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Abstract
In preceding papers we have shown that an initial Big-Bang explosion of the universe can not have happened as caused by 
a singularity of extremely hot cosmic matter due to the centripetal gravity field enhanced by relativistic mass [1,2]. Instead 
it must have started from a pressurized cosmic vacuum. In this article here we shall analyse how to adequately describe 
this cosmic vacuum pressure and how to formulate the initial scale expansion of the universe as reaction to its action. We 
find that for a needed positive vacuum pressure the thermodynamic polytrope relation between vacuum energy density and 
vacuum pressure only allows for a range of the vacuum polytrope indices ξ of 3 ˂ ξvac ˂ 5. Furthermore we find that for 
the preferred value ξvac = 4 one can derive a complete description of the cosmic vacuum energy as function of the cosmic 
scale and the cosmic time with inclusion of a process of cosmic matter generation by a specific vacuum condensation 
process producing quantized matter. As result one obtains a matter universe well aquainted to all present day astronomers, 
however, without the need for an initial, material Big-Bang.
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1. Pure Cosmic Matter Can Not Explode
As we have shown in recently preceeding publications an 
initial explosion of the virgin universe can at least not happen 
purely because of an extremely strong centripetal gravitational 
field in connection with a highly concentrated central mass 
singularity [1,2]. This is even true when one in addition 
considers the natural centripetal material pressures which 
under these conditions certainly are enormous. But since the 
extremely hot cosmic matter has relativistic temperatures, this 
leads to relativistically increased mass energies and thus to 
even stronger centripetal gravitational fields. This at first glance 
may appear controvisionary, but as can clearly be shown by 
the two cosmologic Friedman equations describing the cosmic 
scale as function of the cosmic time, it becomes evident that the 
relativistically hot cosmic matter in fact increases the centripetal 
gravity field so much that no explosive cosmic motion, but 
an implosion is caused [3,4]. As shown by Fahr (2023) only a 
medium that can realize a cosmic pressure without an initial 
singularity of relativistically hot matter can cause an initial 
explosion of the universe; this namely is the cosmic vacuum 
energy connected with a specific vacuum pressure as we are 
demonstrating and specifying further down here.

2. Starting from a Pressurized Cosmic Vacuum
If one aims at the introduction of a pressurized cosmic vacuum, 

one has to take care of a thermodynamic condition by which it 
is taken account of the fact that the action of the cosmic vacuum 
pressure pvac, i.e the positive work that has been expended in 
changing the volume of a spherically symmetric universe, leads 
to a corresponding request for the loss of the vacuum energy 
ϵvac which causes this change. This condition is expressed by the 
following, in gas dynamics well known thermodynamic relation 
(see e.g. Fahr, 2022) [1]:

where R is the scale function of the universe. As shown by Fahr 
(2023) this relation is mathematically satisfied, if the following 
polytropic relation is valid between the energy density ϵvac and 
the pressure pvac of the cosmic vacuum:

Here ξ is a pure number, namely the so-called, at present 
unknown vacuum polytrope index ξ = ξvac. For normal, mono-
atomic gases for example this index is given by the number 
ξm = 5/3. In case of a vacuum pressure the exact value of the 
corresponding number here, i.e. ξ = ξvac, is, however, not yet 
known or physically prescribed at this moment, though the range 
of permitted values can drastically be reduced. So for a non-
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dR vacR3 pvac d

dR R
3

where R is the scale function of the universe. As shown by Fahr (2023) this relation is
mathematically satisfied, if the following polytropic relation is valid between the energy
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pvac   3
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vanishing, positive cosmic vacuum pressure, needed to explain 
the initial expansion of the universe, it is at least required that the 
following relation holds:

i.e. for a positive vacuum energy and a positive vacuum pressure 
it is required that ξvac ≥ 3. A positive vacuum pressure hereby 
must be requested in analogy to the thermodynamic pressure 
expressing the quantity "pressure" as the mean kinetic energy, 
i.e. a positive moment of the distribution function f(v) as function 
of the particle velocity v, - if symmetric and isotropic - given by    
                                                                                (see e.g. Chapman, 
1952, Cercignani, 1988).

Furthermore one can derive in addition from the second 
Friedman equation for an initially expanding universe with R as 
its radial scale and    > 0 (see e.g. Fahr, 2023) the result:

which for     > 0 leads to the request ξvac ˂ 5. This then permits 
the following range of polytrope values for ξvac:

where the open brackets hereby mean that the border values 
ξ = 3 and ξ = 5 must be excluded for an expanding universe 
with positive vacuum pressure, when causing an initial scale 
expansion. Hence the permitted range of values for the vacuum 
polytrope index is given by:

This result would perhaps strongly suggest a value of ξ = 4, 
which is interesting as such and also is perhaps way-paving, 
since for different reasons Fahr (2024) had derived from a 
different context the following relation for the vacuum energy as 
function of the cosmic scale:

which now with the upper suggestion for ξvac would thus yield a 
consistent solution with;

where ϵvac,o = ϵvac,o(R0(t)) is the vacuum energy density at the 
reference scale R0 = R0(t).

