Research Article

Journal of Robotics and Automation Research

The Numerical Simulation of Torque with Parameters of Speed and Angular Speed \& Acceleration in Five Freedoms of Robotic Arm IV

Run Xu ${ }^{1 *}$, Boyong Hur ${ }^{1}$, Younwook Kim ${ }^{2}$
${ }^{1}$ Gyeongsang National University, Metallurgical Engineering
Dept., Chinju 52828, Korea
${ }^{2}$ Keimyung University, Materials Div., Daegu 42601, Korea

*Corresponding author
Run Xu, Gyeongsang National University, Metallurgical Engineering Dept., Chinju 52828, Korea.

Submitted: 31 Jan 2022; Accepted: 08 Feb 2022; Published: 15 Feb 2022

Citation: Run Xu Boyong Hur, Younwook Kim. (2022). The Numerical Simulation of Torque with Parameters of Speed and Angular Speed \& Acceleration in Five Freedoms of Robotic Arm IV. J Robot Auto Res 3(1), 58-62.

Abstract

There is big distance to attain 25 KNm between the difference speeds of conditions $v=0.5 \sim 2.5 \mathrm{~m} / \mathrm{s}$ at angle speed $\omega=60 \%$ and acceleration $\dot{\omega}=30 \% s^{2}$. When the ω increases the torque will become big, meantime when the speed v increases the torque is big too. The biggest one is 15 KNm with above condition at angular speed $\omega=37 \%$ s and acceleration $\dot{\omega}=45^{\circ} / s^{2}$. it means that the decreased acceleration will increase the torque. The least one is happened on $\omega=30 \%$. there is little change between acceleration $\dot{\omega}=30 \% s^{2}$ and $45 \% s^{2}$. there is a trend the former is a little larger than the later. Therefore the effective turn to torque is $v>\omega>\dot{\omega}$.

Keywords: Numerical Simulation, Torque, Angular Speed, Acceleration, Five Freedoms. Robotic Arm

Introduction

The robotic arm as a new mechanism has been wielded in factory for semi conduction etc. transportation and integration circuit wielding. The auto and artificial intelligence robotic arm is developed from experimental lab to factory to launch producing. Therefore grasp the robotic arm kinematic and dynamic will become urgent and necessary in modern society. As a multiple system Lagrange equation may be solved its dynamics which is a method currently [1-3].

Due to its precision demand in process the position defining is very important specially to precise part making. Through defining a route it may be defined a displacement and then the velocity and acceleration may be defined through the equation besides the force and torque forces. For our checking strength and making size the dynamical forces may be used to it. Such as the motor size and arm shape and size will be checked out to design it. So in this study the dynamic forces may be calculated through Lagrange equation according to kinematic constant to check the feasibility on force to function [4-6]. In this study the destination is that investigating the torque and speed $\&$ angular speed $\&$ angular acceleration.

To separate three independence parts the velocity and acceleration will be calculated through displacement and force may be computed meantime with Lagrange equation separately. So each resolved resolution may be checked through comparing with others and literature. This is the destination in this paper to arouse the further research.

In short, to increase the data base and look for the best conditions in motor choosing and robotic arm strength calculation efficiently the effect of robotic arm forces on angular speed and constant acceleration has been searched for a certain constant in this study. In this paper the three and five freedoms system is adopted to look for the differences between them to compute with numerical simulation.

Numerical Simulation

In Figure 1 there are three freedoms in mechanical arm that name as $1 \sim 3$. Meantime there are two other ones call $4 \& 5$ which is included in five freedoms as a rotational and crawling function. In Figure 1 the schematic shows the simplified principle of robot. The coordinate XAY is three freedoms and $\mathrm{X}^{\prime} \mathrm{A}^{\prime} \mathrm{Y}$ it five freedoms. In this study the five freedoms not three one is deduced since it is complicated.

