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Abstract
The current study that explores the Generalised Z-Entropy’s fractal dimension within a non-time-dependent M/G/1 queuing 
system. Through numerical tests, the researchers analyse how the generated fractal dimension aligns with the specifications 
of the Generalised Z-Entropy. This investigation aims to enhance understanding of the relationship between entropy, 
complexity, and fractal geometry, with potential implications for Big Data Analytics. By combining information theory 
and fractal geometry, this work provides a significant generalisation in the literature on the relationship between entropy 
and complexity. More importantly, it is emphasised how important the fractal dimension is to the advancement of Big Data 
Analytics (BDAs). In addition, it also highlights the importance of the fractal dimension in advancing Big Data Analytics and 
mentions that the research includes unresolved questions and outlines the next steps for further investigation.
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1. Introduction
The Shannonian entropy [1], namely H(X) reads as:
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       ∑                            (1)                                                                 
 
    serves as the ith-event probability.  
 
The probability of the ith -event is given in this expression as   . This entropy establishes the definition of information in 
information theory. There are many methods for measuring information, as well as in this scenario, we argue regarding how 
entropy and   interact with one another.        , is a measure that assesses how a fractal pattern expands beyond the area 
it occupies, indicating the complexity of the pattern in spatial dimensions.  [2-7], involves calculations that consider sticks‟ 
number  ( ) required in coastline coverage and the factor of scaling (ε). By analyzing these factors, the fractal dimension 
provides insights into the intricate nature of patterns and their representation of complexity in spatial dimensions. 
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                                (3)    
                                                                    

[8] created a map and rigid sticks for an experiment like Richardson's in the book by using GEs  pictures combined with GIMP 
(c.f., Fig. 1). The practical application of this technique for measuring the fractal dimension was demonstrated on a part of the  
Grand Canyon. 
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pi serves as the ith-event probability. 

The probability of the ith-event is given in this expression as pi. This 
entropy establishes the definition of information in information 
theory. There are many methods for measuring information, as 
well as in this scenario, we argue regarding how entropy and D 
interact with one another. D[2-7], is a measure that assesses how 

a fractal pattern expands beyond the area it occupies, indicating 
the complexity of the pattern in spatial dimensions. D[2-7], 
involves calculations that consider sticks’ number (N) required in 
coastline coverage and the factor of scaling (ε). By analyzing these 
factors, the fractal dimension provides insights into the intricate 
nature of patterns and their representation of complexity in spatial 
dimensions.
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Figure 1 (c.f., [8]).

The visualization of how N, D and ε are corelated is illustrated by Fig. 2.

Figure 2: The Correlation between N, D and ε.

The present work investigates analysing the behaviour of the 
generated fractal dimension that matches the GZE specifications. 
By combining information theory and fractal geometry, this 
work provides a significant generalisation in the literature on the 
relationship between entropy and complexity. More importantly, 
it is emphasised how important the fractal dimension is to the 
advancement of Big Data Analytics (BDAs). In addition to 

unresolved questions and the next stage of research, concluding 
thoughts are given. 

2. D of Entropies
In [8], the fractal dimension (D) associated with different types 
of entropy measures was determined, for entropies measures [9-
12]. These derivations were conducted under proposing that all 
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outcomes have equal probabilities.

The Shannonian fractal dimension [8] reads:
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Rényian dimension of order q ∈ (0.5,1 )  reads [10]
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Fig. 8: A fractal that can be used to simulate soap bubble foam is the  Apollonian gasket[17]. 

 

Case 2:           (instability) 
 
Sierpiniski Gasket(SG),             

 

 
Mathematically speaking, the un-defindedness of  SG at many points is based on the fact of attaining complex values at these 
points, for example: 
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So, we are in a situation of a complex valued SG fractal dimension. After some mathematical manipulation, one gets: 
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Notably, the fluctuations of the derived values of SG fractal dimension between decreasing and the drastic decreasing along 
the path of approaching sufficiently large values of   while approaching the extensivity zone,    . For      we arrive at 
invite value for the corresponding SG fractal dimension. Clearly, this shows the significant information-theoretic impact in 
both non-extensive and extensive phases. This paper provides another revolutionary approach to the traditional definition of 
both Apollonian and SG dimensions, while mine includes several respective parameters, including queueing and information-
theoretic parameters. 

