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Abstract
A new world is evolving with the current use of AI in various fields. AI is becoming well known and is an active area of research 
in many fields. An area of widespread use is the field of medicine, especially gastroenterology. AI in Gastroenterology can 
enhance diagnostic accuracy by assisting in identifying abnormalities in medical images. Gastroenterology is a field that can 
particularly benefit from the support of AI tools to analyses pictures from a wireless capsule endoscopy, detect colonic polyps 
using deep-learning approaches, and use capsule endoscopies to find bleeds in the small intestine that are missed in a regular 
endoscopy. These areas have been AI successes in the field of gastroenterology, but critical assessment is also necessary to 
identify upcoming obstacles using AI. The aim of this review paper is to assess the overall use of AI technology, examine 
current AI applications in gastroenterology, demonstrate the inherent value that AI brings to this field, and discuss the potential 
directions and scope for future research in this field with AI.
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1. Introduction
Artificial Intelligence (AI) is a branch of computer science 
dedicated to creating machines capable of performing tasks that 
typically require human intelligence, such as problem-solving, 
learning, perception, and understanding natural language. The 
foundation of AI dates back to the mid-20th century, with Alan 
Turing's pioneering work, including his 1950 paper "Computing 
Machinery and Intelligence," which introduced the Turing Test 
as a benchmark for machine intelligence. A significant milestone 
was reached in 1956 with the development of the Logic Theorist 
by Allen Newell and Herbert A. Simon, capable of proving 
mathematical theorems and showcasing machines' potential for 
logical reasoning. John McCarthy, who coined the term "Artificial 
Intelligence" in 1956, organized the Dartmouth Conference, 
marking the formal establishment of AI as a field of study. 
McCarthy's development of the Lisp programming language 
further propelled AI research. Over subsequent decades, AI has 
evolved from rule-based systems to machine learning and, more 
recently, deep learning. Advances in machine learning, particularly 
through neural networks, have led to significant breakthroughs in 
applications such as speech recognition, image classification, and 
autonomous vehicles, building on early AI research and benefiting 
from increased computational power and data availability [40]. AI 
has changed a lot of fields, which is especially evident in the field of 

gastroenterology with the fusion of cutting-edge AI technologies. 
AI has ignited a surge of advancement that is helping redefine 
diagnostic procedures. One such procedure is endoscopy, which 
has witnessed a revolution due to AI-driven image analysis. Before 
AI, washed data sets of images and patterns needed to be analyzed 
to reach a diagnosis, which led to errors or missed diagnoses. AI 
algorithms have enhanced the detection of subtle lesions, polyps, 
and early signs of malignancies, which improved patient outcomes 
and saving time for physicians. One of the adverse outcomes of 
AI is that sometimes physicians are so used to highlighted images 
using the AI algorithm that they miss some diagnoses, which could 
have detrimental effects on patients.

AI represents a wide-ranging field, encompassing various 
disciplines, including machine learning (ML) and its subsets 
such as deep learning (DL). The core objective of ML is to utilize 
extensive datasets to uncover patterns of interactions among 
variables, often enabling the learned function’s application to novel 
data. Within ML, two fundamental categories exist: “supervised” 
and “unsupervised” learning methods [1]. For example, training 
a system to identify gastric intestinal metaplasia (GIM) involves 
supervised learning, using a database of previously operator 
identified GIM lesions.



Volume 9 | Issue 2 | 2Int J Cancer ResTher, 2024

By contrast, unsupervised learning lacks output to predict and seeks 
to identify inherent patterns within input data, often grouping them 
subsequently, such as clustering tissue samples based on similar 
gene expression values [2]. DL, a subset of ML, relies on artificial 
neural networks inspired by the interplay of neurons in the human 
brain. DL autonomously processes data input to learn, recognize, 
and harness predictive factors leading to specific outcomes. It 
employs structures, like convolutional neural networks (CNN), to 
handle intricate information [3]. The realization of DL has become 
feasible due to rapid strides in dedicated hardware, such as enhanced 
graphics processing units and concurrent software and algorithmic 
advancements. The global summit on AI in gastroenterology 
and endoscopy that convened in Washington, D.C., in late 2019 
brought together different experts. It is anticipated that AI will 
revolutionize patient care delivered over the next decade and will 
be used in operational processes as well. The summit emphasized 
the need for a dynamic partnership between gastroenterologists, 
industry pioneers, and regulatory institutions [4].