Figure 1: Construction Schematic of Mechanical Arm in Series in Robot
3-hand part; 2-wrist part;1-arm part; 4-waist part; 5-two crawling wheel

Figure 2: Principle Schematic of Mechanical Arm in Series in Robot.
The system kinetic energy is [1, 3]

$$
\begin{equation*}
E_{k}=\frac{1}{2} \sum_{i}^{n}\left(m_{1} v_{1}^{2}+m_{2} v_{2}^{2}+m_{3} v_{3}^{2}\right) \tag{1}
\end{equation*}
$$

Here m_{i} : mass of i component ; $J_{s i}$: rotary inertia of i component angular velocity in i component; v_{l}, v_{2} and v_{3} is 1,2 and 3 velocirelative to center of mass; v_{s} : center of mass in i component; : ω_{i} ties respectively.

$$
\begin{equation*}
v_{D}=\sqrt{\dot{X}_{D}^{2}+\dot{Y}_{D}^{2}} \tag{2}
\end{equation*}
$$

From Figure 2: It Is Known That Position Coordinate Below

$$
\left\{\begin{array}{l}
X_{D}=\vec{l}_{1} \sin \vartheta_{1}+\vec{l}_{2} \sin \left(\theta_{1}+\theta_{2}\right)+\vec{l}_{3} \sin \left(\theta_{1}+\theta_{3}+\theta_{3}\right) \tag{3}\\
Y_{D}=\left(\vec{l}_{1}+\vec{l}_{4}\right) \cos \theta_{1}+\left(\vec{l}_{2}+\vec{l}_{4}\right) \cos \left(\theta_{1}+\theta_{2}\right)+\left(\vec{l}_{3}+\vec{l}_{4}\right) \cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right)
\end{array}\right.
$$

Derivating the equations we gain the $\dot{X}_{. . c}, \dot{Y}_{c .}$ and \dot{X}_{3} velocity in hand $\dot{\theta}_{1}, \dot{\theta}_{2}$ and $\dot{\theta}_{3}$ one in joints. Suppose that the acceleration is $\ddot{\theta}_{1}, \ddot{\theta}_{2}$, and $\ddot{\theta}_{3}$ and the angular acceleration is $\ddot{\omega}_{1}, \ddot{\omega}_{2}$ and $\ddot{\omega}_{3}$ in joints.

$$
\left\{\begin{array}{l}
\dot{X}_{\mathrm{D}}=\dot{\theta}_{1} \vec{l}_{1} \cos \theta_{1}+\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \vec{l}_{2} \cos \left(\theta_{1}+\theta_{2}\right)+\left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right) \vec{l}_{3} \cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right) \tag{4}\\
\dot{Y}_{\mathrm{D}}=\dot{\theta}_{1}\left(\vec{l}_{1}+\vec{l}_{4}\right) \sin \theta_{1}+\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)\left(\vec{l}_{2}+\vec{l}_{4}\right) \sin \left(\theta_{1}+\theta_{2}\right)+\left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right)\left(\vec{l}_{3}+\vec{l}_{4}\right) \sin \left(\theta_{1}+\theta_{2}+\theta_{3}\right)
\end{array}\right.
$$

v_{B}, v_{C} and v_{D} is B, C and D velocities respectively. So D point velocity is

$$
v_{D}=\sqrt{\dot{X}_{D}^{2}+\dot{Y}_{D}^{2}}=\sqrt{\begin{array}{l}
l_{1}^{2} \theta_{1}^{2}+l_{2}^{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}+l_{3}^{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right)^{2}+\dot{\theta}_{1} l_{4}^{2} \sin ^{2} \theta_{1}^{2}+l_{4}^{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2} \sin ^{2}\left(\theta_{1}+\theta_{2}\right) \tag{5}\\
+l_{4}^{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right)^{2} l_{4} \sin ^{2}\left(\theta_{1}+\theta_{2}+\theta_{3}\right)+2 l_{1} l_{3} \dot{\theta}_{1}\left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right) \cos \left(\theta_{1}+\theta_{3}\right)+ \\
2 l_{2} l_{3}\left(\dot{\theta}_{1}+\stackrel{\theta}{\theta}_{2} \gamma \stackrel{*}{\theta}_{1}+\stackrel{*}{\theta}_{2}+\stackrel{\theta}{\theta}_{3}\right) \cos \theta_{3}+2 l_{1} l_{4} \dot{\theta}_{1} \sin \theta_{1}+2 l_{2} l_{4}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \sin \left(\theta_{1}+\theta_{2}\right) \\
+2 l_{3} l_{4}\left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right) \sin \left(\theta_{1}+\theta_{2}+\theta_{3}\right)
\end{array}}
$$