 
V. D APPLICATIONS TO PDAs 
 
To estimate the fractal dimension of datasets, one popular method is the box-counting method [18]. By using a box locality 
index (BLI) data structure, the information needed for calculating   is encoded, making the computation scalable for large 
datasets using distributed computing methods like MapReduce and Spark. By relating the size of the boxes to the number of 
points, the fractal dimension   ) can be determined. Fig. 9 provides examples of this method using three sample datasets to 
illustrate the process. 
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example:

So, we are in a situation of a complex valued SG fractal dimension. After some mathematical manipulation, one gets:

Notably, the fluctuations of the derived values of SG fractal 
dimension between decreasing and the drastic decreasing along the 
path of approaching sufficiently large values of q while approaching 
the extensivity zone, q >1. For q = 1, we arrive at invite value 
for the corresponding SG fractal dimension. Clearly, this shows 
the significant information-theoretic impact in both non-extensive 
and extensive phases. This paper provides another revolutionary 
approach to the traditional definition of both Apollonian and SG 
dimensions, while mine includes several respective parameters, 
including queueing and information-theoretic parameters.

5. D Applications to PDAs
To estimate the fractal dimension of datasets, one popular method 
is the box-counting method [18]. By using a box locality index 
(BLI) data structure, the information needed for calculating D is 
encoded, making the computation scalable for large datasets using 
distributed computing methods like MapReduce and Spark. By 
relating the size of the boxes to the number of points, the fractal 
dimension (D) can be determined. Fig. 9 provides examples of this 
method using three sample datasets to illustrate the process.

 
Fig. 9. The box-counting plots help estimate the fractal dimensions of these datasets by analyzing the slopes of the fitted lines[18]. 

 

A detailed discussion of the challenges associated with online clustering in high-dimensional data and the limitations of 
existing approaches to this end is found in [19]. The proposed FractStream approach [19] aimed to reduce search complexity, 
execution time, and memory usage; experimental studies on various datasets demonstrate its effectiveness and efficiency. 
To determine a dataset's fractal dimension, a multi-layered, nested grid structure can be constructed as demonstrated in [19]. 
The number of data points in each grid in the bottom layer of the grid structure is used to compute  . Moreover, the sliding 
window approach is applied to generate cluster partitions on evolving data streams, as Fig. 10 [19] illustrates. 
 

 
Fig. 10. In the context of data analytics and machine learning, sliding window and basic windows are techniques used for analyzing data streams or time 
series data. A sliding window refers to a fixed-size window that moves along the data stream, allowing for continuous analysis of a subset of data. On the 
other hand, basic windows are non-overlapping windows of fixed size that partition the data stream into distinct segments for analysis. These techniques are 
commonly employed to extract meaningful patterns and insights from streaming or time-dependent data. 

 

A clustering algorithm for a growing data stream based on correlation fractal dimension was created in the specified 
context[19]. A progressive fractal cluster is eliminated to make room for new clusters if its weight drops below a 
predetermined threshold, which is determined by periodically assessing the weight of the clusters. 
The behavior of clusters changes over time when performing online clustering with a window of 1000 data points. This 
evolution of data can be segmented into intervals, as shown in Fig. 11 [19], to analyze the changes in cluster composition. 

 

Figure 9: The box-counting plots help estimate the fractal dimensions of these datasets by analyzing the slopes of the fitted 
lines[18].
A detailed discussion of the challenges associated with online 
clustering in high-dimensional data and the limitations of existing 
approaches to this end is found in [19]. The proposed FractStream 
approach [19] aimed to reduce search complexity, execution time, 
and memory usage; experimental studies on various datasets 
demonstrate its effectiveness and efficiency.

To determine a dataset's fractal dimension, a multi-layered, nested 
grid structure can be constructed as demonstrated in [19]. The 
number of data points in each grid in the bottom layer of the grid 
structure is used to compute D. Moreover, the sliding window 
approach is applied to generate cluster partitions on evolving data 
streams, as Fig. 10 [19] illustrates.
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size that partition the data stream into distinct segments for analysis. These techniques are commonly employed to extract 
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A clustering algorithm for a growing data stream based on 
correlation fractal dimension was created in the specified context 
[19]. A progressive fractal cluster is eliminated to make room for 
new clusters if its weight drops below a predetermined threshold, 
which is determined by periodically assessing the weight of the 
clusters.

