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Abstract
 Consider that any current will generate half retarded waves and half advanced waves. The retarded wave is responsible for 
radiation, while the advanced wave is responsible for absorption. The radiation and absorption of the current sheet were 
calculated. The radiation and absorption of electromagnetic waves by the double plate current sheets were calculated. The energy 
flow between them was calculated. The author found that this energy flow is a mutual energy flow rather than a self energy flow. 
Revised the magnetic field of Maxwell’s classical electromagnetic theory. Further clarified the definition and measurement of 
magnetic fields. After correction, a theory of retarded field is obtained, instead of retarded potential theory like Maxwell’s classical 
electromagnetic theory. The calculation results indicate that the mutual energy flow is generated at the source and annihilated at 
the sink. Therefore, the mutual energy flow is determined by the properties of particles. The author believes that mutual energy flow 
is the photon. This theory supports Cramer’s quantum mechanical transactional interpretation and is a concrete implementation 
of the transactional interpretation. 
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1. Introduction
1.1 Half Retarded and Half Advanced Electromagnetic Waves
Wheeler Feynman proposed the concept of half retarded and half 
advanced in 1945 [1,2]. In 1980, Stephenson conducted research 
on advanced waves [3]. Cramer extended this concept to the 
transactional interpretation of quantum mechanics in 1986 [4,5]. 
On the other hand, in the field of electromagnetic field research, 
Welch proposed the time-domain reciprocity theorem in 1960, 
and Rumsey proposed a new reciprocity theorem in 1963 [6,3]. 
The author proposed the mutual energy theorem in 1987 [7-9]. De 
Hoop proposed the reciprocity theorem for cross correlation at the 
end of 1987 [10]. These reciprocity theorems and mutual energy 
theorems also involve advanced waves, but reciprocity theorems 
are mathematical theorems. If advanced waves occur, they can 
be considered virtual. The mutual energy theorem as an energy 

theorem, it is believed that the advanced waves that appear are of 
course real quantities in physics.

In 2017, the author proposed the mutual energy flow theorem 
based on the mutual energy theorem, which was developed into the 
law of conservation of energy. He believed that the mutual energy 
flow was a photon and used it to interpret quantum mechanics 
[11]. Afterwards, the author gradually applied this theory to 
specific examples, such as calculating the energy flow from the 
primary coil to secondary coil of a transformer. The energy flow 
from the transmitting antenna to the receiving antenna. The author 
also discusses the energy flow between current sheets [12-14, 15-
19]. During this process, the author added a correction factor (-j) 
to the far-field retarded magnetic field calculated of Maxwell’s 
electromagnetic theory [20-24].
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Figure  1: The electromagnetic field generated by a plane current sheet. Assuming that this 
field is generated by three small current elements along the way, the electric and magnetic 

fields near each small current element should maintain a 90 degree phase difference, and their 
combined electric and magnetic fields at point 𝑃𝑃 should also maintain a 90 degree phase 

difference. 
  
Feynman specifically talked about the radiation of an infinite plane current sheet in his 

physics lecture [6], and Feynman considered that the electromagnetic field generated by the 
plane current sheet is a plane electromagnetic wave. Refer to Figure 1. Consider the current as  

 𝑱𝑱 = 𝐽𝐽𝑧̂𝑧 (1) 
 Consider the starting value of the magnetic field being in phase with the current. Therefore, 
on the right side of the current, the magnetic field is 

 

Figure 1: The Electromagnetic Field Generated by a Plane Current Sheet. Assuming That This Field is Generated by Three Small 
Current Elements Along the Way, the Electric and Magnetic Fields Near Each Small Current Element Should Maintain A 90 Degree 
Phase Difference, and Their Combined Electric and Magnetic Fields At Point P Should also Maintain a 90 Degree Phase Difference
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Consider the starting value of the magnetic field being in phase with the current. Therefore, on the right side of the current, the magnetic 
field is

 𝑯𝑯 = 𝐽𝐽
2 𝑦̂𝑦exp(−𝑗𝑗𝑗𝑗𝑗𝑗) (2) 

 
Because according to Maxwell’s electromagnetic theory, the electric and magnetic fields 

of plane electromagnetic waves are in phase. Therefore, the electric field also has the same 
phase as the current at its inception. The electric field is,  

 𝑬𝑬 = 𝐽𝐽
2 𝜂𝜂0exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧) 

Among them, 𝜂𝜂0 = √𝜇𝜇0
𝜖𝜖0

 is the vacuum impedance. We know that for a very small current 

element 𝐼𝐼𝑧̂𝑧Δ𝑙𝑙, the surface electric and magnetic fields are  
 𝑬𝑬 = −𝑗𝑗𝜔𝜔𝑨𝑨 ∼ −𝑗𝑗𝑨𝑨 ∼ −𝑗𝑗𝑗𝑗𝑧̂𝑧 (3) 

  
 𝑯𝑯 ∼ 𝐼𝐼𝑦̂𝑦 (4) 

 ∼ means in proportion to, it does only care the phase and the direction of the vector. The 
electric and magnetic fields of small current elements maintain a 90 degree phase difference 
near the current elements. Our intuition tells us that if these current elements form an infinite 
current sheet, the electric field and magnetic field must consider the contribution of infinitely 
many small current elements in Figure 1. If the Huygens principle is used for both electric and 
magnetic fields, this electric field and magnetic field cannot become the same phase! 
Furthermore, Feynman did not calculate the electric field according to the true retarded 
potential method. This article will use the retarded potential method to calculate the electric 
field. The electric field calculated in this way will make people believe it. 

 
1.3  The Author’s Electromagnetic Field Theory 
 
The author believes that Maxwell’s electromagnetic theory is completely equivalent to 

the retarded potential theory proposed by Lorenz in 1867. Therefore,  
 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨(𝑟𝑟) − ∇Φ(𝑟𝑟),      𝑩𝑩 = ∇ × 𝑨𝑨(𝑟𝑟) (5) 
  

 𝑨𝑨(𝑟𝑟) = 𝜇𝜇0
4𝜋𝜋 ∫  𝑉𝑉

𝑱𝑱(𝒙𝒙′,𝑡𝑡−𝑟𝑟/𝑐𝑐)
𝑟𝑟 𝑑𝑑𝑑𝑑 (6) 

  
 Φ(𝑟𝑟) = 1

4𝜋𝜋𝜖𝜖0
∫  𝑉𝑉

𝜌𝜌(𝒙𝒙′,𝑡𝑡−𝑟𝑟/𝑐𝑐)
𝑟𝑟 𝑑𝑑𝑑𝑑 (7) 

 
Supperscript (𝑟𝑟) means retarded. 𝑐𝑐 is speed of light. 𝑬𝑬, 𝑯𝑯 are electric field and 

magnetic field. 𝑱𝑱 is the current. 𝜌𝜌 is the charge intensity. 𝑉𝑉 is the region of current and 
charge. 

However, the author believes that the theory of retarded potential is not entirely 
correct. The author supports the theory of retarded fields. That is to say, it should not be the 
retardation of vector potential and scalar potential, but rather the retardation of electric and 
magnetic fields. The retardation of electric and magnetic fields is based on the following 
principles:, 

1.There is an advanced wave. Although advanced waves violate causality, the author 
believes that they are indeed objective physical phenomena. The source emits a retarded wave, 

 𝑯𝑯 = 𝐽𝐽
2 𝑦̂𝑦exp(−𝑗𝑗𝑗𝑗𝑗𝑗) (2) 

 
Because according to Maxwell’s electromagnetic theory, the electric and magnetic fields 

of plane electromagnetic waves are in phase. Therefore, the electric field also has the same 
phase as the current at its inception. The electric field is,  

 𝑬𝑬 = 𝐽𝐽
2 𝜂𝜂0exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧) 

Among them, 𝜂𝜂0 = √𝜇𝜇0
𝜖𝜖0

 is the vacuum impedance. We know that for a very small current 

element 𝐼𝐼𝑧̂𝑧Δ𝑙𝑙, the surface electric and magnetic fields are  
 𝑬𝑬 = −𝑗𝑗𝜔𝜔𝑨𝑨 ∼ −𝑗𝑗𝑨𝑨 ∼ −𝑗𝑗𝑗𝑗𝑧̂𝑧 (3) 

  
 𝑯𝑯 ∼ 𝐼𝐼𝑦̂𝑦 (4) 

 ∼ means in proportion to, it does only care the phase and the direction of the vector. The 
electric and magnetic fields of small current elements maintain a 90 degree phase difference 
near the current elements. Our intuition tells us that if these current elements form an infinite 
current sheet, the electric field and magnetic field must consider the contribution of infinitely 
many small current elements in Figure 1. If the Huygens principle is used for both electric and 
magnetic fields, this electric field and magnetic field cannot become the same phase! 
Furthermore, Feynman did not calculate the electric field according to the true retarded 
potential method. This article will use the retarded potential method to calculate the electric 
field. The electric field calculated in this way will make people believe it. 

 
1.3  The Author’s Electromagnetic Field Theory 
 
The author believes that Maxwell’s electromagnetic theory is completely equivalent to 

the retarded potential theory proposed by Lorenz in 1867. Therefore,  
 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨(𝑟𝑟) − ∇Φ(𝑟𝑟),      𝑩𝑩 = ∇ × 𝑨𝑨(𝑟𝑟) (5) 
  

 𝑨𝑨(𝑟𝑟) = 𝜇𝜇0
4𝜋𝜋 ∫  𝑉𝑉

𝑱𝑱(𝒙𝒙′,𝑡𝑡−𝑟𝑟/𝑐𝑐)
𝑟𝑟 𝑑𝑑𝑑𝑑 (6) 

  
 Φ(𝑟𝑟) = 1

4𝜋𝜋𝜖𝜖0
∫  𝑉𝑉

𝜌𝜌(𝒙𝒙′,𝑡𝑡−𝑟𝑟/𝑐𝑐)
𝑟𝑟 𝑑𝑑𝑑𝑑 (7) 

 
Supperscript (𝑟𝑟) means retarded. 𝑐𝑐 is speed of light. 𝑬𝑬, 𝑯𝑯 are electric field and 

magnetic field. 𝑱𝑱 is the current. 𝜌𝜌 is the charge intensity. 𝑉𝑉 is the region of current and 
charge. 

However, the author believes that the theory of retarded potential is not entirely 
correct. The author supports the theory of retarded fields. That is to say, it should not be the 
retardation of vector potential and scalar potential, but rather the retardation of electric and 
magnetic fields. The retardation of electric and magnetic fields is based on the following 
principles:, 

1.There is an advanced wave. Although advanced waves violate causality, the author 
believes that they are indeed objective physical phenomena. The source emits a retarded wave, 

 𝑯𝑯 = 𝐽𝐽
2 𝑦̂𝑦exp(−𝑗𝑗𝑗𝑗𝑗𝑗) (2) 

 
Because according to Maxwell’s electromagnetic theory, the electric and magnetic fields 

of plane electromagnetic waves are in phase. Therefore, the electric field also has the same 
phase as the current at its inception. The electric field is,  

 𝑬𝑬 = 𝐽𝐽
2 𝜂𝜂0exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧) 

Among them, 𝜂𝜂0 = √𝜇𝜇0
𝜖𝜖0

 is the vacuum impedance. We know that for a very small current 

element 𝐼𝐼𝑧̂𝑧Δ𝑙𝑙, the surface electric and magnetic fields are  
 𝑬𝑬 = −𝑗𝑗𝜔𝜔𝑨𝑨 ∼ −𝑗𝑗𝑨𝑨 ∼ −𝑗𝑗𝑗𝑗𝑧̂𝑧 (3) 

  
 𝑯𝑯 ∼ 𝐼𝐼𝑦̂𝑦 (4) 

 ∼ means in proportion to, it does only care the phase and the direction of the vector. The 
electric and magnetic fields of small current elements maintain a 90 degree phase difference 
near the current elements. Our intuition tells us that if these current elements form an infinite 
current sheet, the electric field and magnetic field must consider the contribution of infinitely 
many small current elements in Figure 1. If the Huygens principle is used for both electric and 
magnetic fields, this electric field and magnetic field cannot become the same phase! 
Furthermore, Feynman did not calculate the electric field according to the true retarded 
potential method. This article will use the retarded potential method to calculate the electric 
field. The electric field calculated in this way will make people believe it. 