$$
\begin{align*}
& v_{c}=\sqrt{\dot{X}_{c}^{2}+\dot{Y}_{c}^{2}}=\sqrt{l_{1}^{2} \theta_{1}^{2}+l_{2}^{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}-2 l_{1} l_{2} \dot{\theta}_{1}\left(\stackrel{*}{\theta}_{1}+\dot{\theta}_{2}\right) \cos \theta_{2}} \tag{6}\\
& v_{B}=\vec{l}_{1} \dot{\theta}_{1} \tag{7}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial E_{k}}{\partial \theta_{1}}=\vec{l}_{1}\left(\vec{l}_{1}+\vec{l}_{4}+\vec{l}_{5}\right)\left(m_{1}+m_{2}+m_{3}\right) \theta_{1}+\vec{l}_{2}\left(\vec{l}_{3}+\vec{l}_{4}+\vec{l}_{5}\right) m_{2}\left(\theta_{1}+\theta_{2}\right)+\vec{l}_{3}\left(\vec{l}_{3}+\vec{l}_{4}+\vec{l}_{5}\right) m_{3}\left(\theta_{1}+\theta_{2}+\theta_{3}\right) \\
& +2 \vec{l}_{4} m_{3} \dot{\theta}_{1}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2} \sin \left(\theta_{1}+\theta_{2}\right)-2 \vec{l}_{4} m_{3} \dot{\theta}_{1}\left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right)^{2} \sin \left(\theta_{1}+\theta_{2}+\theta_{3}\right)-\vec{l}_{1} \vec{l}_{2} m_{2} \dot{\theta}_{1}\left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right) \sin \tag{8}\\
& \left.\left.\left(\theta_{1}+\theta_{2}\right)+\left(\vec{l}_{4}+\vec{l}_{5}\right) m_{2}+m_{2}+m_{3}\right) \theta_{1}+\left(\vec{l}_{4}+\vec{l}_{5}\right) m_{2}\left(\theta_{1}+\theta_{2}\right)+2 \vec{l}_{1} \vec{l}_{4} m_{3} \dot{\theta}_{1}+\dot{\theta}_{2}\right) \cos \left(\theta_{1}+\theta_{2}\right)+2 \vec{l}_{1} \vec{l}_{4} m_{3} \\
& \left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right) \cos \left(\theta_{1}+\theta_{2}\right)
\end{align*}
$$

$$
\frac{\partial E_{K}}{\partial \theta_{2}}=\vec{l}_{2}\left(\vec{l}_{2}+\vec{l}_{4}+\vec{l}_{5}\right) m_{2}\left(\theta_{1}+\theta_{2}\right)+\vec{l}_{3}\left(\vec{l}_{3}+\vec{l}_{4}+\vec{l}_{5}\right) m_{3}\left(\theta_{1}+\theta_{2}+\theta_{3}\right)+4 \vec{l}_{4} m_{3} \dot{\theta}_{1} \sin \theta_{2}+2 \vec{l}_{4} m_{3} \dot{\theta}_{1}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2} \sin
$$

