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Abstract
In recent papers by Fahr (2023) and Fahr and Heyl (2024) we had shown that an instantaneous, initial Big-Bang explosion of a purely 
material universe can not have happened [1,2]. At least not by itself, as is most often envisioned, any way not solely caused by the 
enormous pressure of the matter in the singularity of the initially extremely hot, highly condensed cosmic matter. 

This is due to the strongly enhanced centripetal gravity field, increased by the gravitating mass of the relativistic, kinetic cosmic masses. 
where by the anticipated explosive action of the material pressure is nullified. Instead, as was argued by us, the initial "Bang" rather 
must have started from a pressurized cosmic vacuum with its explosive pressure, otherwise a "Bang" never could have happened.

In the above mentioned papers we thus analysed how to adequately describe this cosmic vacuum pressure and how to formulate the initial 
scale expansion of the universe, occuring solely on the basis of that newly considered, cosmic ingredient. Thereby it became evident that 
for a needed positive vacuum pressure the thermodynamic polytrope relation between vacuum energy density ρvac and vacuum pressure 
pvac for the purpose of a cosmic scale expansion Ṙ > 0 only allows for a very limited range of vacuum polytrope indices ξ of 3 < ξvac < 
5. For the prefered value ξvac = 4, one can derive a complete description of the cosmic vacuum energy as function of the cosmic scale R 
and the cosmic time t with inclusion of a process of cosmic matter generation in the course of the cosmic expansion by a specific vacuum 
condensation process producing a material universe for the later expansion phases. As result one so far obtains a matter universe well 
familiar to all present day astronomers, however, without the need for an initial, purely material Big-Bang of a mass singularity.

The aspect which was not carefully taken into account so far is the cosmologic importance of the initially relativistically hot cosmic matter 
and its genuine thermodynamics. This shall become the new subject here. As a surprise, however, in any case the Hubble expansion of 
the post-recombination universe under the action of cosmic vacuum pressure drives the baryonic distribution function into a more and 
more non-equilibrium shape with over-Maxwellian populations of the high velocity wings demonstrating surprisingly enough that the 
cosmic matter temperatures in this expansion phase are in fact increasing with scale R, opposite to classical expectations which, strictly 
speaking, would predict adiabatic temperature decreases. We determine the distribution function of cosmic gases in this expansion phase 
and find that structure formation must have run different from what is presently thought.
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1. Even the Hottest Cosmic Matter would not explode by itself!
We had shown in recent publications that an initial explosion of the virgin universe can at least not have happened simply by a 
highly pressurized cosmic matter singularity [1,2]. This is because of the appearance of an unavoidable, extremely strong centripetal 
gravitational field in connection with a highly concentrated and extremely heated central mass singularity. This holds even though the 
natural centripetal material pressures have to be taken into account which under these conditions certainly are enormous and definitely 
would somehow enter the cosmic game. But since the extremely hot cosmic matter has relativistic temperatures, this also leads to 
relativistically enhanced gravitating mass sources m = m(v → c) ≫ m0, and thus to even stronger centripetal gravitational fields connected 
with them. That may at first glance appear controvisionary, but as could already clearly be seen from the two cosmologic Friedman 
equations [3,4]:
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which, strictly speaking, would predict adiabatic temperature decreases. We determine
the distribution function of cosmic gases in this expansion phase and find that structure
formation must have run different from what is presently thought.
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I. Even the hottest cosmic matter would not explode by
itself!

We had shown in recent publications (Fahr, 2023, Fahr and Heyl, 2024) that an initial
explosion of the virgin universe can at least not have happened simply by a highly
pressurized cosmic matter singularity. This is because of the appearance of an
unavoidable, extremely strong centripetal gravitational field in connection with a highly
concentrated and extremely heated central mass singularity. This holds even though the
natural centripetal material pressures have to be taken into account which under these
conditions certainly are enormous and definitely would somehow enter the cosmic game.
But since the extremely hot cosmic matter has relativistic temperatures, this also leads
to relativistically enhanced gravitating mass sources m  mv  c  m0, and thus to
even stronger centripetal gravitational fields connected with them. That may at first
glance appear controvisionary, but as could already clearly be seen from the two
cosmologic Friedman equations (see Friedman, 1922,1924)
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with R  cosmic scale; k  curvature parameter;   vacuum energy density; p 
material pressure;  material energy density, describing the cosmic scale R as function
of the cosmic time t, it becomes evident that with vanishing curvature k  0 and
vanishing vacuum energy, i.e. with   0, the second Friedman equation attains the
form:

R  4GR
c2

p  
3   0

which , perhaps as a surprise, shows that the relativistically hot, enhanced cosmic
matter with   p strengthens the centripetal gravity field such that no explosive cosmic
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with R = cosmic scale; k = curvature parameter; Λ = vacuum energy density; p = material pressure; ϵ material energy density, describing 
the cosmic scale R as function of the cosmic time t, it becomes evident that with vanishing curvature k = 0 and vanishing vacuum energy, 
i.e. with Λ = 0, the second Friedman equation attains the form:

which, perhaps as a surprise, shows that the relativistically hot, enhanced cosmic matter with ϵ ≥ p strengthens the centripetal gravity 
field such that no explosive cosmic motion, but just the opposite - "an implosion" - would be caused. The hotter the matter (i.e. ϵ > p) 
is in the mass singularity, the more the situation thus resembles that of a singular "black hole". The remaining question only is: What 
exactly is the energy density ϵ of relativistically hot cosmic matter?

2. Relativistically Enhanced Cosmic Masses
Let us start here looking at the mass of a cosmic particle with rest mass m0 which is accelerated by cosmic forces, like thermodynamic 
ones or gravitational ones, to higher velocities, i.e. towards v ~ c. How then is its dynamic and gravitating mass m = m(v) changing under 
these circumstances? And how is this then changing the cosmic dynamics?

First it turns out that the relativistic mass of this particle is given by [5]:
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mv  m0
1

1v/c2

clearly expressing that for v  c its mass mv is growing to infinity, meaning that
forces further will not accelerate this mass, but only increase its mass. If, however, all
the relativistic, dynamic cosmic masses mv in this phase of the cosmic expansion
determine the cosmic gravity field, then it simply means that cosmic gravity
correspondingly is enormously enhanced under these conditions , and with  increasing
under such conditions the explosion is unavoidably inverted into an implosion, as already
the second of Friedman‘s differential equations clearly manifests with R  0 under such
conditions. Newton‘s basic law: F  mdv/dt under these new conditions attains the more
general form: F  dmv  v/dt .
As shown by Fahr (2022, 2023) only a medium that can realize a cosmic pressure

without an initial singularity of relativistically hot matter can cause an initial explosion of
the universe; this namely is the recently more and more discussed, cosmic vacuum
energy vac connected with a specific, positive vacuum pressure pvac as we may
demonstrate and specify further down here.

III Controle on relativistic cosmic particles

In an earlier paper (Fahr and Heyl, 2020) we had shown how to make sure that the
cosmic distribution function does not allow for superluminal particles, and as well that the
moments of this distribution function do not contain irrealistic contributions from such
non-existing superluminals. The recipe for that not to happen was to write the distribution
function as function of the kinetic particle energy Ekin and to find for instance in the case
of a prevailing kappa-function fv for the gas particles in the collision-free phase of the
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showing that at the velocity v  c the distribution function drops to zero, i.e. fv  c  0
, and the differential energy density shown in Figure 1 also drops down to v  c  0.

Figure 1: Shown is the differential energy density   v/c as function of the upper
velocity in units of v/c for different values of Kappa 1.6; 1,8; 10.0
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the distribution function of cosmic gases in this expansion phase and find that structure
formation must have run different from what is presently thought.