 
1.3  The Author’s Electromagnetic Field Theory 
 
The author believes that Maxwell’s electromagnetic theory is completely equivalent to 

the retarded potential theory proposed by Lorenz in 1867. Therefore,  
 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨(𝑟𝑟) − ∇Φ(𝑟𝑟),      𝑩𝑩 = ∇ × 𝑨𝑨(𝑟𝑟) (5) 
  

 𝑨𝑨(𝑟𝑟) = 𝜇𝜇0
4𝜋𝜋 ∫  𝑉𝑉

𝑱𝑱(𝒙𝒙′,𝑡𝑡−𝑟𝑟/𝑐𝑐)
𝑟𝑟 𝑑𝑑𝑑𝑑 (6) 

  
 Φ(𝑟𝑟) = 1

4𝜋𝜋𝜖𝜖0
∫  𝑉𝑉

𝜌𝜌(𝒙𝒙′,𝑡𝑡−𝑟𝑟/𝑐𝑐)
𝑟𝑟 𝑑𝑑𝑑𝑑 (7) 

 
Supperscript (𝑟𝑟) means retarded. 𝑐𝑐 is speed of light. 𝑬𝑬, 𝑯𝑯 are electric field and 

magnetic field. 𝑱𝑱 is the current. 𝜌𝜌 is the charge intensity. 𝑉𝑉 is the region of current and 
charge. 

However, the author believes that the theory of retarded potential is not entirely 
correct. The author supports the theory of retarded fields. That is to say, it should not be the 
retardation of vector potential and scalar potential, but rather the retardation of electric and 
magnetic fields. The retardation of electric and magnetic fields is based on the following 
principles:, 

1.There is an advanced wave. Although advanced waves violate causality, the author 
believes that they are indeed objective physical phenomena. The source emits a retarded wave, 

Because according to Maxwell’s electromagnetic theory, the electric and magnetic fields of plane electromagnetic waves are in phase. 
Therefore, the electric field also has the same phase as the current at its inception. The electric field is,

Among them,                 is the vacuum impedance. We know that for a very small current element IzΔl, the surface electric and magnetic 
fields are

 𝑯𝑯 = 𝐽𝐽
2 𝑦̂𝑦exp(−𝑗𝑗𝑗𝑗𝑗𝑗) (2) 

 
Because according to Maxwell’s electromagnetic theory, the electric and magnetic fields 

of plane electromagnetic waves are in phase. Therefore, the electric field also has the same 
phase as the current at its inception. The electric field is,  

 𝑬𝑬 = 𝐽𝐽
2 𝜂𝜂0exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧) 

Among them, 𝜂𝜂0 = √𝜇𝜇0
𝜖𝜖0

 is the vacuum impedance. We know that for a very small current 

element 𝐼𝐼𝑧̂𝑧Δ𝑙𝑙, the surface electric and magnetic fields are  
 𝑬𝑬 = −𝑗𝑗𝜔𝜔𝑨𝑨 ∼ −𝑗𝑗𝑨𝑨 ∼ −𝑗𝑗𝑗𝑗𝑧̂𝑧 (3) 

  
 𝑯𝑯 ∼ 𝐼𝐼𝑦̂𝑦 (4) 

 ∼ means in proportion to, it does only care the phase and the direction of the vector. The 
electric and magnetic fields of small current elements maintain a 90 degree phase difference 
near the current elements. Our intuition tells us that if these current elements form an infinite 
current sheet, the electric field and magnetic field must consider the contribution of infinitely 
many small current elements in Figure 1. If the Huygens principle is used for both electric and 
magnetic fields, this electric field and magnetic field cannot become the same phase! 
Furthermore, Feynman did not calculate the electric field according to the true retarded 
potential method. This article will use the retarded potential method to calculate the electric 
field. The electric field calculated in this way will make people believe it. 

 
1.3  The Author’s Electromagnetic Field Theory 
 
The author believes that Maxwell’s electromagnetic theory is completely equivalent to 

the retarded potential theory proposed by Lorenz in 1867. Therefore,  
 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨(𝑟𝑟) − ∇Φ(𝑟𝑟),      𝑩𝑩 = ∇ × 𝑨𝑨(𝑟𝑟) (5) 
  

 𝑨𝑨(𝑟𝑟) = 𝜇𝜇0
4𝜋𝜋 ∫  𝑉𝑉

𝑱𝑱(𝒙𝒙′,𝑡𝑡−𝑟𝑟/𝑐𝑐)
𝑟𝑟 𝑑𝑑𝑑𝑑 (6) 

  
 Φ(𝑟𝑟) = 1

4𝜋𝜋𝜖𝜖0
∫  𝑉𝑉

𝜌𝜌(𝒙𝒙′,𝑡𝑡−𝑟𝑟/𝑐𝑐)
𝑟𝑟 𝑑𝑑𝑑𝑑 (7) 

 
Supperscript (𝑟𝑟) means retarded. 𝑐𝑐 is speed of light. 𝑬𝑬, 𝑯𝑯 are electric field and 

magnetic field. 𝑱𝑱 is the current. 𝜌𝜌 is the charge intensity. 𝑉𝑉 is the region of current and 
charge. 

However, the author believes that the theory of retarded potential is not entirely 
correct. The author supports the theory of retarded fields. That is to say, it should not be the 
retardation of vector potential and scalar potential, but rather the retardation of electric and 
magnetic fields. The retardation of electric and magnetic fields is based on the following 
principles:, 

1.There is an advanced wave. Although advanced waves violate causality, the author 
believes that they are indeed objective physical phenomena. The source emits a retarded wave, 

̂

∼ means in proportion to, it does only care the phase and the 
direction of the vector. The electric and magnetic fields of small 
current elements maintain a 90 degree phase difference near the 
current elements. Our intuition tells us that if these current elements 
form an infinite current sheet, the electric field and magnetic field 
must consider the contribution of infinitely many small current 
elements in Figure 1. If the Huygens principle is used for both 
electric and magnetic fields, this electric field and magnetic field 
cannot become the same phase! Furthermore, Feynman did not 

calculate the electric field according to the true retarded potential 
method. This article will use the retarded potential method to 
calculate the electric field. The electric field calculated in this way 
will make people believe it.

1.3 The Author’s Electromagnetic Field Theory
The author believes that Maxwell’s electromagnetic theory is 
completely equivalent to the retarded potential theory proposed by 
Lorenz in 1867. Therefore, 
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However, the author believes that the theory of retarded potential is not entirely 
correct. The author supports the theory of retarded fields. That is to say, it should not be the 
retardation of vector potential and scalar potential, but rather the retardation of electric and 
magnetic fields. The retardation of electric and magnetic fields is based on the following 
principles:, 

1.There is an advanced wave. Although advanced waves violate causality, the author 
believes that they are indeed objective physical phenomena. The source emits a retarded wave, 
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or the secondary of the transformer.

2.Any current can simultaneously emit half retarded wave and half 
advanced wave. Near the current, the electric and magnetic fields 
of the retarded wave and the advanced wave generated by the 
current should be superimposed, and no one should cancel each 
other out.
3. Radiation does not overflow the universe.
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∗ ⋅ 𝑛̂𝑛𝑑𝑑ΓΓ = 0 (10) 
 

This law requires electromagnetic waves to be of reactive power. This law requires the 
radiated electric and magnetic fields to maintain a phase difference of 90 degrees. Moreover, 
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while the sink emits a advanced wave. The source of radiation can be a primary source of light, 
a transmitting antenna, or a primary coil of the transformer. A sink can be a light sink, a 
receiving antenna or the secondary of the transformer. 
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Γ is any closed surface or infinite open surface that separates two 
current elements Ji and Jj.
The retarded field theory proposed by the author requires the above 
conditions to be applied. We first study the electromagnetic waves 
of infinite current sheets, using the method proposed by the author 
as an example.

1.4 The Contents of this Article
This article further discusses the energy flow between two flat 
plates. In the discussion of this article, the author specifically 
considered the concepts of half retarded and half advanced. After 
adding this concept, the annoying factor of 1/2 that appeared in 
the original author’s theory automatically disappeared. The theory 
is more self consistent. In addition, the author emphasizes that 
any current generates half retarded and half advanced waves. 
Therefore, retarded waves and advanced waves should be 
superimposed on each other near the surface of the current, rather 
than offset. This condition can also be seen as a new boundary 
condition in electromagnetic field theory. The author’s correction 
of the magnetic field precisely supports this viewpoint.

This article further explains the definition and measurement 
of magnetic fields. A practical and feasible solution has been 
proposed, which is different from the definition of magnetic field 
in Maxwell’s electromagnetic theory using the curl of vector 
potential.

Plane electromagnetic waves can be generated by infinite plane 
currents. Calculating the electromagnetic field generated by an 
infinite current sheet is the simplest example in electromagnetic 
theory. This example can test whether there are inconsistencies in 
classical electromagnetic theory.

2. Review of the Electromagnetic Field Theory Revised by the 
Author
2.1 Retarded Potential vs Retarded Field
This article adopts the viewpoint proposed by Wheeler Feynman 
that half retarded and half advanced the wave. Therefore, in the 
frequency domain,
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4𝜋𝜋 ∫  𝑉𝑉 𝑱𝑱 × (𝒓𝒓
𝑟𝑟)𝑑𝑑𝑑𝑑 (18) 

 
𝑘𝑘𝑘𝑘 → 0 means 2𝜋𝜋

𝜆𝜆 𝑟𝑟 → 0, or 𝑟𝑟 ≪ 𝜆𝜆. This indicates that the range we are considering is 
much smaller than the wavelength. Consider 𝑘𝑘 = 𝜔𝜔√𝜇𝜇0𝜖𝜖0, if the frequency is relatively low, 
the second term in the above equation can be ignored. At this point, 
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∇ × 𝑨𝑨(𝑟𝑟) = 𝑯𝑯 (19) 

 The 𝑯𝑯 in the above equation is a static magnetic field, which is generated by a constant 
current 𝑱𝑱. If the frequency is not very low, the second term cannot be ignored, as this term 
represents the far-field radiation. However, the author believes that the imaginary number 𝑗𝑗 
appearing in the equation (18) is very suspicious, as it gives the far-field of the magnetic field a 
phase factor 𝑗𝑗 in the indication of the current. The author believes that if we follow the 
principle of magnetic field retardation instead of vector potential retardation, the far field of 
the magnetic field should not have this phase factor. So the definition of magnetic field has 
been modified,  
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(𝑎𝑎) calculate the far field 

based on the advanced potential. 𝑯𝑯 is a redefined magnetic field by the author. This magnetic 
field is obtained based on the retardation or advance of the magnetic field, rather than the 
retardation or advance of the potential. 
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field is obtained based on the retardation or advance of the magnetic field, rather than the 
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current 𝑱𝑱. If the frequency is not very low, the second term cannot be ignored, as this term 
represents the far-field radiation. However, the author believes that the imaginary number 𝑗𝑗 
appearing in the equation (18) is very suspicious, as it gives the far-field of the magnetic field a 
phase factor 𝑗𝑗 in the indication of the current. The author believes that if we follow the 
principle of magnetic field retardation instead of vector potential retardation, the far field of 
the magnetic field should not have this phase factor. So the definition of magnetic field has 
been modified,  
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based on the advanced potential. 𝑯𝑯 is a redefined magnetic field by the author. This magnetic 
field is obtained based on the retardation or advance of the magnetic field, rather than the 
retardation or advance of the potential. 

Note that after modification, the electric and magnetic fields in the far field are no 
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 Is a pure imaginary number. This indicates that both the retarded wave and the advanced 
wave are waves of reactive power, and the time average of these waves does not transfer 
energy. 

Due to the fact that the retarded and advanced waves are reactive power, the author 
believes that energy transmission does not rely on the retarded and advanced waves 
themselves, but rather on the mutual energy flow composed of retarded and advanced waves. 

It is worth noting that due to retarded waves and advanced waves being reactive power, 
these waves can be ineffective. If the retarded wave emitted by a current cannot be 
synchronized with the advanced wave emitted by another current (in Cramer’s parlance, it is a 
handshake between two waves) [3, 4], this retarded wave is invalid. Therefore, when we 
consider a pair of antennas with a transmitting antenna and a receiving antenna, the advanced 
wave of the transmitting antenna is ineffective, and only the retarded wave is effective. We 
often do not need to discuss the reflection caused by the retarded wave of the receiving 
antenna. Therefore, the receiving antenna only works with advanced waves. Therefore, there 
are often,  
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2.2  Mutual Energy Flow and Law of Conservation of Energy 
 
Although the author has already defined the wave with half retarded and half advanced 

generated by the current, due to historical reasons, the author did not initially consider the 
factor 1
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 Is a pure imaginary number. This indicates that both the retarded 
wave and the advanced wave are waves of reactive power, and the 
time average of these waves does not transfer energy.