$$
\begin{equation*}
\left(\theta_{1}+\theta_{2}\right)+2 \vec{l}_{4} m_{3} \dot{\theta}_{1}\left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right)^{2} \sin \left(\theta_{1}+\theta_{2}+\theta_{3}\right)-2 \vec{l}_{1} \vec{l}_{2} m_{3} \dot{\theta}_{1}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \sin \theta_{2}-2 \vec{l}_{1} \vec{l}_{2} m_{3} \dot{\theta}_{1}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \sin \theta_{2}-\left(\vec{l}_{4}\right. \tag{9}
\end{equation*}
$$

$$
\left.+\vec{l}_{5}\right) m_{3} \dot{\theta}_{1}\left(\theta_{1}+\theta_{2}\right)+2 \vec{l}_{1} \vec{l}_{4} m_{3} \dot{\theta}_{1}\left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right) \cos \left(\theta_{1}+\theta_{2}\right)-\left(\vec{l}_{4}+\vec{l}_{5}\right) m_{3} \dot{\theta}_{1}\left(\theta_{1}+\theta_{2}\right)+2 \vec{l}_{1} \vec{l}_{4} m_{3} \dot{\theta}_{1} \cos \left(\theta_{1}+\theta_{2}\right)+
$$

$$
2 \vec{l}_{3} \vec{l}_{4} m_{3}\left(\dot{\theta}_{1}+\dot{\theta}_{1}+\dot{\theta}_{2}\right) \cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right)
$$

$$
\begin{equation*}
\frac{\partial E_{K}}{\partial \theta_{3}}=\vec{l}_{3}\left(\vec{l}_{3}+\vec{l}_{4}+\vec{l}_{5}\right)\left(\theta_{1}+\theta_{2}+\theta_{3}\right)-2 \vec{l}_{4} m_{3}\left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right)^{2} \sin \left(\theta_{1}+\theta_{2}+\theta_{3}\right)-\vec{l}_{2} \vec{l}_{3} m_{3}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \tag{10}
\end{equation*}
$$

$$
\left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right) \sin \theta_{3}-2 \vec{l}_{3} \vec{l}_{4} m_{3}\left(\dot{\theta}_{1}+\dot{\theta}_{2}+\dot{\theta}_{3}\right) \cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right)
$$

Discussions

It is suggested that the big arm torque from Figure 3 happens when terminal speed \& rotary angle and angular acceleration is bigger and smaller respectively. So that the reasonable parameters are chosen to design and evaluate their properties is important. Not to choose big terminal speed and acceleration is key in order to increase the capability and property that may increase the whole cost as well. The biggest one arrives 25 KNm at speed $2.5 \mathrm{~m} / \mathrm{s}$ and angel 90° under $\omega=30^{\circ} / \mathrm{s}$ and $\omega=30^{\circ} / \mathrm{s}^{2}$ meanwhile it is 15 KNm at the same conditions as above under $\dot{\omega}=37 \%$ s and $\dot{\omega}=45^{\circ} / \mathrm{s}^{2}$. Here $1 \mathrm{KNm}=0.1$ tonm.

(a) $\omega=30 \%$

(b) $\omega=37 \%$

Figure 3: The torque with time and speed v under angular speed ω and acceleration ω° of $45^{\circ} / \mathrm{s}^{2}$.

(a) $\omega=45 \%$

(b) $\omega=55 \%$

(c) $\omega=60^{\circ} / \mathrm{s}$

Figure 4: The torque with time and speed v under angular speed ω and acceleration ω of $30^{\circ} / \mathrm{s}^{2}$.

It is suggested that the big arm torque from Figure 4 happens when terminal speed \& rotary angle and angular acceleration is bigger and smaller respectively. So that the reasonable parameters are chosen to design and evaluate their properties is important. Not to choose big terminal speed and acceleration is key in order to increase the capability and property that may increase the whole cost as well. The biggest one arrives 25 KNm at speed $2.5 \mathrm{~m} / \mathrm{s}$ and angel 90° under $\omega=60^{\circ} / \mathrm{s}$ and $\dot{\omega}=30^{\circ} / \mathrm{s}^{2}$ meanwhile it is 15 KNm at the same conditions as above under $\omega=37^{\circ} / \mathrm{s}$ and $\dot{\omega}=45^{\circ} / \mathrm{s}^{2}$. There is not big difference between above two angular acceleration with 45% and 30%. This expresses that the big difference causes big different torque in robotic arm1.