Key-words: Big-Bang cosmogony - cosmic vacuum energy - relativistic gas pressures -

I. Even the hottest cosmic matter would not explode by
itself!

We had shown in recent publications (Fahr, 2023, Fahr and Heyl, 2024) that an initial
explosion of the virgin universe can at least not have happened simply by a highly
pressurized cosmic matter singularity. This is because of the appearance of an
unavoidable, extremely strong centripetal gravitational field in connection with a highly
concentrated and extremely heated central mass singularity. This holds even though the
natural centripetal material pressures have to be taken into account which under these
conditions certainly are enormous and definitely would somehow enter the cosmic game.
But since the extremely hot cosmic matter has relativistic temperatures, this also leads
to relativistically enhanced gravitating mass sources m  mv  c  m0, and thus to
even stronger centripetal gravitational fields connected with them. That may at first
glance appear controvisionary, but as could already clearly be seen from the two
cosmologic Friedman equations (see Friedman, 1922,1924)
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with R  cosmic scale; k  curvature parameter;   vacuum energy density; p 
material pressure;  material energy density, describing the cosmic scale R as function
of the cosmic time t, it becomes evident that with vanishing curvature k  0 and
vanishing vacuum energy, i.e. with   0, the second Friedman equation attains the
form:
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which , perhaps as a surprise, shows that the relativistically hot, enhanced cosmic
matter with   p strengthens the centripetal gravity field such that no explosive cosmic
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which , perhaps as a surprise, shows that the relativistically hot, enhanced cosmic
matter with   p strengthens the centripetal gravity field such that no explosive cosmic

motion, but just the opposite - "an implosion" - would be caused. The hotter the matter
(i.e.   p ) is in the mass singularity, the more the situation thus resembles that of a
singular "black hole". The remaining question only is: What exactly is the energy density
 of relativistically hot cosmic matter?

II Relativistically enhanced cosmic masses

Let us start here looking at the mass of a cosmic particle with rest mass m0 which is
accelerated by cosmic forces, like thermodynamic ones or gravitational ones, to higher
velocities, i.e. towards v ~ c. How then is its dynamic and gravitating mass m  mv
changing under these circumstances? And how is this then changing the cosmic
dynamics?
First it turns out that the relativistic mass of this particle is given by (see e.g. French,

1968):

mv  m0
1

1v/c2

clearly expressing that for v  c its mass mv is growing to infinity, meaning that
forces further will not accelerate this mass, but only increase its mass. If, however, all
the relativistic, dynamic cosmic masses mv in this phase of the cosmic expansion
determine the cosmic gravity field, then it simply means that cosmic gravity
correspondingly is enormously enhanced under these conditions , and with  increasing
under such conditions the explosion is unavoidably inverted into an implosion, as already
the second of Friedman‘s differential equations clearly manifests with R  0 under such
conditions. Newton‘s basic law: F  mdv/dt under these new conditions attains the more
general form: F  dmv  v/dt .
As shown by Fahr (2022, 2023) only a medium that can realize a cosmic pressure

without an initial singularity of relativistically hot matter can cause an initial explosion of
the universe; this namely is the recently more and more discussed, cosmic vacuum
energy vac connected with a specific, positive vacuum pressure pvac as we may
demonstrate and specify further down here.

III Controle on relativistic cosmic particles

In an earlier paper (Fahr and Heyl, 2020) we had shown how to make sure that the
cosmic distribution function does not allow for superluminal particles, and as well that the
moments of this distribution function do not contain irrealistic contributions from such
non-existing superluminals. The recipe for that not to happen was to write the distribution
function as function of the kinetic particle energy Ekin and to find for instance in the case
of a prevailing kappa-function fv for the gas particles in the collision-free phase of the
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showing that at the velocity v = c the distribution function drops to zero, i.e. fK(v = c) = 0, and the differential energy density shown in 
Figure 1 also drops down to ϵ(v = c) = 0.

cosmic expansion with v  c  H  c  R /R with c as mean free path with respect to
collisions, and H as Hubble constant (see Fahr, 2024) according to French (1968) with:
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showing that at the velocity v  c the distribution function drops to zero, i.e. fv  c  0
, and the differential energy density shown in Figure 1 also drops down to v  c  0.