Due to the fact that the retarded and advanced waves are reactive 
power, the author believes that energy transmission does not rely 
on the retarded and advanced waves themselves, but rather on the 
mutual energy flow composed of retarded and advanced waves.

It is worth noting that due to retarded waves and advanced 
waves being reactive power, these waves can be ineffective. If 

the retarded wave emitted by a current cannot be synchronized 
with the advanced wave emitted by another current (in Cramer’s 
parlance, it is a handshake between two waves), this retarded wave 
is invalid [4,5]. Therefore, when we consider a pair of antennas 
with a transmitting antenna and a receiving antenna, the advanced 
wave of the transmitting antenna is ineffective, and only the 
retarded wave is effective. We often do not need to discuss the 
reflection caused by the retarded wave of the receiving antenna. 
Therefore, the receiving antenna only works with advanced waves. 
Therefore, there are often, 

2.2 Mutual Energy Flow and Law of Conservation of Energy
Although the author has already defined the wave with half retarded 
and half advanced generated by the current, due to historical 

reasons, the author did not initially consider the factor 1/2 in 
(16,22). In this case, the author obtains the law of conservation of 
energy as [11]
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We know that the solution obtained by Maxwell’s equation is 
equivalent to the solution obtained by the Lorenz retarded potential 
method [25]. According to this method of retarded potential, the 
law of conservation of energy (27) above does not hold and can 
only be used as an energy theorem.

This energy flow law (29) cannot be established within the 

theoretical framework of retarded potential (Maxwell’s 
electromagnetic field theory). But they can hold true under the 
electric and magnetic field conditions defined by the author earlier 
(25,26).

Note that the author has found some issues with the above formula 
through practical examples. The correct formula should be,

This energy flow law (29) cannot be established within the theoretical framework of 
retarded potential (Maxwell’s electromagnetic field theory). But they can hold true under the 
electric and magnetic field conditions defined by the author earlier (25,26). 

Note that the author has found some issues with the above formula through practical 
examples. The correct formula should be, 

 
 − ∫  𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗

∗)𝑑𝑑𝑑𝑑 = 1
2 (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) = ∫  𝑉𝑉 (𝑬𝑬𝑗𝑗

∗ ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 (30) 
 

Note that the calculated value of the mutual energy flow is twice as large. The above 
formula (28) has not yet considered the factors of half retardation and half advance. If we 
consider half retardation and half advance, we need to substitute the above equation (28) as 
follows,  

 𝑬𝑬, 𝑯𝑯 ← 1
2 𝑬𝑬, 1

2 𝑯𝑯 (31) 
 

After doing so, the formula (28) is, 
 
 − ∫  𝑉𝑉 (1

2 𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗
∗)𝑑𝑑𝑑𝑑 = (1

2 𝜉𝜉𝑖𝑖, 1
2 𝜉𝜉𝑗𝑗) = ∫  𝑉𝑉 (1

2 𝑬𝑬𝑗𝑗
∗ ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 (32) 

 
In the above equation, 𝑬𝑬𝑖𝑖 The electric field with half retarded and half advanced is not 

considered. This is just Eq.(30). If we record the electric field with half retardation and half 
advance as,  

 𝑬𝑬𝑖𝑖′ = 𝑬𝑬𝑖𝑖
2 ,      𝑯𝑯′ = 𝑯𝑯

2  (33) 
 

Or, 
 
 − ∫  𝑉𝑉 (𝑬𝑬′𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗

∗)𝑑𝑑𝑑𝑑 = (𝜉𝜉′𝑖𝑖, 𝜉𝜉′𝑗𝑗) = ∫  𝑉𝑉 ((𝑬𝑬′𝑗𝑗)∗ ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 (34) 
 

From this, it can be seen that if we consider half retardation and half advance, the 
problem with the formula (28,29), i.e. the fact of 1

2 can be solved. This is also why we need to 
consider half retarded and half advanced waves. 

 
2.3  New Definition and Measurement of Magnetic Field of 

Electromagnetic Waves 
 
The author discussed the definition of a magnetic field in the reference [19]. It is 

rephrased here, hoping to express the author’s thoughts more clearly. Assuming a uniform AC 
magnetic field,  

 𝑯𝑯 = 𝐻𝐻0exp(𝑗𝑗𝜔𝜔𝑡𝑡)𝑦̂𝑦 (35) 
 We need to measure this magnetic field, and the traditional method is to make a small coil, 𝐶𝐶, 
with the normal of coil 𝐶𝐶 pointing towards 𝑦̂𝑦. The induced electromotive force of the coil is  

 ℰ = ∮  𝐶𝐶 𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 ∬  𝜍𝜍 𝑩𝑩 ⋅ 𝑦̂𝑦𝑑𝑑𝜍𝜍 (36) 

  

This energy flow law (29) cannot be established within the theoretical framework of 
retarded potential (Maxwell’s electromagnetic field theory). But they can hold true under the 
electric and magnetic field conditions defined by the author earlier (25,26). 

Note that the author has found some issues with the above formula through practical 
examples. The correct formula should be, 

 
 − ∫  𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗

∗)𝑑𝑑𝑑𝑑 = 1
2 (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) = ∫  𝑉𝑉 (𝑬𝑬𝑗𝑗

∗ ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 (30) 
 

Note that the calculated value of the mutual energy flow is twice as large. The above 
formula (28) has not yet considered the factors of half retardation and half advance. If we 
consider half retardation and half advance, we need to substitute the above equation (28) as 
follows,  

 𝑬𝑬, 𝑯𝑯 ← 1
2 𝑬𝑬, 1

2 𝑯𝑯 (31) 
 

After doing so, the formula (28) is, 
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2 𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗
∗)𝑑𝑑𝑑𝑑 = (1

2 𝜉𝜉𝑖𝑖, 1
2 𝜉𝜉𝑗𝑗) = ∫  𝑉𝑉 (1
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∗ ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 (32) 

 
In the above equation, 𝑬𝑬𝑖𝑖 The electric field with half retarded and half advanced is not 

considered. This is just Eq.(30). If we record the electric field with half retardation and half 
advance as,  

 𝑬𝑬𝑖𝑖′ = 𝑬𝑬𝑖𝑖
2 ,      𝑯𝑯′ = 𝑯𝑯
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2.3  New Definition and Measurement of Magnetic Field of 

Electromagnetic Waves 
 
The author discussed the definition of a magnetic field in the reference [19]. It is 

rephrased here, hoping to express the author’s thoughts more clearly. Assuming a uniform AC 
magnetic field,  

 𝑯𝑯 = 𝐻𝐻0exp(𝑗𝑗𝜔𝜔𝑡𝑡)𝑦̂𝑦 (35) 
 We need to measure this magnetic field, and the traditional method is to make a small coil, 𝐶𝐶, 
with the normal of coil 𝐶𝐶 pointing towards 𝑦̂𝑦. The induced electromotive force of the coil is  

 ℰ = ∮  𝐶𝐶 𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = − 𝜕𝜕
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This energy flow law (29) cannot be established within the theoretical framework of 
retarded potential (Maxwell’s electromagnetic field theory). But they can hold true under the 
electric and magnetic field conditions defined by the author earlier (25,26). 

Note that the author has found some issues with the above formula through practical 
examples. The correct formula should be, 
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∗)𝑑𝑑𝑑𝑑 = 1
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Note that the calculated value of the mutual energy flow is twice as large. The above 
formula (28) has not yet considered the factors of half retardation and half advance. If we 
consider half retardation and half advance, we need to substitute the above equation (28) as 
follows,  

 𝑬𝑬, 𝑯𝑯 ← 1
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Electromagnetic Waves 
 
The author discussed the definition of a magnetic field in the reference [19]. It is 
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magnetic field,  

 𝑯𝑯 = 𝐻𝐻0exp(𝑗𝑗𝜔𝜔𝑡𝑡)𝑦̂𝑦 (35) 
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retarded potential (Maxwell’s electromagnetic field theory). But they can hold true under the 
electric and magnetic field conditions defined by the author earlier (25,26). 

Note that the author has found some issues with the above formula through practical 
examples. The correct formula should be, 

 
 − ∫  𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗

∗)𝑑𝑑𝑑𝑑 = 1
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Note that the calculated value of the mutual energy flow is twice as large. The above 
formula (28) has not yet considered the factors of half retardation and half advance. If we 
consider half retardation and half advance, we need to substitute the above equation (28) as 
follows,  

 𝑬𝑬, 𝑯𝑯 ← 1
2 𝑬𝑬, 1

2 𝑯𝑯 (31) 
 

After doing so, the formula (28) is, 
 
 − ∫  𝑉𝑉 (1
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considered. This is just Eq.(30). If we record the electric field with half retardation and half 
advance as,  
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problem with the formula (28,29), i.e. the fact of 1

2 can be solved. This is also why we need to 
consider half retarded and half advanced waves. 

 
2.3  New Definition and Measurement of Magnetic Field of 

Electromagnetic Waves 
 
The author discussed the definition of a magnetic field in the reference [19]. It is 

rephrased here, hoping to express the author’s thoughts more clearly. Assuming a uniform AC 
magnetic field,  

 𝑯𝑯 = 𝐻𝐻0exp(𝑗𝑗𝜔𝜔𝑡𝑡)𝑦̂𝑦 (35) 
 We need to measure this magnetic field, and the traditional method is to make a small coil, 𝐶𝐶, 
with the normal of coil 𝐶𝐶 pointing towards 𝑦̂𝑦. The induced electromotive force of the coil is  
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This energy flow law (29) cannot be established within the theoretical framework of 
retarded potential (Maxwell’s electromagnetic field theory). But they can hold true under the 
electric and magnetic field conditions defined by the author earlier (25,26). 

Note that the author has found some issues with the above formula through practical 
examples. The correct formula should be, 

 
 − ∫  𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗

∗)𝑑𝑑𝑑𝑑 = 1
2 (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) = ∫  𝑉𝑉 (𝑬𝑬𝑗𝑗

∗ ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 (30) 
 

Note that the calculated value of the mutual energy flow is twice as large. The above 
formula (28) has not yet considered the factors of half retardation and half advance. If we 
consider half retardation and half advance, we need to substitute the above equation (28) as 
follows,  

 𝑬𝑬, 𝑯𝑯 ← 1
2 𝑬𝑬, 1

2 𝑯𝑯 (31) 
 

After doing so, the formula (28) is, 
 
 − ∫  𝑉𝑉 (1

2 𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗
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In the above equation, 𝑬𝑬𝑖𝑖 The electric field with half retarded and half advanced is not 

considered. This is just Eq.(30). If we record the electric field with half retardation and half 
advance as,  
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rephrased here, hoping to express the author’s thoughts more clearly. Assuming a uniform AC 
magnetic field,  
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 We need to measure this magnetic field, and the traditional method is to make a small coil, 𝐶𝐶, 
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retarded potential (Maxwell’s electromagnetic field theory). But they can hold true under the 
electric and magnetic field conditions defined by the author earlier (25,26). 

Note that the author has found some issues with the above formula through practical 
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Note that the calculated value of the mutual energy flow is twice as large. The above 
formula (28) has not yet considered the factors of half retardation and half advance. If we 
consider half retardation and half advance, we need to substitute the above equation (28) as 
follows,  
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magnetic field,  
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 We need to measure this magnetic field, and the traditional method is to make a small coil, 𝐶𝐶, 
with the normal of coil 𝐶𝐶 pointing towards 𝑦̂𝑦. The induced electromotive force of the coil is  
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This energy flow law (29) cannot be established within the theoretical framework of 
retarded potential (Maxwell’s electromagnetic field theory). But they can hold true under the 
electric and magnetic field conditions defined by the author earlier (25,26). 