Overview the computation solution is tedious to use in software like Excel and Origin since it has many small equations. The result is satisfactory and precise to be adopted to numerical simulation so the five freedoms method based on $\dot{\omega}=45^{\circ} / \mathrm{s}^{2}, \dot{\omega}=30^{\circ} / \mathrm{s}^{2}$ is approaching. In Figure 3~4 with increasing terminal speed the torque may be increased and with angular speed becoming big the torque may be increased. The biggest torque is 25 KNm and 23 KNm when angular speed is $60 \sim 55^{\circ} / \mathrm{s}$ and angular acceleration is $30 \% / \mathrm{s} 2$ respectively. This one needs to be checked the strength correction when the speed is $2.5 \mathrm{~m} / \mathrm{s}$. The $\omega_{1 \sim 3}$ is supposed to be same with angular speed ω and angular acceleration $\dot{\omega}$ of $45^{\circ} / \mathrm{s}^{2}$ and $30^{\circ} / \mathrm{s}^{2}$ in Figure $3 \sim 4$ in addition. The least torque is 13 KNm and 15 KNm when angular speed is $30 \sim 37 \%$ s and angular acceleration is $45 \% \mathrm{~s}^{2}$ respectively. So the effective turn to torque 1 is $v>\omega>\dot{\omega}$.

Conclusions

There is big distance to attain 25 KNm between the difference speeds of conditions $\mathrm{v}=0.5 \sim 2.5 \mathrm{~m} / \mathrm{s}$ at angle $\omega=60^{\circ} /$ s under $\dot{\omega}=30^{\circ} / \mathrm{s}^{2}$. When the ω increases the torque will become big, meantime the speed v increases the torque is big too. The biggest one is 15 KNm with above condition at acceleration $\dot{\omega}=45^{\circ} / \mathrm{s}^{2}$. it means that the decreased acceleration will increase the torque. The least one with 13 KNm is happened on $\omega=30^{\circ} / \mathrm{s}$ under $\dot{\omega}=45^{\circ} / \mathrm{s}^{2}$. there is
little change between acceleration $\dot{\omega}=30^{\circ} / \mathrm{s}^{2}$ and $45^{\circ} / \mathrm{s}^{2}$. there is a trend the former is a little larger than the later.

References

1. Run Xu , and Younwook Kim. (2022). The Numerical Simulation of Force with Low Angular Speed and Constant Acceleration in Three and Five Freedoms of Robotic Arm, SunText Review of Material Science, 3(1), 117.
2. Run Xu , Boyong hur. (2021). The Numerical Simulation of Force with Parameters in Three \& Five Freedoms of Robotic Arm I, East African Scholars J Eng Comput Sci, 4(5), 69-73.
3. Run, X. (2020). The Dynamic Equation on Hammer by La-
grange Equation in Robotic Arm. Social Science Learning Education Journal, 5(08), 297-300.
4. $\mathrm{Xu}, \mathrm{R} .$, \& Hur, B. (2021). A Simulation between Torque and Angle with Speed on Five Freedoms of Robot Mechanical Arm of Multibody Systems. Saudi J Civ Eng, 5(4), 91-93.
5. Pengju, Y. (2012). Base on Dynamics Analysis \& Precise Design with Mechanical Arm of Arthritis Rub [D]. Master Degree Thesis, Jiangsu University of Technology, 3, 18.
6. Li, Z. H., Wu, C. J., Jiang, D., Fan, Z. H., \& Ni, J. (2020). The dynamics solving method of flexible joint robot based on equalized state system. Journal of Mechanical Engineering, 56(3).

Copyright: ©2022: Run Xu, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

