𝑗 (148) 

  

 𝒂𝒂 = ��
��∭�

𝑱𝑱
�
exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 (149) 

  

 𝒆𝒆 = −𝑗𝑗𝑗𝑗𝑗𝑗 (150) 

This section tells us that there is nothing wrong with the solution of Maxwell’s equations, but we 

must make a different interpretation of it. Magnetic field in Maxwell’s Theory 𝒉𝒉�  is still the 

magnetic field of the real electromagnetic field 𝑯𝑯�. For Maxwell’s electric field 𝒆𝒆�, it’s actually 

an electric field 𝑬𝑬�. 𝑬𝑬� is the electric field of the secondary coil of the transformer (or receiving 

antenna). We assume that the value of the current of the secondary coil is exactly the same as that 

of the primary coil. To find 𝐸𝐸� We also have to consider a phase difference, 𝐸𝐸� = 𝑗𝑗𝑗𝑗�. 

 

6.4 Further Discussion 

We initially obtained the magnetic quasi-static electromagnetic field through experiment and 

theoretical derivation, 

 

 ∇ × 𝑬𝑬 = −𝑗𝑗𝑗𝑗𝑗𝑗 (142) 

  

 ∇ × 𝑯𝑯 = 𝑱𝑱 (143) 

 

 

 𝑨𝑨 = ��
��∭�

𝑱𝑱
�
𝑑𝑑𝑑𝑑 (144) 

  

 𝑬𝑬 = −𝑗𝑗𝑗𝑗𝑗𝑗 (145) 

  

 𝑩𝑩 = ∇ × 𝑨𝑨 (146) 

 

But Maxwell modified the equation  

 ∇ × 𝒆𝒆 = −𝑗𝑗𝑗𝑗𝑗𝑗 (147) 

  

 ∇ × 𝒉𝒉 = 𝑱𝑱 + 𝑗𝑗𝑗𝑗𝑗𝑗 (148) 

  

 𝒂𝒂 = ��
��∭�

𝑱𝑱
�
exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 (149) 

  

 𝒆𝒆 = −𝑗𝑗𝑗𝑗𝑗𝑗 (150)   
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After such correction, 𝑬𝑬, 𝑯𝑯 and 𝒆𝒆, 𝒃𝒃 are completely different systems.  

 ℜ∯ 𝑺𝑺 ⋅ 𝑛𝑛�𝑑𝑑Γ� = 0 (152) 

  

 ℜ∯ 𝒔𝒔 ⋅ 𝑛𝑛�𝑑𝑑Γ� ≠ 0 (153) 

  

 ℜ𝑺𝑺 = 0 (154) 

  

 ℜ𝒔𝒔 ≠ 0 (155) 

  

 𝑺𝑺 ≜ 𝑬𝑬 ×𝑯𝑯∗ (156) 

  

 𝒔𝒔 ≜ 𝒆𝒆 × 𝒉𝒉∗ (157) 

 The magnetic field corresponding to the plane-sheet current has no emission phase change from 

𝑩𝑩 to 𝒃𝒃, but we cannot guarantee that there will be no phase change from 𝑬𝑬 to 𝒆𝒆. 

 

6.5 Reconsider the Phase of Electric Field 

We know that the electromagnetic field of the plane-sheet current is a plane wave, so we only need 

to find the electromagnetic field near the plane-sheet current, that is, next to the plate, the 

electromagnetic field at 𝑦𝑦 = 0. Assume that the current is in the direction of 𝑧̂𝑧.  

 𝑱𝑱 = 𝐽𝐽𝐽̂𝐽 (158) 

 

The magnetic vector potential is,  

 𝑨𝑨 ∼∭�
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Therefore, for the plane current, it is obtained according to 
(166,167),

Corresponding plane wave

With the above formula and (164), we get,

Considering the above formula and (169), there is

Hence we obtained,

Here E and H are a plane wave radiated electromagnetic field from 
the expansion of magnetic quasi-static electromagnetic field.

Thus, the Poynting vector is reactive power. However, the Poynting 
vector in Maxwell’s theory can maintain active power,

So we put e interpretation as E2, E2 is the electric field of the 
secondary coil. E2 is the advanced wave generated by the secondary 
coil. E2 should be exactly consistent with the electric field radiated 
by the primary coil e = e1.

In this way, inside the Poynting’s vector (s = e×h*) are not the 
electromagnetic field emitted by the primary coil, but a mixed 
electromagnetic field from both primary coil and secondary coil. If 
the radiated magnetic field h is exactly the same as the expanded 
magnetic field of the magnetic quasi-static electromagnetic field 
H, the phase difference between the expanded electric field E of 
the magnetic quasi-static electric field and the radiated electric 
field e is 90 degrees.

7. Conclusion
The author has put forward the electromagnetic field mutual 
energy theory for 7 years, but it has remained in theory without 
any practical examples to support it. Recently, the author studied 
the electromagnetic field of the plane-sheet current and found 
that the vector potential of plane-sheet current can be obtained by 
integration with analytical method. Therefore, the electric field 
and magnetic field can be obtained from the vector potential.

The two plane-sheet currents can be regarded as a transformer, 
a transmitting antenna and a receiving antenna. The energy flow 
from the transmitting antenna to the receiving antenna can also be 
regarded as photons. This example can be used to study the problem 
of energy flow and photons from the source of electromagnetic 
wave to the sink of electromagnetic wave.

The author studied the magnetic quasi-static magnetic field. In 
this case, the mutual energy flow from primary coil to secondary 
coil is active power. The self energy flow from primary coil to 
the secondary coil is reactive power. Therefore, the energy flow 
can only be transmitted by mutual energy flow. Corresponding to 
the classical electromagnetic theory, there is no theory of mutual 
energy flow, so it is impossible to explain the energy flow from 
the primary coil to the secondary coil of a transformer. This paper 
achieves this goal.

The energy flow problem of the transformer has been solved. The 
author does not think that the radiated electromagnetic field is 
a seamless generalization of the magnetic quasi-static magnetic 
field. And think of them as two completely different systems. For 
radiated electromagnetic field, both mutual energy flow and self 
energy flow are active power. The author believes that energy flow 
is transmitted by mutual energy flow. Therefore, it is necessary 
to establish two time-reversal waves for the source and sink 
respectively. The time reversal waves are used to counteract the 
self-energy flows. Of course, there is also a case that we have to 
appropriately modify Maxwell’s electromagnetic theory so that for 
the radiated electromagnetic field, the self energy flow transfers 
reactive power as in the case of magnetic quasi-static field. Mutual 
energy flow transfers active power. In the plane-sheet current case, 
we have re-interpreted the radiated electric field as the electric field 
from the advanced wave from the surrounding environment. In 
short, Maxwell’s electromagnetic radiation theory is still correct, 
but the electric and magnetic fields need to be reinterpreted.
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