Note that the author has found some issues with the above formula through practical 
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Where 𝜍𝜍 = ∬  𝜍𝜍 𝑑𝑑𝜍𝜍 = 𝐿𝐿2 is the area, assume the coil is square, and the circumference is 4L. So,  
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 (37) 

 Where 𝐸𝐸 is the measured induced electromotive potential, 𝑯𝑯𝑦𝑦 It is a magnetic field, so if 
we already know the induced electromotive potential, we can use this method to measure the 
size of the magnetic field, i.e  

 𝑯𝑯𝑦𝑦 = 4
−𝑗𝑗𝑗𝑗𝑗𝑗

𝐸𝐸
𝜂𝜂0

 (38) 
 

𝐸𝐸 only needs to be measured on one side of the square, without the need for a whole 
coil. Now if we have an electromagnetic wave,  

 𝑬𝑬 = 𝐸𝐸0exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧) (39) 
  

 𝐸𝐸 = 𝑬𝑬(𝑥𝑥) ⋅ 𝑧̂𝑧 = −𝐸𝐸0exp(−𝑗𝑗𝑗𝑗𝑗𝑗) (40) 
 

The magnetic field of the newly defined electromagnetic wave is, 
 
 𝐻𝐻𝑦𝑦 = 4𝐸𝐸
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 (41) 

 
In the above we have chosen,  
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𝑘𝑘𝑘𝑘 = 1 
that means,  

 𝐿𝐿 = 4
𝑘𝑘 = 4

2𝜋𝜋 𝜆𝜆 = 2
𝜋𝜋 𝜆𝜆 (42) 

 for electric field measurement needle. For example, if the electric field of an electromagnetic 
wave is,  

 𝑬𝑬 = 𝑗𝑗 𝐽𝐽0
2 𝜂𝜂0exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧) (43) 

 
hence,  
 𝐸𝐸(𝑥𝑥) = −𝑗𝑗 𝐽𝐽0

2 𝜂𝜂0exp(−𝑗𝑗𝑗𝑗𝑗𝑗) (44) 
  

 𝐻𝐻𝑦𝑦 = 𝑗𝑗 𝐸𝐸
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2 𝜂𝜂0exp(−𝑗𝑗𝑗𝑗𝑗𝑗)) = 𝐽𝐽0

2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗) (45) 
 

So the above equation is our newly defined magnetic field, which should also be used as 
the definition for calculating the magnetic field. In this way, the magnetic field of the 
electromagnetic wave is not in phase with the electric field, but has a phase difference of 90 
degrees. 

 
3  Electromagnetic Waves of Infinite Current Sheets 

Where σ = ∬σ dσ = L2 is the area, assume the coil is square, and the circumference is 4L. So,
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So the above equation is our newly defined magnetic field, which 
should also be used as the definition for calculating the magnetic 
field. In this way, the magnetic field of the electromagnetic wave 
is not in phase with the electric field, but has a phase difference of 
90 degrees.

3 Electromagnetic Waves of Infinite Current Sheets
The author first calculates the electromagnetic and magnetic fields 
according to Maxwell’s electromagnetic theory, which is the theory 

of retarded potential, and then makes appropriate corrections to 
the magnetic field. Note that although the author has pointed out 
that the electric and magnetic fields should be calculated based on 
half retardation and half advance. This calculation should have a 
factor of 1/2. However, in the following calculations, the author 
still ignores the factor of 1/2. This calculation can enable readers 
to clearly see where the calculation will go wrong and understand 
why we need this factor of 1/2.
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3.1 Calculating Electromagnetic Fields Based on Maxwell’s Retarded Potential Theory
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Figure  2: Assuming that the flat plate is a circular disc with a radius of 𝑅𝑅, there is a uniform 
current density on this circular disc pointing towards the 𝑧𝑧-axis. Find the vector potential 

function it generates. 
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Figure 2: Assuming that the Flat Plate is a Circular Disc with a Radius of R, there is a Uniform Current Density on this Circular Disc 
Pointing Towards the z-axis. find the Vector Potential Function it Generates

Consider the normal of the current sheet in the x̂ direction. The current is J1 in the z -axis direction, as shown in Figure 2. The vector 
potential of retardation can be written as,

̂

 
The author first calculates the electromagnetic and magnetic fields according to 

Maxwell’s electromagnetic theory, which is the theory of retarded potential, and then makes 
appropriate corrections to the magnetic field. Note that although the author has pointed out 
that the electric and magnetic fields should be calculated based on half retardation and half 
advance. This calculation should have a factor of 1

2. However, in the following calculations, the 

author still ignores the factor of 1
2. This calculation can enable readers to clearly see where the 

calculation will go wrong and understand why we need this factor of 1
2. 

 
3.1  Calculating Electromagnetic Fields Based on Maxwell’s Retarded 

Potential Theory 

 
 

Figure  2: Assuming that the flat plate is a circular disc with a radius of 𝑅𝑅, there is a uniform 
current density on this circular disc pointing towards the 𝑧𝑧-axis. Find the vector potential 

function it generates. 
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 = 1

𝜇𝜇0

1
−𝑗𝑗𝑗𝑗

𝜇𝜇0
2 (exp(−𝑗𝑗𝑗𝑗√𝑥𝑥2 + 𝑅𝑅2) −𝑗𝑗𝑗𝑗𝑗𝑗

√𝑥𝑥2+𝑅𝑅2) 𝑥̂𝑥 
 

 −(−𝑗𝑗𝑗𝑗)exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑥̂𝑥) × 𝐽𝐽1𝑧̂𝑧 
 

 = 1
2 (exp(−𝑗𝑗𝑗𝑗√𝑥𝑥2 + 𝑅𝑅2) 𝑥𝑥

√𝑥𝑥2+𝑅𝑅2) − exp(−𝑗𝑗𝑗𝑗𝑗𝑗))𝐽𝐽1(−𝑦̂𝑦) (49) 
 

Considering 𝑅𝑅 → ∞ to obtain the magnetic field of an infinite plane,  
 𝒉𝒉1

(𝑟𝑟) = lim
𝑅𝑅→∞

𝒉𝒉1(𝑅𝑅) = 𝐽𝐽1
2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 (50) 

 
Of course, we can also use this magnetic field to calculate the electric field, according to 

Ampere’s circuital law,  
 ∇ × 𝒉𝒉1

(𝑟𝑟) = 𝜕𝜕
𝜕𝜕𝜕𝜕 𝜖𝜖0𝑬𝑬1

(𝑟𝑟) = 𝑗𝑗𝜔𝜔𝜖𝜖0𝑬𝑬1
(𝑟𝑟) (51) 

  
 𝑬𝑬1

(𝑟𝑟) = 1
𝑗𝑗𝜔𝜔𝜖𝜖0

∇ × 𝒉𝒉1
(𝑟𝑟) 

 
 = 𝜇𝜇0

2 ∫  𝑅𝑅
0 𝐽𝐽1𝑧̂𝑧exp(−𝑗𝑗𝑗𝑗√𝑥𝑥2 + 𝜌𝜌2)𝑑𝑑√𝑥𝑥2 + 𝜌𝜌2 

 
 = 1

−𝑗𝑗𝑗𝑗
𝜇𝜇0
2 𝐽𝐽1𝑧̂𝑧 ∫  𝑅𝑅

0 𝑑𝑑exp(−𝑗𝑗𝑗𝑗√𝑥𝑥2 + 𝜌𝜌2) 
 

 = 1
−𝑗𝑗𝑗𝑗

𝜇𝜇0
2 𝐽𝐽1𝑧̂𝑧(exp(−𝑗𝑗𝑗𝑗√𝑥𝑥2 + 𝑅𝑅2) − exp(−𝑗𝑗𝑗𝑗𝑗𝑗)) (46) 

  
The induced electric field of a circular plane with a radius of 𝑅𝑅 is, 
  
 𝑬𝑬1

(𝑟𝑟)(𝑅𝑅) = −𝑗𝑗𝜔𝜔𝑨𝑨(𝑟𝑟) = 𝜔𝜔
𝑘𝑘

𝜇𝜇0
2 𝐽𝐽1𝑧̂𝑧(exp(−𝑗𝑗𝑗𝑗√𝑥𝑥2 + 𝑅𝑅2) − exp(−𝑗𝑗𝑗𝑗𝑗𝑗)) 

 
 = 𝐽𝐽𝜂𝜂0

2 𝑧̂𝑧(exp(−𝑗𝑗𝑗𝑗√𝑥𝑥2 + 𝑅𝑅2) − exp(−𝑗𝑗𝑗𝑗𝑗𝑗)) (47) 
  

The first term in the above equation diverges at 𝑅𝑅 → ∞, but its average value is 0 and 
hence, can be ignored. 

 
 𝑬𝑬1

(𝑟𝑟) = lim
𝑅𝑅→∞

𝑬𝑬1
(𝑟𝑟)(𝑅𝑅) = 𝐽𝐽1𝜂𝜂0

2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧) (48) 
 

Calculating the magnetic field of a circular plane using the classical Maxwell retarded 
potential method, 

 
 𝒉𝒉1

(𝑟𝑟)(𝑅𝑅) = 1
𝜇𝜇0

∇ × 𝑨𝑨(𝑟𝑟)(𝜌𝜌 = 𝑅𝑅) 
 

 = 1
𝜇𝜇0

∇ × 1
−𝑗𝑗𝑗𝑗

𝜇𝜇0
2 𝐽𝐽1𝑧̂𝑧(exp(−𝑗𝑗𝑗𝑗√𝑥𝑥2 + 𝑅𝑅2) − exp(−𝑗𝑗𝑗𝑗𝑗𝑗)) 

 
 = 1

𝜇𝜇0

1
−𝑗𝑗𝑗𝑗

𝜇𝜇0
2 (exp(−𝑗𝑗𝑗𝑗√𝑥𝑥2 + 𝑅𝑅2) −𝑗𝑗𝑗𝑗𝑗𝑗

√𝑥𝑥2+𝑅𝑅2) 𝑥̂𝑥 
 

 −(−𝑗𝑗𝑗𝑗)exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑥̂𝑥) × 𝐽𝐽1𝑧̂𝑧 
 

 = 1
2 (exp(−𝑗𝑗𝑗𝑗√𝑥𝑥2 + 𝑅𝑅2) 𝑥𝑥

√𝑥𝑥2+𝑅𝑅2) − exp(−𝑗𝑗𝑗𝑗𝑗𝑗))𝐽𝐽1(−𝑦̂𝑦) (49) 
 

Considering 𝑅𝑅 → ∞ to obtain the magnetic field of an infinite plane,  
 𝒉𝒉1

(𝑟𝑟) = lim
𝑅𝑅→∞

𝒉𝒉1(𝑅𝑅) = 𝐽𝐽1
2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 (50) 

 
Of course, we can also use this magnetic field to calculate the electric field, according to 

Ampere’s circuital law,  
 ∇ × 𝒉𝒉1

(𝑟𝑟) = 𝜕𝜕
𝜕𝜕𝜕𝜕 𝜖𝜖0𝑬𝑬1

(𝑟𝑟) = 𝑗𝑗𝜔𝜔𝜖𝜖0𝑬𝑬1
(𝑟𝑟) (51) 

  
 𝑬𝑬1

(𝑟𝑟) = 1
𝑗𝑗𝜔𝜔𝜖𝜖0

∇ × 𝒉𝒉1
(𝑟𝑟) 

 
 = 𝜇𝜇0

2 ∫  𝑅𝑅
0 𝐽𝐽1𝑧̂𝑧exp(−𝑗𝑗𝑗𝑗√𝑥𝑥2 + 𝜌𝜌2)𝑑𝑑√𝑥𝑥2 + 𝜌𝜌2 

 
 = 1

−𝑗𝑗𝑗𝑗
𝜇𝜇0
2 𝐽𝐽1𝑧̂𝑧 ∫  𝑅𝑅

0 𝑑𝑑exp(−𝑗𝑗𝑗𝑗√𝑥𝑥2 + 𝜌𝜌2) 
 

 = 1
−𝑗𝑗𝑗𝑗

𝜇𝜇0
2 𝐽𝐽1𝑧̂𝑧(exp(−𝑗𝑗𝑗𝑗√𝑥𝑥2 + 𝑅𝑅2) − exp(−𝑗𝑗𝑗𝑗𝑗𝑗)) (46) 

  
The induced electric field of a circular plane with a radius of 𝑅𝑅 is, 
  
 𝑬𝑬1

(𝑟𝑟)(𝑅𝑅) = −𝑗𝑗𝜔𝜔𝑨𝑨(𝑟𝑟) = 𝜔𝜔
𝑘𝑘

𝜇𝜇0
2 𝐽𝐽1𝑧̂𝑧(exp(−𝑗𝑗𝑗𝑗√𝑥𝑥2 + 𝑅𝑅2) − exp(−𝑗𝑗𝑗𝑗𝑗𝑗)) 

 
 = 𝐽𝐽𝜂𝜂0

2 𝑧̂𝑧(exp(−𝑗𝑗𝑗𝑗√𝑥𝑥2 + 𝑅𝑅2) − exp(−𝑗𝑗𝑗𝑗𝑗𝑗)) (47) 
  

The first term in the above equation diverges at 𝑅𝑅 → ∞, but its average value is 0 and 
hence, can be ignored. 