Figure 1: Shown is the differential energy density   v/c as function of the upper
velocity in units of v/c for different values of Kappa 1.6; 1,8; 10.0

IV. The Big-Bang starts from a pressurized cosmic vacuum

Perhaps the best explanation of the problematic begin of our universe would be to
assume that this universe does not at all start from a matter singularity, but rather from a

Figure 1: Shown is the Differential Energy Density ϵ = ϵ(v/c) As Function of the Upper Velocity in Units of (v/c) for Different Values 
of Kappa = 1.6; 1,8; 10.0

4. The Big-Bang Starts from a Pressurized Cosmic Vacuum
Perhaps the best explanation of the problematic begin of our universe would be to assume that this universe does not at all start from a 
matter singularity, but rather from a vacuum singularity with no initial matter involved at the beginning of cosmic time t → 0.

The latter, however, is systematically generated in the course of cosmic time t, when the metric of the universe is expanded connected 
with the conversion of vacuum energy into matter energy. The concept of a pressurized cosmic vacuum doing this job at this physical 
event has to start from the unavoidable thermodynamic condition that energy needs to be consumed in order to cause a blow-up of the 
universe. This means the fact has to be respected that the action of the cosmic vacuum pressure pvac, i.e., the positive work that has been 
carried out for blowing up the volume of a spherically symmetric universe, requires a loss of vacuum energy density ϵvac when causing 
this change.

This prerequisite is fulfilled, if the following, well known thermodynamic relation holds [6]:
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(see e.g. Fahr, 2022) :

d
dR vacR3  pvac d

dR R
3

where R is the radial scale of the universe. As shown by Fahr (2023) this relation is
mathematically satisfied, if the following polytropic relation is valid between the energy
density vac and the pressure pvac of the cosmic vacuum pvac  3  vac/3.Hereby  is
the so-called, presently unknown vacuum polytrope index   vac. The exact value of
the corresponding number   vac, however, is presently not known or physically
prescribed. The range of permitted values can, however, be strongly reduced. Namely
for a non-vanishing, positive cosmic vacuum pressure, needed to physically explain the
initial expansion of the universe, it is at least required that the following relation holds
pvac  3  vac/3  0. For a positive vacuum energy and a positive vacuum pressure it
is thus required that vac  3. A positive vacuum pressure at this place must be
requested in analogy to the thermodynamic pressure since expressing the mean kinetic
energy, i.e. a positive moment of the distribution function fv (see e.g. Chapman, S. and
Cowling, T.G. (1990), Cercignani, 1988). Furthermore one can derive in addition from
the second Friedman equation for an initially expanding universe with R as its radial
scale and R  d2R/dt2  0 (see e.g. Fahr, 2023) the result:

:
which for R  0 leads to the request vac  5 and permits the following range of

polytrope indices vac:
vac € 3,5

where the open brackets hereby mean that the border values   3 and   5 must be
excluded in order to guarantee an expanding universe with positive vacuum pressure
that causes an initial scale expansion, which thus would suggest a polytrope value of
  4. This is interesting and physically attractive as such, since for different reasons
Fahr (2024) had already derived from a different context the following relation for the
vacuum energy as function of the cosmic scale: vacR  vac,o  R0/R .With the upper
suggestion vac  4 this leads to a consistent solution given by vacR  vac,o  R0/R4
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which for     > 0 leads to the request ξvac < 5 and permits the following range of polytrope indices ξvac:
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where the open brackets hereby mean that the border values ξ = 3 and ξ = 5 must be excluded in order to guarantee an expanding 
universe with positive vacuum pressure that causes an initial scale expansion, which thus would suggest a polytrope value of ξ = 4. This 
is interesting and physically attractive as such, since for different reasons Fahr (2024) had already derived from a different context the 
following relation for the vacuum energy as function of the cosmic scale: ϵvac(R) =  ϵvac,o • [R0/R]ξ [8]. With the upper suggestion ξvac = 4 
this leads to a consistent solution given by ϵvac(R) = ϵvac,o • [R0/R]4

where ϵvac,o = ϵvac,o(R0(t)) is the vacuum energy density at the reference scale R0 = R0(t0).
This is consistent with the derivation of the matter density ρm = ρmo(R(t)/Ro)

-4 derived by Fahr (2024) for the plausible case that matter in 
the universe is generated by the energy decay of the initial vacuum energy via a quantized matter condensation process like proposed by 
Farnes (2018) or Aghirescu ( 2018) [8,11,12]. So things seem nicely to fit together creating a physical consistency.