2. Detection of Premalignant and Malignant Lesions
In the upper digestive tract, there are important places to look for 
early signs of cancer such as Barrett’s esophagus (BE), esophageal 
squamous cell carcinoma, and gastric cancer (GC). For example, 
AI can assist in diagnosing Barrett’s esophagus by analyzing 
endoscopic images and videos. It can identify subtle changes or 
abnormalities of the esophageal lining that may indicate Barrett’s 
esophagus which will assist healthcare professionals in early 
detection. To diagnose BE or any abnormalities and identify 
problems like dysplasia, physicians usually study tissue samples. 
It is important for them to take samples from the exact spots where 
the issues are. AI can help physicians identify these locations and 
figure out these spots in BE whether there are dysplasia problems 
or not. AI allows doctors to do more precise biopsies instead of 
random ones. Sometimes, using regular methods like white light 
imaging or narrow band imaging misses early esophageal issues. 
AI might be a solution to this problem [5].

We reviewed eight research papers on BE to detect issues like 
dysplasia or early esophageal adenocarcinoma (EAC) using 
images from endoscopies or laser endomicroscopy. Computer 
methods such as CNNs were used to analyses these images and 
were highly accurate (at least 89.9%) in identifying normal or 
problematic conditions, outperforming no specialist physicians 
[6]. For instance, De Groof et al. used ResNet-UNet to detect early 
BE neoplasia and pinpoint biopsy sites accurately. Ebigbo et al. 
used ResNet to distinguish normal BE from early EAC with 89.9% 
accuracy, 83.7% sensitivity, and 100% specificity. Detecting 
esophageal squamous cell carcinoma (SCC) is also challenging 
because of inaccurate methods such as chromoendoscopy or 
narrow band imaging (NBI) [7,8,41]. Newer methods, such as 
endocytoscopy or volumetric laser endomicroscopy show detailed 
images but can be confusing due to their volume [9].

In a series of studies on esophageal cancer, 13 research efforts 
concentrated on esophageal cancer, of which 11 focused on 
Sauamous Cell carcinoma (SCC). Among these, nine studies 

aimed to develop DL models for cancer detection, and two worked 
on models to predict cancer invasion depth using DL. Most studies 
employed CNN models, with some using JDPCA, VGG16 Net, 
or GoogLeNet for classification. Although accuracy, sensitivity, 
and specificity values for detecting esophageal SCC varied, all 
models matched or exceeded endoscopists’ abilities to detect 
and characterize lesions, often showing improved performance. 
For example, Nakagawa et al. and Shimamoto et al. pursued DL 
models based on CNNs, to predict esophageal malignancy depth, 
achieving 89.2% and 91% accuracy, 70.8% and 90.1% sensitivity, 
and of 94.4% and 95.8% specificity, respectively [10-12]. 

GC is a prominent global cause of cancer-linked mortality. 
Detecting early disease signs is pivotal, but existing techniques 
such as standard endoscopic imaging (e.g., NBI) and advanced 
methods (e.g., magnifying endoscopy, blue laser imaging) 
face limitations in spotting early gastric lesions [13]. During a 
colonoscopy, finding polyps is important in preventing colorectal 
cancer (CRC). Approximately 2%-6% of cases can develop CRC 
after a colonoscopy but before the next check, which might be from 
a missed or new post colonoscopy CRC13. Numerous studies have 
examined what helps find early cancer signs during colonoscopy 
and what might cause cancer to be missed. Having experienced 
nurses, fellows, or trained observers present during the procedure 
can make a difference in finding polyps14. Thus, to make polyp 
detection during colonoscopy better, AI is being used like a second 
observer, which is called computer-aided detection (CAD).

Understanding how much early CRC has spread is important for 
deciding how to treat it. If it is not too deep, physicians can remove 
it with special tools during a procedure called polypectomy. But if 
it has gone deeper, surgery and more treatments may be necessary 
because it could spread to other parts of the body. During 
endoscopy, physicians assess how the cancer looks and its patterns 
to see how deep it is. But sometimes different physicians see things 
differently15. Using CAD can help ensure everyone sees the same 
thing.