 
 𝑬𝑬1

(𝑟𝑟) = lim
𝑅𝑅→∞

𝑬𝑬1
(𝑟𝑟)(𝑅𝑅) = 𝐽𝐽1𝜂𝜂0

2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧) (48) 
 

Calculating the magnetic field of a circular plane using the classical Maxwell retarded 
potential method, 

 
 𝒉𝒉1

(𝑟𝑟)(𝑅𝑅) = 1
𝜇𝜇0

∇ × 𝑨𝑨(𝑟𝑟)(𝜌𝜌 = 𝑅𝑅) 
 

 = 1
𝜇𝜇0

∇ × 1
−𝑗𝑗𝑗𝑗

𝜇𝜇0
2 𝐽𝐽1𝑧̂𝑧(exp(−𝑗𝑗𝑗𝑗√𝑥𝑥2 + 𝑅𝑅2) − exp(−𝑗𝑗𝑗𝑗𝑗𝑗)) 

 
 = 1

𝜇𝜇0

1
−𝑗𝑗𝑗𝑗

𝜇𝜇0
2 (exp(−𝑗𝑗𝑗𝑗√𝑥𝑥2 + 𝑅𝑅2) −𝑗𝑗𝑗𝑗𝑗𝑗

√𝑥𝑥2+𝑅𝑅2) 𝑥̂𝑥 
 

 −(−𝑗𝑗𝑗𝑗)exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑥̂𝑥) × 𝐽𝐽1𝑧̂𝑧 
 

 = 1
2 (exp(−𝑗𝑗𝑗𝑗√𝑥𝑥2 + 𝑅𝑅2) 𝑥𝑥

√𝑥𝑥2+𝑅𝑅2) − exp(−𝑗𝑗𝑗𝑗𝑗𝑗))𝐽𝐽1(−𝑦̂𝑦) (49) 
 

Considering 𝑅𝑅 → ∞ to obtain the magnetic field of an infinite plane,  
 𝒉𝒉1

(𝑟𝑟) = lim
𝑅𝑅→∞

𝒉𝒉1(𝑅𝑅) = 𝐽𝐽1
2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 (50) 

 
Of course, we can also use this magnetic field to calculate the electric field, according to 

Ampere’s circuital law,  
 ∇ × 𝒉𝒉1

(𝑟𝑟) = 𝜕𝜕
𝜕𝜕𝜕𝜕 𝜖𝜖0𝑬𝑬1

(𝑟𝑟) = 𝑗𝑗𝜔𝜔𝜖𝜖0𝑬𝑬1
(𝑟𝑟) (51) 

  
 𝑬𝑬1

(𝑟𝑟) = 1
𝑗𝑗𝜔𝜔𝜖𝜖0

∇ × 𝒉𝒉1
(𝑟𝑟) 

The first term in the above equation diverges at R → ∞, but its average value is 0 and hence, can be ignored.

Calculating the magnetic field of a circular plane using the classical Maxwell retarded potential method,

Considering R → ∞ to obtain the magnetic field of an infinite plane,

Of course, we can also use this magnetic field to calculate the electric field, according to Ampere’s circuital law,

 
 = 1

𝑗𝑗𝜔𝜔𝜖𝜖0
(−𝑗𝑗𝑗𝑗𝑥̂𝑥) × 𝐽𝐽1

2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 
 

 = 𝜂𝜂0
𝐽𝐽1
2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧) (52) 

 
Calculating 𝑬𝑬1

(𝑟𝑟) in this way can avoid the divergence problem of the previous electric 
field. Compare to (47,48). 

 
3.2  Correction of the Magnetic Field According Auther’s Theory 
 
The magnetic field has been revised according to the author’s new definition as, 
 
 𝑯𝑯1

(𝑟𝑟) = −𝑗𝑗𝒉𝒉𝟏𝟏 = −𝑗𝑗 𝐽𝐽12 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 (53) 
 

The electric field Eq.(48) can be written as,  
 𝑬𝑬1

(𝑟𝑟) = −𝑗𝑗𝑗𝑗 𝐽𝐽1𝜂𝜂02 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧) 
 

 = exp(−𝑗𝑗 𝜋𝜋2)𝑗𝑗
𝐽𝐽𝜂𝜂0
2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧) 

 
 = 𝑗𝑗 𝐽𝐽1𝜂𝜂02 exp(−𝑗𝑗(𝑘𝑘𝑘𝑘 + 𝜋𝜋

2))(−𝑧̂𝑧) (54) 
 

 
 𝑯𝑯1

(𝑟𝑟) = −𝑗𝑗𝒉𝒉1
(𝑟𝑟) = −𝑗𝑗 𝐽𝐽12 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 

 
 = exp(−𝑗𝑗 𝜋𝜋2)

𝐽𝐽1
2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 

 
 = 𝐽𝐽1

2 exp(−𝑗𝑗(𝑘𝑘𝑘𝑘 +
𝜋𝜋
2))𝑦̂𝑦 (55) 

 
Similarly, we can calculate the electric field and magnetic field of the advanced wave, 

but the specific calculation here is omitted because it is basically consistent with the retarded 
electric field and magnetic field method. Hence,  

 𝑬𝑬1
(𝑎𝑎) = lim

𝑅𝑅→∞
𝑬𝑬1(𝑅𝑅) = − 𝐽𝐽1𝜂𝜂0

2 (exp(+𝑗𝑗𝑗𝑗𝑗𝑗))(−𝑧̂𝑧) 
 

 = 𝑗𝑗𝑗𝑗 𝐽𝐽1𝜂𝜂02 (exp(+𝑗𝑗𝑗𝑗𝑗𝑗))(−𝑧̂𝑧) 
 

 = 𝑗𝑗 𝐽𝐽1𝜂𝜂02 (exp(+𝑗𝑗(𝑘𝑘𝑘𝑘 + 𝜋𝜋
2))(−𝑧̂𝑧) (56) 

 
The magnetic field according the curl of advanced potential is,  
 𝒉𝒉1

(𝑎𝑎) = 𝐽𝐽1
2 exp(+𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 (57) 

 
 = 1

𝑗𝑗𝜔𝜔𝜖𝜖0
(−𝑗𝑗𝑗𝑗𝑥̂𝑥) × 𝐽𝐽1

2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 
 

 = 𝜂𝜂0
𝐽𝐽1
2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧) (52) 

 
Calculating 𝑬𝑬1

(𝑟𝑟) in this way can avoid the divergence problem of the previous electric 
field. Compare to (47,48). 

 
3.2  Correction of the Magnetic Field According Auther’s Theory 
 
The magnetic field has been revised according to the author’s new definition as, 
 
 𝑯𝑯1

(𝑟𝑟) = −𝑗𝑗𝒉𝒉𝟏𝟏 = −𝑗𝑗 𝐽𝐽12 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 (53) 
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 = exp(−𝑗𝑗 𝜋𝜋2)𝑗𝑗
𝐽𝐽𝜂𝜂0
2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧) 

 
 = 𝑗𝑗 𝐽𝐽1𝜂𝜂02 exp(−𝑗𝑗(𝑘𝑘𝑘𝑘 + 𝜋𝜋
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 𝑯𝑯1
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𝜋𝜋
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Similarly, we can calculate the electric field and magnetic field of the advanced wave, 

but the specific calculation here is omitted because it is basically consistent with the retarded 
electric field and magnetic field method. Hence,  

 𝑬𝑬1
(𝑎𝑎) = lim

𝑅𝑅→∞
𝑬𝑬1(𝑅𝑅) = − 𝐽𝐽1𝜂𝜂0

2 (exp(+𝑗𝑗𝑗𝑗𝑗𝑗))(−𝑧̂𝑧) 
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 = 𝑗𝑗 𝐽𝐽1𝜂𝜂02 (exp(+𝑗𝑗(𝑘𝑘𝑘𝑘 + 𝜋𝜋
2))(−𝑧̂𝑧) (56) 

 
The magnetic field according the curl of advanced potential is,  
 𝒉𝒉1

(𝑎𝑎) = 𝐽𝐽1
2 exp(+𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 (57) 
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2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧) (52) 

 
Calculating 𝑬𝑬1

(𝑟𝑟) in this way can avoid the divergence problem of the previous electric 
field. Compare to (47,48). 

 
3.2  Correction of the Magnetic Field According Auther’s Theory 
 
The magnetic field has been revised according to the author’s new definition as, 
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The electric field Eq.(48) can be written as,  
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 = exp(−𝑗𝑗 𝜋𝜋2)𝑗𝑗
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2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧) 
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(r) in this way can avoid the divergence problem of the previous electric field. Compare to (47,48).

3.2 Correction of the Magnetic Field According Auther’s Theory
The magnetic field has been revised according to the author’s new definition as,

The electric field Eq.(48) can be written as,
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Correct the magnetic field and note that the correction factor is j for the advanced wave,

 
Correct the magnetic field and note that the correction factor is 𝑗𝑗 for the advanced 
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2 𝑦̂𝑦 (60) 

 
This indicates that after adjusting the magnetic field according to the author’s method, 

what we see above is that the retarded wave and the advanced wave are exactly the same at 
point 𝑥𝑥 = −𝜆𝜆

4. This ensures that the electric and magnetic fields of the retarded wave and the 
advanced wave do not cancel each other out. Ensure that the current sheet can emit both 
retarded waves and advanced waves at the same time. This cannot be achieved without 
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Similarly, for 𝑥𝑥 < 0, we can also assign the phase factor exp(𝑗𝑗 𝜋𝜋

2) to 𝐽𝐽1 In this way, the 
electromagnetic wave becomes, 

 

 𝑬𝑬1 = 𝑗𝑗 𝐽𝐽1𝜂𝜂0
2 (−𝑧̂𝑧) {exp(−𝑗𝑗𝑗𝑗𝑗𝑗) 𝑥𝑥 ≥ 0

exp(−𝑗𝑗𝑗𝑗) 𝑥𝑥 < 0 (68) 

  

 𝑯𝑯1 = 𝐽𝐽1
2 {exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 𝑥𝑥 ≥ 0

−exp(−𝑗𝑗𝑗𝑗)𝑦̂𝑦 𝑥𝑥 < 0 (69) 

 
Consider 𝑥𝑥 > 0, 
 
 𝑺𝑺11 = 𝑬𝑬1 × 𝑯𝑯1

∗ = 𝑗𝑗 𝐽𝐽1𝜂𝜂0
2 (−𝑧̂𝑧)(𝐽𝐽1

2 𝑦̂𝑦)∗ = 𝑗𝑗𝜂𝜂 𝐽𝐽1𝐽𝐽1∗

4 𝑥̂𝑥 (70) 
  

 𝑺𝑺11 = 𝑗𝑗𝜂𝜂0
𝐽𝐽1𝐽𝐽1∗

4 𝑥̂𝑥 {1 𝑥𝑥 ≥ 0
−1 𝑥𝑥 < 0 (71) 

  
 𝑬𝑬1(𝑥𝑥 = 0) ⋅ 𝐽𝐽1

∗𝑧̂𝑧 = 𝑗𝑗 𝐽𝐽1𝜂𝜂0
2 (−𝑧̂𝑧) ⋅ 𝐽𝐽1

∗𝑧̂𝑧 
 

 = −𝑗𝑗 𝐽𝐽1𝐽𝐽1∗𝜂𝜂0
2  (72) 

 
We know that Poynting’s theorem is  
 − ∫  𝜍𝜍 𝑬𝑬1 ⋅ 𝐽𝐽1

∗𝑑𝑑𝜍𝜍 = ∬  Γ 𝑆𝑆11 ⋅ 𝑛̂𝑛𝑑𝑑Γ (73) 
 

Equation (73) can be transformed into,  
 −𝑬𝑬1 ⋅ 𝐽𝐽1

∗ = 𝑆𝑆11
𝑟𝑟𝑟𝑟𝑟𝑟𝑕𝑕𝑡𝑡 ⋅ 𝑥̂𝑥 + 𝑆𝑆11

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ⋅ (−𝑥̂𝑥) (74) 
 

From (71,72), it can be seen that the above equation is satisfied (74), where the 
Poynting vector is a pure imaginary number, indicating that it does not transfer energy on 
average. 

energy flow of 0. Although such waves are emitted, they may not be effective. Therefore, it can 
be ignored. Below, the author will only consider one situation where the waves emitted by the 
current are in the 𝑥̂𝑥 direction. Such a wave is a retarded wave on its right and an advanced 
wave on its left. 

