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Special functions that satisfy the following differential equation are defined as hyper-exponential functions of n-order.

The hyper-exponential function can be said to be a family of functions of such special functions.

I created the symbol exph to represent the hyper-exponential function.
Exph stands for hyper-exponential function, which means infinite series as follows.

A differentiable function defined by some interval containing zero, which is an integrable and bounded function.

And for,

The following differential equation is obtained.

Thus, exph is a form of representation of the hyper-exponential function.

Napier number: 1 

 

The relation between hyper-exponential functions and 
Napier number 

Uchida Keitaroh 
keitarohuchida@gmail.com 

July 26,2024 
 
Special functions that satisfy the following differential equation are defined as hyper-exponential functions of 
n-order. 
𝑑𝑑𝑛𝑛𝑦𝑦(𝑥𝑥)

𝑑𝑑𝑥𝑥𝑛𝑛 = 𝑓𝑓(𝑥𝑥)𝑦𝑦(𝑥𝑥) 
The hyper-exponential function can be said to be a family of functions of such special functions. 
 
I created the symbol eexxpphh to represent the hyper-exponential function. 
Exph stands for hyper-exponential function ,which means infinite series as follows. 
 
𝑥𝑥 ∈ 𝑅𝑅 , 𝑓𝑓(𝑥𝑥) ∈ 𝑅𝑅, 𝑖𝑖 ∈ 𝑁𝑁0, 𝑗𝑗 ∈ 𝑁𝑁0, 𝑛𝑛 ∈ 𝑁𝑁 
 
𝑓𝑓(𝑥𝑥) ∶  
A differentiable function defined by some interval containing zero , which is an integrable and bounded 
function. 
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑(𝑥𝑥; 0) = 1 
𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑(𝑥𝑥; 𝑗𝑗) = 𝑥𝑥𝑗𝑗

𝑗𝑗!      (𝑗𝑗 = 1,2, ⋯ , 𝑛𝑛 − 1) 
 
𝑘𝑘0(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑(𝑥𝑥; 𝑗𝑗)      (𝑗𝑗 = 0,1,2, ⋯ , 𝑛𝑛 − 1) 
𝑘𝑘𝑖𝑖+1(𝑥𝑥) = ∫ ⋯

𝑥𝑥

0
∫ 𝑑𝑑𝑥𝑥𝑛𝑛 𝑓𝑓(𝑥𝑥)

𝑥𝑥

0
𝑘𝑘𝑖𝑖(𝑥𝑥) 

𝑠𝑠𝑥𝑥𝑒𝑒ℎ𝑗𝑗
𝑛𝑛{𝑥𝑥; 𝑓𝑓(𝑥𝑥)} = ∑ 𝑘𝑘𝑖𝑖(𝑥𝑥)

∞

𝑖𝑖=0
 

 
And for, 
𝑦𝑦(𝑥𝑥) = 𝑠𝑠𝑥𝑥𝑒𝑒ℎ𝑗𝑗

𝑛𝑛{𝑥𝑥; 𝑓𝑓(𝑥𝑥)} 
The following differential equation is obtained. 
𝑑𝑑𝑛𝑛𝑦𝑦(𝑥𝑥)

𝑑𝑑𝑥𝑥𝑛𝑛 = 𝑓𝑓(𝑥𝑥)𝑦𝑦(𝑥𝑥)  . 
 
Thus, eexxpphh is a form of representation of the hyper-exponential function. 

1 
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Napier number: 

𝒆𝒆 = 1 + ∑  1𝑖𝑖!

∞

𝑖𝑖=1
= 2.718281828 ⋯   . 

 
Exponential function: 

𝑒𝑒𝑥𝑥 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒) = 𝑒𝑒𝑒𝑒𝑒𝑒ℎ0
1(𝑒𝑒; 1) = 1 + ∑ 𝑒𝑒𝑖𝑖

𝑖𝑖!    .
∞

𝑖𝑖=1
 

 
The following feature of hyper-exponential functions of first-order is important. 
 𝑒𝑒𝑒𝑒𝑒𝑒ℎ0

1{𝑒𝑒; 𝑓𝑓(𝑒𝑒)} = 𝑒𝑒∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑥𝑥
0 . 

Thus, hyper-exponential functions of first-order are tied to the Napier number ee. For this reason, if the Napier 
number is compared to gold, not only the exponential function but also hyper-exponential functions of first-
order can be compared to convertible banknotes.  
 
On the other hand, hyper-exponential functions of second-order or higher-order cannot be described by 
using the Napier number, so they can be compared to fiat money. 
 
What I am arguing is that, just as humanity has come to use fiat money as currency, the time has come for 
researchers to use hyper-exponential functions of second-order or higher-order ,which are not tied to the 
Napier number, in various fields such as mathematics, physics, and science and technologies. 
 
 

 
 
 
 
 
 
 
 
 
 

As mentioned above, hyper-exponential functions contain the exponential function. And hyper-exponential 
functions of second-order or higher-order are not tied to the Napier number.  
I eagerly recommend that all of humanity, including researchers, understand this and make active use of eexxpphh. 

𝑒𝑒 
𝑒𝑒𝑒𝑒𝑒𝑒 
𝑒𝑒𝑒𝑒𝑒𝑒ℎ 

𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈  

𝑪𝑪𝒈𝒈𝑪𝑪𝑪𝑪𝒆𝒆𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒈𝒈𝒆𝒆  
 𝑪𝑪𝒃𝒃𝑪𝑪𝒃𝒃𝑪𝑪𝒈𝒈𝑪𝑪𝒆𝒆𝒃𝒃  

𝒇𝒇𝑪𝑪𝒃𝒃𝑪𝑪 𝒎𝒎𝒈𝒈𝑪𝑪𝒆𝒆𝒎𝒎  

= 

𝑛𝑛 ≥ 2 
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Exponential function:

The following feature of hyper-exponential functions of first-order is important.

Thus, hyper-exponential functions of first-order are tied to the Napier number e. For this reason, if the Napier number is compared to 
gold, not only the exponential function but also hyper-exponential functions of first-order can be compared to convertible banknotes. 

On the other hand, hyper-exponential functions of second-order or higher-order cannot be described by using the Napier number, so 
they can be compared to fiat money.

What I am arguing is that, just as humanity has come to use fiat money as currency, the time has come for researchers to use 
hyper-exponential functions of second-order or higher-order, which are not tied to the Napier number, in various fields such as 
mathematics, physics, and science and technologies.
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