In other studies, researchers looked at different things related to the 
lower part of the digestive system. For example, they used special 
computer models to predict what might happen to patients with 
CRC or to see how effectively colonoscopies are being performed. 
In one study, a computer model looked at lots of pictures and 
predicted how long people might live with cancer16. This could 
help physicians choose the best treatments for those at higher risk. 
AI helps make computer model to give tips to physicians during a 
colonoscopy to make sure they do a good job.

3. Non-Malignant Conditions
Diagnosing Helicobacter pylori (H. pylori) infection, linked to 
peptic ulcers and GC, involves invasive methods like breath 
tests and histopathology. AI can assist with Pylori detection by 
analyzing other images from endoscopy or histopathological slides 
or even breath test to identify signs of H pylori infection18. Machine 
learning algorithms can recognize specific pattern or features 
associated presence of H. Pylori in the histopathological slides 
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which will provide faster and potentially more accurate diagnosis to 
the healthcare professionals. In four studies, CNN models detected 
H. pylori17. Martin et al.20 used gastric biopsy images (n = 210 
training, 90-106 testing) with 98.9%-99.1% infection accuracy, 
surpassing larger esophagogastroduodenoscopy datasets (77.5%-
87.7%). Endoscopists scored about 79.0%-79.4% accuracy. 
Nakashima et al.19 used linked color imaging and DL, achieving 
82.5% accuracy, commensurate with experienced endoscopists’ H. 
pylori diagnosis.

In gastrointestinal bleeding (GIB), it is crucial to assess risks to 
identify high-risk patients and make decisions. This also helps 
manage resources better. Risk tools look at factors linked to a 
condition to predict outcomes such as survival, hospital stay, 
rebleeding rates, and further need for endoscopic treatment. For 
upper GIB, studies aimed to predict rebleeding or the need for 
endoscopic/surgical treatment by using models [20].

Using a small camera in a pill, called video capsule endoscopy 
(VCE), is a good way to check for issues like hidden bleeding 
or Crohn’s disease in the small intestine. It is easy and does not 
require surgery, but it relies on the intestine’s movement to travel. 
This means it takes many pictures (up to 60,000 for one test), 
and understanding them can take a while [21]. AI has been used 
with VCE for a decade now. At first, methods like Support Vector 
Machine (SVM) and multilayer perceptron network were used to 
understand the pictures [22]. As technology got better, smarter 
algorithms like CNNs became the best choice to analyses the VCE 
pictures. Just like in the lower intestine, using computers to help 
find and diagnose issues can be accompanied by tools that help the 
camera move inside the small intestine.

We looked at four studies on finding celiac disease (CeD). In three 
of the studies, they used a smart type of computer called CNN, and 
in one study, they used a special tool for helping doctors decide. 
Another study by Wimmer et al. used classifiers called AlexNet, 
VGGf net, and VGG-16 net and got the best results (92.5% 
accurate) with VGG-16. In a newer study, Wang et al. developed 
a clever computer program using a CNN called InceptionV3 and 
another tool using SVM [LU5] called ResNet50. It was 95.94% 
accurate, and it could find CeD especially well (97.20% sensitive) 
and be quite specific (95.63%) in pictures from VCE [23,24].

Many factors affect inflammatory bowel disease (IBD), and each 
person’s body works in its own way. This means that how the 
disease behaves and how well treatments work can be different 
for each person-kind of like personalized medicine. Using smart 
computer programs (AI) in IBD can help not only in diagnosing 
the disease, measuring the severity how bad it is, or increasing 
consistency among physicians but also in looking at big sets of 
information to find hidden patterns in the disease [25].

To predict how well patients with IBD will respond to treatments 
like thiopurines or biologics, researchers used smart computer 
models in seven studies. These models, called ML algorithms, were 
based on analytic models. All of them were relatively accurate, 

with scores ranging from 80.0% to 89.8% or Area Under the Curve 
values from 0.73 to 0.846. For example, Waljee et al. developed 
a model with information about patients’ details and lab results 
to predict how well they would respond to a treatment called 
ustekinumab. This could help avoid extra costs for monitoring the 
treatment. They also created another model to predict whether a 
patient might need to go to the hospital or use steroids, getting 
an AUC of 0.87. These AI models could help choose the right 
treatment for each patient and stop flare-ups before they happen 
[26].