 

 𝑬𝑬1 = 𝑗𝑗 𝐽𝐽1𝜂𝜂0
2 (−𝑧̂𝑧) {

exp(−𝑗𝑗(𝑘𝑘𝑘𝑘 + 𝜋𝜋
2)) 𝑥𝑥 ≥ 0

exp(−𝑗𝑗(𝑘𝑘𝑘𝑘 − 𝜋𝜋
2)) 𝑥𝑥 < 0

 (66) 

  

 𝑯𝑯1 = 𝐽𝐽1
2 {

exp(−𝑗𝑗(𝑘𝑘𝑘𝑘 + 𝜋𝜋
2))𝑦̂𝑦 𝑥𝑥 ≥ 0

−exp(−𝑗𝑗(𝑘𝑘𝑘𝑘 − 𝜋𝜋
2))𝑦̂𝑦 𝑥𝑥 < 0

 (67) 

 
For region 𝑥𝑥 > 0, we can merge the phase factor exp(−𝑗𝑗 𝜋𝜋

2) to the current 𝐽𝐽1 . 
Similarly, for 𝑥𝑥 < 0, we can also assign the phase factor exp(𝑗𝑗 𝜋𝜋

2) to 𝐽𝐽1 In this way, the 
electromagnetic wave becomes, 

 

 𝑬𝑬1 = 𝑗𝑗 𝐽𝐽1𝜂𝜂0
2 (−𝑧̂𝑧) {exp(−𝑗𝑗𝑗𝑗𝑗𝑗) 𝑥𝑥 ≥ 0

exp(−𝑗𝑗𝑗𝑗) 𝑥𝑥 < 0 (68) 

  

 𝑯𝑯1 = 𝐽𝐽1
2 {exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 𝑥𝑥 ≥ 0

−exp(−𝑗𝑗𝑗𝑗)𝑦̂𝑦 𝑥𝑥 < 0 (69) 

 
Consider 𝑥𝑥 > 0, 
 
 𝑺𝑺11 = 𝑬𝑬1 × 𝑯𝑯1

∗ = 𝑗𝑗 𝐽𝐽1𝜂𝜂0
2 (−𝑧̂𝑧)(𝐽𝐽1

2 𝑦̂𝑦)∗ = 𝑗𝑗𝜂𝜂 𝐽𝐽1𝐽𝐽1∗

4 𝑥̂𝑥 (70) 
  

 𝑺𝑺11 = 𝑗𝑗𝜂𝜂0
𝐽𝐽1𝐽𝐽1∗

4 𝑥̂𝑥 {1 𝑥𝑥 ≥ 0
−1 𝑥𝑥 < 0 (71) 

  
 𝑬𝑬1(𝑥𝑥 = 0) ⋅ 𝐽𝐽1

∗𝑧̂𝑧 = 𝑗𝑗 𝐽𝐽1𝜂𝜂0
2 (−𝑧̂𝑧) ⋅ 𝐽𝐽1

∗𝑧̂𝑧 
 

 = −𝑗𝑗 𝐽𝐽1𝐽𝐽1∗𝜂𝜂0
2  (72) 

 
We know that Poynting’s theorem is  
 − ∫  𝜍𝜍 𝑬𝑬1 ⋅ 𝐽𝐽1

∗𝑑𝑑𝜍𝜍 = ∬  Γ 𝑆𝑆11 ⋅ 𝑛̂𝑛𝑑𝑑Γ (73) 
 

Equation (73) can be transformed into,  
 −𝑬𝑬1 ⋅ 𝐽𝐽1

∗ = 𝑆𝑆11
𝑟𝑟𝑟𝑟𝑟𝑟𝑕𝑕𝑡𝑡 ⋅ 𝑥̂𝑥 + 𝑆𝑆11

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ⋅ (−𝑥̂𝑥) (74) 
 

From (71,72), it can be seen that the above equation is satisfied (74), where the 
Poynting vector is a pure imaginary number, indicating that it does not transfer energy on 
average. 

energy flow of 0. Although such waves are emitted, they may not be effective. Therefore, it can 
be ignored. Below, the author will only consider one situation where the waves emitted by the 
current are in the 𝑥̂𝑥 direction. Such a wave is a retarded wave on its right and an advanced 
wave on its left. 

 

 𝑬𝑬1 = 𝑗𝑗 𝐽𝐽1𝜂𝜂0
2 (−𝑧̂𝑧) {

exp(−𝑗𝑗(𝑘𝑘𝑘𝑘 + 𝜋𝜋
2)) 𝑥𝑥 ≥ 0

exp(−𝑗𝑗(𝑘𝑘𝑘𝑘 − 𝜋𝜋
2)) 𝑥𝑥 < 0

 (66) 

  

 𝑯𝑯1 = 𝐽𝐽1
2 {

exp(−𝑗𝑗(𝑘𝑘𝑘𝑘 + 𝜋𝜋
2))𝑦̂𝑦 𝑥𝑥 ≥ 0

−exp(−𝑗𝑗(𝑘𝑘𝑘𝑘 − 𝜋𝜋
2))𝑦̂𝑦 𝑥𝑥 < 0

 (67) 

 
For region 𝑥𝑥 > 0, we can merge the phase factor exp(−𝑗𝑗 𝜋𝜋

2) to the current 𝐽𝐽1 . 
Similarly, for 𝑥𝑥 < 0, we can also assign the phase factor exp(𝑗𝑗 𝜋𝜋

2) to 𝐽𝐽1 In this way, the 
electromagnetic wave becomes, 

 

 𝑬𝑬1 = 𝑗𝑗 𝐽𝐽1𝜂𝜂0
2 (−𝑧̂𝑧) {exp(−𝑗𝑗𝑗𝑗𝑗𝑗) 𝑥𝑥 ≥ 0

exp(−𝑗𝑗𝑗𝑗) 𝑥𝑥 < 0 (68) 

  

 𝑯𝑯1 = 𝐽𝐽1
2 {exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 𝑥𝑥 ≥ 0

−exp(−𝑗𝑗𝑗𝑗)𝑦̂𝑦 𝑥𝑥 < 0 (69) 

 
Consider 𝑥𝑥 > 0, 
 
 𝑺𝑺11 = 𝑬𝑬1 × 𝑯𝑯1

∗ = 𝑗𝑗 𝐽𝐽1𝜂𝜂0
2 (−𝑧̂𝑧)(𝐽𝐽1

2 𝑦̂𝑦)∗ = 𝑗𝑗𝜂𝜂 𝐽𝐽1𝐽𝐽1∗

4 𝑥̂𝑥 (70) 
  

 𝑺𝑺11 = 𝑗𝑗𝜂𝜂0
𝐽𝐽1𝐽𝐽1∗

4 𝑥̂𝑥 {1 𝑥𝑥 ≥ 0
−1 𝑥𝑥 < 0 (71) 

  
 𝑬𝑬1(𝑥𝑥 = 0) ⋅ 𝐽𝐽1

∗𝑧̂𝑧 = 𝑗𝑗 𝐽𝐽1𝜂𝜂0
2 (−𝑧̂𝑧) ⋅ 𝐽𝐽1

∗𝑧̂𝑧 
 

 = −𝑗𝑗 𝐽𝐽1𝐽𝐽1∗𝜂𝜂0
2  (72) 

 
We know that Poynting’s theorem is  
 − ∫  𝜍𝜍 𝑬𝑬1 ⋅ 𝐽𝐽1

∗𝑑𝑑𝜍𝜍 = ∬  Γ 𝑆𝑆11 ⋅ 𝑛̂𝑛𝑑𝑑Γ (73) 
 

Equation (73) can be transformed into,  
 −𝑬𝑬1 ⋅ 𝐽𝐽1

∗ = 𝑆𝑆11
𝑟𝑟𝑟𝑟𝑟𝑟𝑕𝑕𝑡𝑡 ⋅ 𝑥̂𝑥 + 𝑆𝑆11

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ⋅ (−𝑥̂𝑥) (74) 
 

From (71,72), it can be seen that the above equation is satisfied (74), where the 
Poynting vector is a pure imaginary number, indicating that it does not transfer energy on 
average. 

For region x > 0, we can merge the phase factor exp              to the current J1. Similarly, for x < 0, we can also assign the phase factor exp           
         to J1 In this way, the electromagnetic wave becomes,

energy flow of 0. Although such waves are emitted, they may not be effective. Therefore, it can 
be ignored. Below, the author will only consider one situation where the waves emitted by the 
current are in the 𝑥̂𝑥 direction. Such a wave is a retarded wave on its right and an advanced 
wave on its left. 

 

 𝑬𝑬1 = 𝑗𝑗 𝐽𝐽1𝜂𝜂0
2 (−𝑧̂𝑧) {

exp(−𝑗𝑗(𝑘𝑘𝑘𝑘 + 𝜋𝜋
2)) 𝑥𝑥 ≥ 0

exp(−𝑗𝑗(𝑘𝑘𝑘𝑘 − 𝜋𝜋
2)) 𝑥𝑥 < 0

 (66) 

  

 𝑯𝑯1 = 𝐽𝐽1
2 {

exp(−𝑗𝑗(𝑘𝑘𝑘𝑘 + 𝜋𝜋
2))𝑦̂𝑦 𝑥𝑥 ≥ 0

−exp(−𝑗𝑗(𝑘𝑘𝑘𝑘 − 𝜋𝜋
2))𝑦̂𝑦 𝑥𝑥 < 0

 (67) 

 
For region 𝑥𝑥 > 0, we can merge the phase factor exp(−𝑗𝑗 𝜋𝜋

2) to the current 𝐽𝐽1 . 
Similarly, for 𝑥𝑥 < 0, we can also assign the phase factor exp(𝑗𝑗 𝜋𝜋

2) to 𝐽𝐽1 In this way, the 
electromagnetic wave becomes, 

 

 𝑬𝑬1 = 𝑗𝑗 𝐽𝐽1𝜂𝜂0
2 (−𝑧̂𝑧) {exp(−𝑗𝑗𝑗𝑗𝑗𝑗) 𝑥𝑥 ≥ 0

exp(−𝑗𝑗𝑗𝑗) 𝑥𝑥 < 0 (68) 

  

 𝑯𝑯1 = 𝐽𝐽1
2 {exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 𝑥𝑥 ≥ 0

−exp(−𝑗𝑗𝑗𝑗)𝑦̂𝑦 𝑥𝑥 < 0 (69) 

 
Consider 𝑥𝑥 > 0, 
 
 𝑺𝑺11 = 𝑬𝑬1 × 𝑯𝑯1

∗ = 𝑗𝑗 𝐽𝐽1𝜂𝜂0
2 (−𝑧̂𝑧)(𝐽𝐽1

2 𝑦̂𝑦)∗ = 𝑗𝑗𝜂𝜂 𝐽𝐽1𝐽𝐽1∗

4 𝑥̂𝑥 (70) 
  

 𝑺𝑺11 = 𝑗𝑗𝜂𝜂0
𝐽𝐽1𝐽𝐽1∗

4 𝑥̂𝑥 {1 𝑥𝑥 ≥ 0
−1 𝑥𝑥 < 0 (71) 

  
 𝑬𝑬1(𝑥𝑥 = 0) ⋅ 𝐽𝐽1

∗𝑧̂𝑧 = 𝑗𝑗 𝐽𝐽1𝜂𝜂0
2 (−𝑧̂𝑧) ⋅ 𝐽𝐽1

∗𝑧̂𝑧 
 

 = −𝑗𝑗 𝐽𝐽1𝐽𝐽1∗𝜂𝜂0
2  (72) 

 
We know that Poynting’s theorem is  
 − ∫  𝜍𝜍 𝑬𝑬1 ⋅ 𝐽𝐽1

∗𝑑𝑑𝜍𝜍 = ∬  Γ 𝑆𝑆11 ⋅ 𝑛̂𝑛𝑑𝑑Γ (73) 
 

Equation (73) can be transformed into,  
 −𝑬𝑬1 ⋅ 𝐽𝐽1

∗ = 𝑆𝑆11
𝑟𝑟𝑟𝑟𝑟𝑟𝑕𝑕𝑡𝑡 ⋅ 𝑥̂𝑥 + 𝑆𝑆11

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ⋅ (−𝑥̂𝑥) (74) 
 

From (71,72), it can be seen that the above equation is satisfied (74), where the 
Poynting vector is a pure imaginary number, indicating that it does not transfer energy on 
average. 

energy flow of 0. Although such waves are emitted, they may not be effective. Therefore, it can 
be ignored. Below, the author will only consider one situation where the waves emitted by the 
current are in the 𝑥̂𝑥 direction. Such a wave is a retarded wave on its right and an advanced 
wave on its left. 