5. The Matter Temperature in the Vacuum-Driven Hubble Universe
Starting from the first of Friedman´s differential equations which can be given in the following form [1]:

with R denoting the radial cosmic scale and     representing its first derivative with respect to cosmic time t. Here ρB; ρD; ρv; ρvac denote 
the energy densities of cosmic baryons, of dark matter, of photons, and of the vacuum. G denotes Newton‘s gravitational constant. Based 
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When introducing the normalized scale X = R/R0 delivers the more general relation: 
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finds the relation between cosmic scale and cosmic time in the compact form:
X2 = 2Y - 1. This relation defines for the given conditions after the recombination of baryonic matter, how the scale R and the time t of 
the universe are furtheron related to eachother.
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for times t1, t2, t3, t4 = 1, 2, 3, 4 Gigayears after the recombination time t0 = τ0 that the following relations then should be fulfilled:

According to Figure 3 in Fahr (2021) this scale growth R1 → R4, has the effect of increasing the baryonic temperature under vacuum-
induced NLTE conditions by a factor 1, 8 [13]. It would be interesting here to compare now this result with what should happen under 
pure LTE gas dynamic adiabatic conditions, i.e. under an adiabatic Poissonìan expansion of the Maxwellian baryonic gas, leading via 
[14]:

increasing the baryonic temperature under vacuum-induced NLTE conditions by a factor
1,8. It would be interesting here to compare now this result with what should happen
under pure LTE gas dynamic adiabatic conditions , i.e. under an adiabatic Poissonìan
expansion of the Maxwellian baryonic gas (e.g. see Gerthsen, 1958) , leading via

1
T

dT
dR   4

3 R
2

to :

Ti/T0  exp4Ri
3/R0

3  1

which expresses the following "classical Poissonian" thermodynamic expectations for
decreasing temperatures:

T1  T0 exp41.143/2  1
T2  T0 exp41.283/2  1
T3  T0 exp41.433/2  1
T4  T0 exp41.573/2  1

The above result would mean that instead of T4  1.8T0 one along classic
thermodynamics had to expect a baryonic temperature of only
T4  T0  exp4  1,89  5.1  104T0 ! If in fact one had to agree to these
vacuum-induced temperatures, then it would for sure need a thourough further
investigation in order to study whether or not after the recombination of baryonic matter -
at increasing temperatures the collapse of cosmic matter to structured stellar and
galactic clusters needs to have happened along quite different lines as envisioned up to
now by cosmologic theories. Perhaps it may calm donw the cosmologic spirits to realize
that it is nowadays well known that even on the basis of classic Jeans structure
formation theories (see e.g. Bonnor, 1957, Fahr and Willerding, 1998) it turns out, that
stars like our Sun with masses of about 1 solar mass on the basis of these classic
theories only can evolve from prestructured cosmic matter of densities of H  106

atoms/cm3 , while under normal galactic conditions expected with H ~ 102cm3 only
Jeans masses of M  100 solar masses could have fragmented. This may clearly show
that even structure formation theory under normal, i.e. classic thermodynamic frame
conditions, is not yet settled to convincing results.