In addition, two more models using genomic information were 
developed. Isakov et al. used multiple methods to find genes 
linked to IBD, reaching 80.8% accuracy. Another model by 
Kroner et al. used reports about how the tissue looked under a 
microscope to determine whether colonoscopy was needed, and it 
was 80.0% accurate [27]. Last, Firouzi et al. created a model that 
used electronic health records with AI to determine the potential 
of addressing pancreatic diseases by enhancing disease severity 
assessment, predicting outcomes in acute or chronic pancreatitis, 
and distinguishing different types of pancreatic growths, including 
potential malignancy [28]. AI can aid in early detection of specific 
pancreatic cancers and differentiate them from less serious 
conditions. Moreover, AI could improve the accuracy of diagnosing 
pancreatic diseases through the analysis of tissue samples. 
Overall, 59 studies have explored AI’s role in pancreatic disease 
management. Among these, six studies focused on early pancreatic 
cancer detection using imaging or electronic health records to 
identify high-risk patients, achieving high accuracy and efficiency. 
Roch et al. developed computer programs for searching electronic 
records and identifying pancreatic cyst patients with remarkable 
accuracy. Ozkan et al. designed a smart image-processing system 
for pancreatic cancer diagnosis with 87.5% accuracy, effectively 
distinguishing cancer cases using patient age [29,30].

AI can be quite helpful in the field of hepatology as liver diseases 
can range from mild issues to serious problems like acute liver 
failure or requiring liver transplant. It can predict how bad a 
disease is, find diseases early, and tell us how serious a disease 
is. It can even estimate different parts of diseases. AI can also 
see patterns in pictures like scans and tissue samples and help 
choose who should get a liver transplant [31]. Some tried to 
predict what will happen to patients, some looked at finding and 
predicting conditions like fatty liver or cirrhosis, and others tried 
to differentiate among different types of liver tumors. Some studies 
also used AI to predict complications in the liver related to high 
blood pressure. The uses seem endless. Some studies used AI to 
find or classify liver tumors. One of the studies showed with the 
standardization of imaging in diagnosis and its important role in 
the clinical diagnosis of liver cancer, AI research based on imaging 
has emerged by extracting high-throughput features that cannot be 
detected and defined by human eyes. They used a special kind of 
AI called DL that can understand pictures, like Schmauch et al., 
who used ultrasound pictures to find and describe liver problems, 
and their AI was right about 89% of the time [32,36]. Other studies 
tried to predict problems in the liver related to high blood pressure 



Volume 9 | Issue 2 | 4Int J Cancer ResTher, 2024

using pictures from CT scans. Dong et al. developed a model 
that guessed whether people had certain liver problems with an 
accuracy of 82%. This could help doctors decide whether someone 
needs a special test to check for liver problems. Liu et al. developed 
a model that could find liver problems using special scans with an 
accuracy of 88.9% to 91.1% [34-36].

There were also studies that tried to identify liver conditions like 
cirrhosis or fatty liver by using different methods like looking at 
clinical data or pictures. Yasaka et al. used a special kind of AI to 
predict liver problems using pictures from MRI scans. They were 
right about 84% to 85% of the time for different liver problems 
[35]. Some studies even tried to differentiate among different liver 
conditions, like Fialoke et al., who used AI to tell the difference 
between two types of liver problems with an accuracy of 79.7%. 
These studies show that AI could be really helpful in understanding 
and treating liver diseases [37].

4. Future of Physician-Patient Communication
Physician-patient communication is essential in healthcare, 
significantly influencing diagnosis, treatment, and follow-up, 
thereby impacting patient outcomes and overall healthcare 
experience. Effective communication allows physicians to 
understand patients' needs, fears, and expectations, enabling 
personalized and empathetic care. It also plays a crucial role in 
shared decision-making, where clear explanations about the 
disease, treatment options, potential side effects, and prognosis 
empower patients to actively participate in their healthcare 
decisions, leading to increased satisfaction, better adherence to 
treatment plans, and improved health outcomes. Additionally, 
good communication fosters trust and rapport, which are integral 
to the healing process, encouraging patients to follow medical 
advice and disclose critical information [42].