 

 𝑬𝑬1 = 𝑗𝑗 𝐽𝐽1𝜂𝜂0
2 (−𝑧̂𝑧) {

exp(−𝑗𝑗(𝑘𝑘𝑘𝑘 + 𝜋𝜋
2)) 𝑥𝑥 ≥ 0

exp(−𝑗𝑗(𝑘𝑘𝑘𝑘 − 𝜋𝜋
2)) 𝑥𝑥 < 0

 (66) 

  

 𝑯𝑯1 = 𝐽𝐽1
2 {

exp(−𝑗𝑗(𝑘𝑘𝑘𝑘 + 𝜋𝜋
2))𝑦̂𝑦 𝑥𝑥 ≥ 0

−exp(−𝑗𝑗(𝑘𝑘𝑘𝑘 − 𝜋𝜋
2))𝑦̂𝑦 𝑥𝑥 < 0

 (67) 

 
For region 𝑥𝑥 > 0, we can merge the phase factor exp(−𝑗𝑗 𝜋𝜋

2) to the current 𝐽𝐽1 . 
Similarly, for 𝑥𝑥 < 0, we can also assign the phase factor exp(𝑗𝑗 𝜋𝜋

2) to 𝐽𝐽1 In this way, the 
electromagnetic wave becomes, 

 

 𝑬𝑬1 = 𝑗𝑗 𝐽𝐽1𝜂𝜂0
2 (−𝑧̂𝑧) {exp(−𝑗𝑗𝑗𝑗𝑗𝑗) 𝑥𝑥 ≥ 0

exp(−𝑗𝑗𝑗𝑗) 𝑥𝑥 < 0 (68) 

  

 𝑯𝑯1 = 𝐽𝐽1
2 {exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 𝑥𝑥 ≥ 0

−exp(−𝑗𝑗𝑗𝑗)𝑦̂𝑦 𝑥𝑥 < 0 (69) 

 
Consider 𝑥𝑥 > 0, 
 
 𝑺𝑺11 = 𝑬𝑬1 × 𝑯𝑯1

∗ = 𝑗𝑗 𝐽𝐽1𝜂𝜂0
2 (−𝑧̂𝑧)(𝐽𝐽1

2 𝑦̂𝑦)∗ = 𝑗𝑗𝜂𝜂 𝐽𝐽1𝐽𝐽1∗

4 𝑥̂𝑥 (70) 
  

 𝑺𝑺11 = 𝑗𝑗𝜂𝜂0
𝐽𝐽1𝐽𝐽1∗

4 𝑥̂𝑥 {1 𝑥𝑥 ≥ 0
−1 𝑥𝑥 < 0 (71) 

  
 𝑬𝑬1(𝑥𝑥 = 0) ⋅ 𝐽𝐽1

∗𝑧̂𝑧 = 𝑗𝑗 𝐽𝐽1𝜂𝜂0
2 (−𝑧̂𝑧) ⋅ 𝐽𝐽1

∗𝑧̂𝑧 
 

 = −𝑗𝑗 𝐽𝐽1𝐽𝐽1∗𝜂𝜂0
2  (72) 

 
We know that Poynting’s theorem is  
 − ∫  𝜍𝜍 𝑬𝑬1 ⋅ 𝐽𝐽1

∗𝑑𝑑𝜍𝜍 = ∬  Γ 𝑆𝑆11 ⋅ 𝑛̂𝑛𝑑𝑑Γ (73) 
 

Equation (73) can be transformed into,  
 −𝑬𝑬1 ⋅ 𝐽𝐽1

∗ = 𝑆𝑆11
𝑟𝑟𝑟𝑟𝑟𝑟𝑕𝑕𝑡𝑡 ⋅ 𝑥̂𝑥 + 𝑆𝑆11

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ⋅ (−𝑥̂𝑥) (74) 
 

From (71,72), it can be seen that the above equation is satisfied (74), where the 
Poynting vector is a pure imaginary number, indicating that it does not transfer energy on 
average. 

Consider x > 0,

We know that Poynting’s theorem is

Equation (73) can be transformed into,
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From (71,72), it can be seen that the above equation is satisfied 
(74), where the Poynting vector is a pure imaginary number, 
indicating that it does not transfer energy on average.

3.5 Double Infinite Current Sheets
In the author’s electromagnetic theory, the energy flow between 
two current sheets is always calculated. One is the source and the 
other is the sink.

 
3.5  Double Infinite Current Sheets 
 
In the author’s electromagnetic theory, the energy flow between two current sheets is 

always calculated. One is the source and the other is the sink. 
 
 

 
Figure  3: Double current sheets, with the source radiating electromagnetic waves on the left 
and the sink on the right responsible for receiving electromagnetic waves. Both plates radiate 

right-handed waves. 
  
In this section, the author considers the dual current sheets, one for the transmitting 

antenna and the other for the receiving antenna. Current 𝑱𝑱1 at 𝑥𝑥 = 0, the current 𝑱𝑱2 at 
𝑥𝑥 = 𝐿𝐿. See Figure 3. 

 

 𝑬𝑬2 = 𝑗𝑗 𝐽𝐽2𝜂𝜂02 (−𝑧̂𝑧) {exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿)) 𝑥𝑥 ≥ 𝐿𝐿
exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿)) 𝑥𝑥 < 𝐿𝐿 (75) 

  

 𝑯𝑯2 =
𝐽𝐽2
2 {
exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿))𝑦̂𝑦 𝑥𝑥 ≥ 𝐿𝐿
−exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿))𝑦̂𝑦 𝑥𝑥 < 𝐿𝐿 (76) 

 
Let’s calculate the mutual energy flow between two planes at 0 < 𝑥𝑥 < 𝐿𝐿, where the 

electric and magnetic fields can be written as 
 
 𝑬𝑬1 = 𝑗𝑗 𝐽𝐽1𝜂𝜂02 (−𝑧̂𝑧)exp(−𝑗𝑗𝑗𝑗𝑗𝑗) (77) 

  
 𝑯𝑯1 =

𝐽𝐽1
2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 (78) 

 
 

 
3.5  Double Infinite Current Sheets 
 
In the author’s electromagnetic theory, the energy flow between two current sheets is 

always calculated. One is the source and the other is the sink. 
 
 

 
Figure  3: Double current sheets, with the source radiating electromagnetic waves on the left 
and the sink on the right responsible for receiving electromagnetic waves. Both plates radiate 

right-handed waves. 
  
In this section, the author considers the dual current sheets, one for the transmitting 

antenna and the other for the receiving antenna. Current 𝑱𝑱1 at 𝑥𝑥 = 0, the current 𝑱𝑱2 at 
𝑥𝑥 = 𝐿𝐿. See Figure 3. 

 

 𝑬𝑬2 = 𝑗𝑗 𝐽𝐽2𝜂𝜂02 (−𝑧̂𝑧) {exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿)) 𝑥𝑥 ≥ 𝐿𝐿
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Let’s calculate the mutual energy flow between two planes at 0 < 𝑥𝑥 < 𝐿𝐿, where the 

electric and magnetic fields can be written as 
 
 𝑬𝑬1 = 𝑗𝑗 𝐽𝐽1𝜂𝜂02 (−𝑧̂𝑧)exp(−𝑗𝑗𝑗𝑗𝑗𝑗) (77) 

  
 𝑯𝑯1 =

𝐽𝐽1
2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 (78) 

 
 

 
3.5  Double Infinite Current Sheets 
 
In the author’s electromagnetic theory, the energy flow between two current sheets is 

always calculated. One is the source and the other is the sink. 
 
 

 
Figure  3: Double current sheets, with the source radiating electromagnetic waves on the left 
and the sink on the right responsible for receiving electromagnetic waves. Both plates radiate 

right-handed waves. 
  
In this section, the author considers the dual current sheets, one for the transmitting 

antenna and the other for the receiving antenna. Current 𝑱𝑱1 at 𝑥𝑥 = 0, the current 𝑱𝑱2 at 
𝑥𝑥 = 𝐿𝐿. See Figure 3. 

 

 𝑬𝑬2 = 𝑗𝑗 𝐽𝐽2𝜂𝜂02 (−𝑧̂𝑧) {exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿)) 𝑥𝑥 ≥ 𝐿𝐿
exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿)) 𝑥𝑥 < 𝐿𝐿 (75) 

  

 𝑯𝑯2 =
𝐽𝐽2
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exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿))𝑦̂𝑦 𝑥𝑥 ≥ 𝐿𝐿
−exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿))𝑦̂𝑦 𝑥𝑥 < 𝐿𝐿 (76) 

 
Let’s calculate the mutual energy flow between two planes at 0 < 𝑥𝑥 < 𝐿𝐿, where the 

electric and magnetic fields can be written as 
 
 𝑬𝑬1 = 𝑗𝑗 𝐽𝐽1𝜂𝜂02 (−𝑧̂𝑧)exp(−𝑗𝑗𝑗𝑗𝑗𝑗) (77) 

  
 𝑯𝑯1 =

𝐽𝐽1
2 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 (78) 

 
 

Figure 3: Double Current Sheets, with the Source Radiating Electromagnetic Waves on the Left and the Sink on the Right Responsible 
for Receiving Electromagnetic Waves. Both Plates Radiate Right-Handed Waves

In this section, the author considers the dual current sheets, one for the transmitting antenna and the other for the receiving antenna. 
Current J1 at x = 0, the current J2 at x = L. See Figure 3.

Let’s calculate the mutual energy flow between two planes at 0 < x < L, where the electric and magnetic fields can be written as

 𝑬𝑬1(𝑥𝑥 = 𝐿𝐿) = 𝑗𝑗 𝐽𝐽1𝜂𝜂02 (−𝑧̂𝑧)exp(−𝑗𝑗𝑗𝑗𝑗𝑗) (79) 
 

Consider the size of 𝐽𝐽2 is similar to that of 𝐽𝐽1. Consider that the phase of 𝐽𝐽2 is 
determined by 𝑬𝑬1, there are,  

 𝐽𝐽2 = −𝑗𝑗𝐽𝐽1exp(−𝑗𝑗𝑗𝑗𝑗𝑗) (80) 
 

 
 𝑬𝑬2 = 𝑗𝑗 𝐽𝐽2𝜂𝜂02 (−𝑧̂𝑧)exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿)) 

 
 = 𝑗𝑗 𝜂𝜂02 (−𝑗𝑗𝐽𝐽1exp(−𝑗𝑗𝑗𝑗𝑗𝑗))(−𝑧̂𝑧)exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿)) 

 
 = −𝑗𝑗𝑗𝑗 𝜂𝜂02 𝐽𝐽1exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧) (81) 

  
 𝑯𝑯2 = − 𝐽𝐽2

2 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿))𝑦̂𝑦 
 

 = −1
2 (−𝑗𝑗𝐽𝐽1exp(−𝑗𝑗𝑗𝑗𝑗𝑗)exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿))𝑦̂𝑦 

 
 = 𝑗𝑗 𝐽𝐽12 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 (82) 

 
 
3.6  Calculation of Mutual Energy Flow 
 
Now let us calculate the mutual energy flow, 
 
 𝑺𝑺𝑚𝑚 = 𝑬𝑬1 × 𝑯𝑯2

∗ + 𝑬𝑬2∗ × 𝑯𝑯1 = 𝑺𝑺12 + 𝑺𝑺21 
 

 = (𝑗𝑗 𝐽𝐽1𝜂𝜂02 (−𝑧̂𝑧)exp(−𝑗𝑗𝑗𝑗𝑗𝑗)) × (𝑗𝑗 𝐽𝐽12 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦)
∗ 

 
 +(−𝑗𝑗𝑗𝑗 𝜂𝜂02 𝐽𝐽1exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧))

∗ × (𝐽𝐽12 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦) 
 

 = (𝑗𝑗 𝐽𝐽1𝜂𝜂02 exp(−𝑗𝑗𝑗𝑗𝑗𝑗))(𝑗𝑗 𝐽𝐽12 exp(−𝑗𝑗𝑗𝑗𝑗𝑗))
∗ 

 
 +(−𝑗𝑗𝑗𝑗 𝜂𝜂02 𝐽𝐽1exp(−𝑗𝑗𝑗𝑗𝑗𝑗))