The behavior of clusters changes over time when performing online 
clustering with a window of 1000 data points. This evolution of 
data can be segmented into intervals, as shown in Fig. 11 [19], to 
analyze the changes in cluster composition.

 
Fig. 11. The evolution of clusters over time in the context of online clustering. 

 
In the area of big data applications, disturbances like COVID-19, pollution, or policy changes have a huge effect on economic 
and financial systems[20]. For expanding the use of big data in financial and economic systems, it is imperative to investigate 
how these disruptions affect associated time series. The complexity of these time series is analysed using the Generalised 
Weierstrass-Mandelbrot Function (GWMF) [20], which demonstrates how disturbances in the form of exponential functions 
can produce multifractal characteristics. Additionally, the model replicates long memory and irregularity, which are evaluated 
by multifractal analysis and the R/S approach. 
 

Research on how disturbances affect time series produced by the actual part of GWMF, or         and how to replicate 
multifractal features in time series is scarce[19]. Furthermore, there is little theoretical evidence to support the claim that time 
series produced by WMF naturally possess   . 

 
VI. SUMMARY 

 

This paper explores the relationship between                   the information-theoretic queueing parameters. Numerical 
experiments analyze the behavior of the derived fractal index to evidence that this work represents a significant advancement 
in unifying information theory and fractal geometry.  
 
      An explanation is given to confirm the influential role of fractal dimension in developing and revolutionizing BDAs. The 
current paper has several emerging open problems. 
 
Open Problem One 
 
Based on the findings of this paper, is it feasible to undertake their approach much further to find the fractal dimension theory 
of Ismail‟s Entropy, namely IE(c.f., [21,22]), which is by default the ultimate generalization of numerous in literature? 
 
Open Problem Two 
 
Based on the possibility to unlock open problem one, can we find any mathematical approach to decide the threshold of the 
involved universal parameters of IE. If so, what will be the expected form of the mathematical relations involved? 
 
Open Problem Three 
 
Can we extend the case to investigate possible applicability of other fractal dimensions in literatures, such as Sierpinski 
Gasket and Koch Snowflake? 
 

Figure 11: The evolution of clusters over time in the context of online clustering.

In the area of big data applications, disturbances like COVID-19, 
pollution, or policy changes have a huge effect on economic 
and financial systems [20]. For expanding the use of big data in 
financial and economic systems, it is imperative to investigate how 
these disruptions affect associated time series. The complexity of 

these time series is analysed using the Generalised Weierstrass-
Mandelbrot Function (GWMF) [20], which demonstrates how 
disturbances in the form of exponential functions can produce 
multifractal characteristics. Additionally, the model replicates 
long memory and irregularity, which are evaluated by multifractal 
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analysis and the R/S approach.

Research on how disturbances affect time series produced by the 
actual part of GWMF, or C(t,μ), and how to replicate multifractal 
features in time series is scarce[19]. Furthermore, there is little 
theoretical evidence to support the claim that time series produced 
by WMF naturally possess D.

6. Summary
This paper explores the relationship between             and the 
information-theoretic queueing parameters. Numerical 
experiments analyze the behavior of the derived fractal index to 
evidence that this work represents a significant advancement in 
unifying information theory and fractal geometry. 

An explanation is given to confirm the influential role of fractal 
dimension in developing and revolutionizing BDAs. The current 
paper has several emerging open problems.

•	 Open Problem One
Based on the findings of this paper, is it feasible to undertake their 
approach much further to find the fractal dimension theory of 
Ismail’s Entropy, namely IE(c.f., [21,22]), which is by default the 
ultimate generalization of numerous in literature?

•	 Open Problem Two
Based on the possibility to unlock open problem one, can we find 
any mathematical approach to decide the threshold of the involved 
universal parameters of IE. If so, what will be the expected form 
of the mathematical relations involved?

•	 Open Problem Three
Can we extend the case to investigate possible applicability of 
other fractal dimensions in literatures, such as Sierpinski Gasket 
and Koch Snowflake?

Future research aims to determine the fractal dimensions of other 
entropies in literature and compare them to further advance the 
field of Information Theoretic Fractal Geometry (ITFG). Notably, 
the search is ongoing to possibly answer the proposed sophisticated 
research questions.
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