5. AI-Assisted Medical History Taking and Patient Education
GPT-4 can significantly enhance gastroenterology practices 
by aiding in medical history taking and patient education. Its 
advanced natural language processing capabilities enable it to 
ask relevant questions, understand patient responses, and present 
this information to physicians in a structured format, allowing for 
quicker and more effective diagnosis and treatment. Furthermore, 
GPT-4 can explain complex medical concepts in simple terms, 
helping patients understand their conditions and make informed 
decisions about their treatment. By providing personalized advice 
on lifestyle changes, diet, and medication usage, GPT-4 can 
improve patient compliance, freeing up gastroenterologists to 
focus on more complex clinical responsibilities and procedural 
tasks [42].

6. Ethical Considerations and Enhancing Healthcare Delivery
While GPT-4 offers transformative potential in enhancing 
physician-patient communication, it also introduces ethical 
considerations, particularly around confidentiality, data security, 
and bias. Systems using GPT-4 must implement stringent security 
protocols to protect sensitive patient information and ensure 
compliance with data privacy regulations. Additionally, human 

oversight is crucial to mitigate risks associated with AI errors and 
biases. Despite its capabilities, GPT-4 should complement, not 
replace, the human elements of empathy, emotional understanding, 
and professional judgment in healthcare. As AI technologies 
like GPT-4 are integrated, maintaining ethical standards, data 
privacy, and accountability is paramount to ensure the effective, 
compassionate, and personalized care that lies at the heart of 
healthcare [42].

7. Current Limitations and Future Scope
Despite AI’s impressive progress, current studies face limitations 
that suggest future research.
AI models often rely on human-labeled data, and their accuracy 
hinges on labelers’ skills. Algorithms may excel only with specific 
data types, limiting adaptability. Many health care AI models are 
validated only within their training dataset, risking overfitting. 
Solutions include creating a shared, well-organized dataset for 
diverse AI projects and designing flexible algorithms for various 
data. Validating models across patient groups enhances trust. 
Applying rules for AI model refinement improves accuracy. 
Guidelines for reporting AI studies need ongoing enhancement. 
Current studies using still images may not mirror real-world 
scenarios; addressing this ensures practical AI performance.

To address these problems, experts suggest creating a dataset that is 
detailed, widely shared, and of high quality, along with developing 
algorithms that can handle different situations. However, creating a 
single dataset for everyone is difficult because of privacy concerns. 
Another idea is to use “federated datasets,” where information from 
different places is combined to address these issues. In addition, 
when selecting the best method to analyze data, specific steps 
should be followed, like using different ways to determine whether 
results are accurate [38]. It is important to focus on algorithms 
that give the most accurate results, and adjusting them to improve 
predictions is crucial.

Most of the current studies use groups of people with similar traits, 
but to be really sure about results, it is better to use random groups 
in experiments. Sometimes, custom methods are used in research, 
but these need to be clearly explained so everyone understands 
how they work. When researchers create new methods, they 
should test them on different datasets to make sure they are useful. 
Comparing different ways of doing things in studies can be tricky, 
and it is important to report all the information clearly.

People are trying to make sure studies about AI are done the same 
way by creating guidelines. These rules help researchers report 
their work better and make it easier to compare different studies. It 
is important to follow these rules and change them as technology 
improves. Last, most studies use pictures that do not show things 
happening in real life.

8. Fixing this will help AI Work Well in Real Situations
To use AI in a vast spectrum, researchers need to create well-
organized research. A huge dataset also needs to be developed so 
that AI can help in diagnosis. AI can help doctors by taking care 
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of routine tasks so that doctors can focus on important decisions. 
Instead of using old methods to analyze data, AI can bring new, 
more accurate methods [39]. For all this to happen, experts from 
different fields such as data science, medicine, and industry need 
to work together.

9. Conclusion
The recent AI advancements in gastroenterology and hepatology 
show promise across clinical care areas, including neoplastic lesion 
detection, survival model enhancement, and treatment response 
prediction [39]. AI’s use with complex datasets might uncover 
new associations, potentially altering clinical practices. AI assisted 
technologies can significantly elevate care quality. Assisted 
precision medicine is emerging, in which AI tailor’s treatment 
plans or predicts patient responses based on extensive clinical 
data. Although AI doesn’t replace human clinical judgment, it has 
a bright future in enhancing patient care.
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