∗(𝐽𝐽12 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)))𝑥̂𝑥 
 

 = 𝐽𝐽1𝐽𝐽1∗
4 𝜂𝜂0(𝑗𝑗𝑗𝑗∗ + (−𝑗𝑗𝑗𝑗)∗)𝑥̂𝑥 = 𝐽𝐽1𝐽𝐽1∗

2 𝜂𝜂0𝑥̂𝑥 (83) 
 

In the region of 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿, 𝑺𝑺12 and 𝑺𝑺21 are superimposed, considering the magnetic 
field 𝑯𝑯2 at 𝑥𝑥 > 𝐿𝐿 change the sign, 𝑯𝑯1 at 𝑥𝑥 < 0 change the sign, therefore there are 𝑺𝑺12 
and 𝑺𝑺21 offset, therefore there is, 

 

 𝑬𝑬1(𝑥𝑥 = 𝐿𝐿) = 𝑗𝑗 𝐽𝐽1𝜂𝜂02 (−𝑧̂𝑧)exp(−𝑗𝑗𝑗𝑗𝑗𝑗) (79) 
 

Consider the size of 𝐽𝐽2 is similar to that of 𝐽𝐽1. Consider that the phase of 𝐽𝐽2 is 
determined by 𝑬𝑬1, there are,  

 𝐽𝐽2 = −𝑗𝑗𝐽𝐽1exp(−𝑗𝑗𝑗𝑗𝑗𝑗) (80) 
 

 
 𝑬𝑬2 = 𝑗𝑗 𝐽𝐽2𝜂𝜂02 (−𝑧̂𝑧)exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿)) 

 
 = 𝑗𝑗 𝜂𝜂02 (−𝑗𝑗𝐽𝐽1exp(−𝑗𝑗𝑗𝑗𝑗𝑗))(−𝑧̂𝑧)exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿)) 

 
 = −𝑗𝑗𝑗𝑗 𝜂𝜂02 𝐽𝐽1exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧) (81) 

  
 𝑯𝑯2 = − 𝐽𝐽2

2 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿))𝑦̂𝑦 
 

 = −1
2 (−𝑗𝑗𝐽𝐽1exp(−𝑗𝑗𝑗𝑗𝑗𝑗)exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿))𝑦̂𝑦 

 
 = 𝑗𝑗 𝐽𝐽12 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 (82) 

 
 
3.6  Calculation of Mutual Energy Flow 
 
Now let us calculate the mutual energy flow, 
 
 𝑺𝑺𝑚𝑚 = 𝑬𝑬1 × 𝑯𝑯2

∗ + 𝑬𝑬2∗ × 𝑯𝑯1 = 𝑺𝑺12 + 𝑺𝑺21 
 

 = (𝑗𝑗 𝐽𝐽1𝜂𝜂02 (−𝑧̂𝑧)exp(−𝑗𝑗𝑗𝑗𝑗𝑗)) × (𝑗𝑗 𝐽𝐽12 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦)
∗ 

 
 +(−𝑗𝑗𝑗𝑗 𝜂𝜂02 𝐽𝐽1exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧))

∗ × (𝐽𝐽12 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦) 
 

 = (𝑗𝑗 𝐽𝐽1𝜂𝜂02 exp(−𝑗𝑗𝑗𝑗𝑗𝑗))(𝑗𝑗 𝐽𝐽12 exp(−𝑗𝑗𝑗𝑗𝑗𝑗))
∗ 

 
 +(−𝑗𝑗𝑗𝑗 𝜂𝜂02 𝐽𝐽1exp(−𝑗𝑗𝑗𝑗𝑗𝑗))

∗(𝐽𝐽12 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)))𝑥̂𝑥 
 

 = 𝐽𝐽1𝐽𝐽1∗
4 𝜂𝜂0(𝑗𝑗𝑗𝑗∗ + (−𝑗𝑗𝑗𝑗)∗)𝑥̂𝑥 = 𝐽𝐽1𝐽𝐽1∗

2 𝜂𝜂0𝑥̂𝑥 (83) 
 

In the region of 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿, 𝑺𝑺12 and 𝑺𝑺21 are superimposed, considering the magnetic 
field 𝑯𝑯2 at 𝑥𝑥 > 𝐿𝐿 change the sign, 𝑯𝑯1 at 𝑥𝑥 < 0 change the sign, therefore there are 𝑺𝑺12 
and 𝑺𝑺21 offset, therefore there is, 

 

Consider the size of J2 is similar to that of J1. Consider that the phase of J2 is determined by E1, there are,
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 𝑬𝑬1(𝑥𝑥 = 𝐿𝐿) = 𝑗𝑗 𝐽𝐽1𝜂𝜂02 (−𝑧̂𝑧)exp(−𝑗𝑗𝑗𝑗𝑗𝑗) (79) 
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determined by 𝑬𝑬1, there are,  
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 𝑬𝑬2 = 𝑗𝑗 𝐽𝐽2𝜂𝜂02 (−𝑧̂𝑧)exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿)) 
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 𝑯𝑯2 = − 𝐽𝐽2

2 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿))𝑦̂𝑦 
 

 = −1
2 (−𝑗𝑗𝐽𝐽1exp(−𝑗𝑗𝑗𝑗𝑗𝑗)exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿))𝑦̂𝑦 

 
 = 𝑗𝑗 𝐽𝐽12 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦 (82) 

 
 
3.6  Calculation of Mutual Energy Flow 
 
Now let us calculate the mutual energy flow, 
 
 𝑺𝑺𝑚𝑚 = 𝑬𝑬1 × 𝑯𝑯2

∗ + 𝑬𝑬2∗ × 𝑯𝑯1 = 𝑺𝑺12 + 𝑺𝑺21 
 

 = (𝑗𝑗 𝐽𝐽1𝜂𝜂02 (−𝑧̂𝑧)exp(−𝑗𝑗𝑗𝑗𝑗𝑗)) × (𝑗𝑗 𝐽𝐽12 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦)
∗ 

 
 +(−𝑗𝑗𝑗𝑗 𝜂𝜂02 𝐽𝐽1exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧))

∗ × (𝐽𝐽12 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑦̂𝑦) 
 

 = (𝑗𝑗 𝐽𝐽1𝜂𝜂02 exp(−𝑗𝑗𝑗𝑗𝑗𝑗))(𝑗𝑗 𝐽𝐽12 exp(−𝑗𝑗𝑗𝑗𝑗𝑗))
∗ 

 
 +(−𝑗𝑗𝑗𝑗 𝜂𝜂02 𝐽𝐽1exp(−𝑗𝑗𝑗𝑗𝑗𝑗))

∗(𝐽𝐽12 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)))𝑥̂𝑥 
 

 = 𝐽𝐽1𝐽𝐽1∗
4 𝜂𝜂0(𝑗𝑗𝑗𝑗∗ + (−𝑗𝑗𝑗𝑗)∗)𝑥̂𝑥 = 𝐽𝐽1𝐽𝐽1∗

2 𝜂𝜂0𝑥̂𝑥 (83) 
 

In the region of 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿, 𝑺𝑺12 and 𝑺𝑺21 are superimposed, considering the magnetic 
field 𝑯𝑯2 at 𝑥𝑥 > 𝐿𝐿 change the sign, 𝑯𝑯1 at 𝑥𝑥 < 0 change the sign, therefore there are 𝑺𝑺12 
and 𝑺𝑺21 offset, therefore there is, 

 

 𝑬𝑬1(𝑥𝑥 = 𝐿𝐿) = 𝑗𝑗 𝐽𝐽1𝜂𝜂02 (−𝑧̂𝑧)exp(−𝑗𝑗𝑗𝑗𝑗𝑗) (79) 
 

Consider the size of 𝐽𝐽2 is similar to that of 𝐽𝐽1. Consider that the phase of 𝐽𝐽2 is 
determined by 𝑬𝑬1, there are,  

 𝐽𝐽2 = −𝑗𝑗𝐽𝐽1exp(−𝑗𝑗𝑗𝑗𝑗𝑗) (80) 
 

 
 𝑬𝑬2 = 𝑗𝑗 𝐽𝐽2𝜂𝜂02 (−𝑧̂𝑧)exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿)) 

 
 = 𝑗𝑗 𝜂𝜂02 (−𝑗𝑗𝐽𝐽1exp(−𝑗𝑗𝑗𝑗𝑗𝑗))(−𝑧̂𝑧)exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿)) 

 
 = −𝑗𝑗𝑗𝑗 𝜂𝜂02 𝐽𝐽1exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−𝑧̂𝑧) (81) 

  
 𝑯𝑯2 = − 𝐽𝐽2

2 exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿))𝑦̂𝑦 
 

 = −1
2 (−𝑗𝑗𝐽𝐽1exp(−𝑗𝑗𝑗𝑗𝑗𝑗)exp(−𝑗𝑗𝑗𝑗(𝑥𝑥 − 𝐿𝐿))𝑦̂𝑦 
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3.6  Calculation of Mutual Energy Flow 
 
Now let us calculate the mutual energy flow, 
 
 𝑺𝑺𝑚𝑚 = 𝑬𝑬1 × 𝑯𝑯2

∗ + 𝑬𝑬2∗ × 𝑯𝑯1 = 𝑺𝑺12 + 𝑺𝑺21 
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 This indicates that 𝑺𝑺𝑚𝑚 generated at current 𝑱𝑱1 and annihilate at current 𝑱𝑱2 . 𝑺𝑺𝑚𝑚 having 
the properties of photons. This is why the author speculates that the mutual energy flows are 
the photons. The theorem of mutual energy flow is,  
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∗(𝑥𝑥 = 𝐿𝐿) (86) 

 
considering,  
 𝑬𝑬2(𝑥𝑥 = 0) = −𝑗𝑗𝑗𝑗 𝜂𝜂0

2 𝐽𝐽1(−𝑧̂𝑧) (87) 
  

 𝑬𝑬2(𝑥𝑥 = 0) ⋅ 𝐽𝐽1
∗(𝑥𝑥 = 0) = − 𝜂𝜂0

2 𝐽𝐽1𝐽𝐽1
∗ (88) 

  
 𝑆𝑆𝑚𝑚 ⋅ 𝑥̂𝑥 = 𝐽𝐽1𝐽𝐽1

∗

2 𝜂𝜂0 (89) 
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magnetic field is not corrected, the calculation of mutual energy flow will appear as pure 
imaginary numbers, becoming reactive power. The author believes that mutual energy flow 
transfers energy flow. According to the author’s revised magnetic field, the mutual energy flow 
will become a real number, and the mutual energy flow becomes active power. After correction, 
the self energy is converted into reactive power. The entire theory becomes self consistent. 
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We see that the formula (86) satisfies. However, there is still a problem here, in fact, the current J1, there is still radiation on the left side. 
Therefore, the radiation on the right should be twice as small. That means there should be,

When we consider half retarded and half advanced wave, the factor 
of 1/2 will automatically disappear. Please refer to the section 
2.2. This is also why the author considers half retarded and half 
advanced waves.

4 Conclusion
The author calculated the radiation electromagnetic field of an 
infinite current sheet and the energy flow between two infinite 
plate currents. In this calculation, the author made revisions 
to the definition of magnetic field in classical electromagnetic 
field theory. After correction, the phase between the electric and 
magnetic fields is 90 degrees instead of being in phase. According 
to the author’s revised magnetic field, energy conservation mutual 
law, and mutual energy flow law, they are all implemented 
in the example of the current sheet. If the magnetic field is not 
corrected, the calculation of mutual energy flow will appear as 
pure imaginary numbers, becoming reactive power. The author 
believes that mutual energy flow transfers energy flow. According 
to the author’s revised magnetic field, the mutual energy flow will 
become a real number, and the mutual energy flow becomes active 
power. After correction, the self energy is converted into reactive 
power. The entire theory becomes self consistent. This example 
further demonstrates that the author’s correction of the magnetic 
field is correct. Due to the fact that the mutual energy flow can 
be generated on the first current sheet (source) and annihilated on 
the second current sheet (sink), the mutual energy flow has the 
properties of photon. It can be seen that the author’s guess that 
the mutual energy flow is photon is correct. This example in this 
article provides strong support for Cramer’s quantum mechanic 
transactional interpretation [26,27].
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