VI. Conclusions

We have shown in this paper above that the initial explosion of the universe cannot be
caused by a singularity of overdense, hot cosmic matter, because in that case the
overdense matter would have to be extremely hot and highly relativistic. This would,

increasing the baryonic temperature under vacuum-induced NLTE conditions by a factor
1,8. It would be interesting here to compare now this result with what should happen
under pure LTE gas dynamic adiabatic conditions , i.e. under an adiabatic Poissonìan
expansion of the Maxwellian baryonic gas (e.g. see Gerthsen, 1958) , leading via

1
T

dT
dR   4

3 R
2

to :

Ti/T0  exp4Ri
3/R0

3  1

which expresses the following "classical Poissonian" thermodynamic expectations for
decreasing temperatures:

T1  T0 exp41.143/2  1
T2  T0 exp41.283/2  1
T3  T0 exp41.433/2  1
T4  T0 exp41.573/2  1

The above result would mean that instead of T4  1.8T0 one along classic
thermodynamics had to expect a baryonic temperature of only
T4  T0  exp4  1,89  5.1  104T0 ! If in fact one had to agree to these
vacuum-induced temperatures, then it would for sure need a thourough further
investigation in order to study whether or not after the recombination of baryonic matter -
at increasing temperatures the collapse of cosmic matter to structured stellar and
galactic clusters needs to have happened along quite different lines as envisioned up to
now by cosmologic theories. Perhaps it may calm donw the cosmologic spirits to realize
that it is nowadays well known that even on the basis of classic Jeans structure
formation theories (see e.g. Bonnor, 1957, Fahr and Willerding, 1998) it turns out, that
stars like our Sun with masses of about 1 solar mass on the basis of these classic
theories only can evolve from prestructured cosmic matter of densities of H  106

atoms/cm3 , while under normal galactic conditions expected with H ~ 102cm3 only
Jeans masses of M  100 solar masses could have fragmented. This may clearly show
that even structure formation theory under normal, i.e. classic thermodynamic frame
conditions, is not yet settled to convincing results.

VI. Conclusions

We have shown in this paper above that the initial explosion of the universe cannot be
caused by a singularity of overdense, hot cosmic matter, because in that case the
overdense matter would have to be extremely hot and highly relativistic. This would,

which expresses the following "classical Poissonian" thermodynamic expectations for decreasing temperatures:

The above result would mean that instead of T4 = 1. 8T0 one along classic thermodynamics had to expect a baryonic temperature of only 
T4 = T0 * exp[-4 * 1, 89] = 5.1 * 10-4T0! If in fact one had to agree to these vacuum-induced temperatures, then it would for sure need a 
thourough further investigation in order to study whether or not after the recombination of baryonic matter - at increasing temperatures 
the collapse of cosmic matter to structured stellar and galactic clusters needs to have happened along quite different lines as envisioned 
up to now by cosmologic theories. Perhaps it may calm down the cosmologic spirits to realize that it is nowadays well known that even 
on the basis of classic Jeans structure formation theories it turns out, that stars like our Sun with masses of about 1 solar mass on the 
basis of these classic theories only can evolve from prestructured cosmic matter of densities of ρH ≥ 106 atoms/cm3, while under normal 
galactic conditions expected with ρH ~ 102cm-3 only Jeans masses of M > 100 solar masses could have fragmented [15]. This may clearly 
show that even structure formation theory under normal, i.e. 	 classic thermodynamic frame conditions, is not yet settled to convincing 
results.

7. Conclusions
We have shown in this paper above that the initial explosion of the universe cannot be caused by a singularity of overdense, hot cosmic 
matter, because in that case the overdense matter would have to be extremely hot and highly relativistic. This would, however, just 
strengthen the centripetal gravity field such that an expansion of the universe along this way would be impeded which is also clearly 
reflected by the two Friedman differential equations. As we show here, an initial centrifugal, explosive event of the universe can only 
cosmically and physically be caused by a pressurized cosmic vacuum with properties that we have derived above as function of the scale 
R and time t of the universe. However, for that to become true, one first had to clarify how the structure formation in the universe in the 
post-recombination period can be caused under increasing NLTE matter temperatures. We can show that a conversion process converting 
vacuum energy into quantized massive matter can be discussed which explains why at present times we find a partially materialized 
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universe, however, why this universe contains stars, galaxies and clusters of galaxies which can be observed by mankind - , and what are 
the final consequences of the ongoing vacuum energy decay at the ongoing expansion of the universe - that ahead of all must be clarified 
at first [12,16-18].
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