This however nicely fits together with a derivation of the matter 
density ρm = ρmo(R(t)/R0)

-4 which was derived by Fahr (2024) for 
the plausible case that matter in the universe is generated from 
the energy decay of the initial vacuum energy by a quantized 
matter condensation process. So things seem nicely to support 
each other. Nevertheless it would, however, be wrongly 
concluded on this basis that as result one would obtain from the 
above equations the outcome that the ratio of ϵm and ϵvac would be 
constant, even though the result perhaps first seems to indicate 
this by:

but one has to pay attention to the important point that

but it has to be clearly realized that a universe which at its 
expansion converts vacuum energy into matter, needs to have 
the quantities ρm0 and ϵvac,0 not as prefixed cosmic constants, but 
as cosmically variable quantities, variable with cosmic time t in 
any forms like:

and

The above functions of cosmic time t have been studied in 
more detail in an earlier paper by Fahr and Heyl (2024), and it 
becomes evident there that a variety of possible solutions does 
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EU of the whole universe. One may rather have to live with the 
puzzling fact that these quantities are not - as often thought: 
"cosmic constants", - but quantities variable with cosmic time t, 
in line with the earlier Machìan ideas concerning a scale-related 
behaviour of inertial cosmic masses [5].
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0) ≃ 0 and ϵvac,0(t → 0)/ρm0(t → 0)c2 ≃ ∞ !

To fullfill these latter requests we have shown that perhaps the 
following relations could be helpfull: 

where the coefficient α implies something like the cosmic time 
period of a conversion of vacuum energy into matter energy. 
This then shows that under these conditions in fact the ratio

is not a cosmic constant, but a time-variable cosmic quantity, all 
the more, if this conversion period α itself is time-dependent !
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the universe this way would be impeded which is also clearly 
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e.g. Chapman, 1952, Cercignani, 1988).
Furthermore one can derive in addition from the second Friedman equation for an

initially expanding universe with R as its radial scale and R  0 (see e.g. Fahr, 2023) the
result:
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which for R  0 leads to the request vac  5. This then permits the following range of

polytrope values for vac:
vac  3,5

where the open brackets hereby mean that the border values   3 and   5 must be
excluded for an expanding universe with positive vacuum pressure, when causing an
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m  moRt/Ro4 which was derived by Fahr (2024) for the plausible case that matter
in the universe is generated from the energy decay of the initial vacuum energy by a
quantized matter condensation process. So things seem nicely to support eachother.
Nevertheless it would, however, be wrongly concluded on this basis that as result one
would obtain from the above equations the outcome that the ratio of m and vac would be
constant, even though the result perhaps first seems to indicate this by:
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vac  m0c2
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but one has to pay attention to the important point that
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vac  3. A positive vacuum pressure hereby must be requested in analogy to the
thermodynamic pressure expressing the quantity "pressure" as the mean kinetic energy,
i.e. a positive moment of the distribution function fv as function of the particle velocity
v, - if symmetric and isotropic - given by  fv  mv2/2  v2dv  4m

3  fvv4dv  0 (see
e.g. Chapman, 1952, Cercignani, 1988).
Furthermore one can derive in addition from the second Friedman equation for an

initially expanding universe with R as its radial scale and R  0 (see e.g. Fahr, 2023) the
result:

:
which for R  0 leads to the request vac  5. This then permits the following range of

polytrope values for vac:
vac  3,5

where the open brackets hereby mean that the border values   3 and   5 must be
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initial scale expansion. Hence the permitted range of values for the vacuum polytrope
index is given by:

3  vac  5

This result would perhaps strongly suggest a value of   4, which is interesting as
such and also is perhaps way-paving, since for different reasons Fahr (2024) had
derived from a different context the following relation for the vacuum energy as function
of the cosmic scale:

vacR  vac,o   R0
R 

which now with the upper suggestion for vac would thus yield a consistent solution
with;

vacR  vac,o   R0
R 4

where vac,o  vac,oR0t is the vacuum energy density at the reference scale
R0  R0t.
This however nicely fits together with a derivation of the matter density

m  moRt/Ro4 which was derived by Fahr (2024) for the plausible case that matter
in the universe is generated from the energy decay of the initial vacuum energy by a
quantized matter condensation process. So things seem nicely to support eachother.
Nevertheless it would, however, be wrongly concluded on this basis that as result one
would obtain from the above equations the outcome that the ratio of m and vac would be
constant, even though the result perhaps first seems to indicate this by:

m
vac  mc2

vac  m0c2
vac,0

but one has to pay attention to the important point that
m0c2
vac,0  m0tc2

vac,0t
 const

vac  3. A positive vacuum pressure hereby must be requested in analogy to the
thermodynamic pressure expressing the quantity "pressure" as the mean kinetic energy,
i.e. a positive moment of the distribution function fv as function of the particle velocity
v, - if symmetric and isotropic - given by  fv  mv2/2  v2dv  4m

3  fvv4dv  0 (see
e.g. Chapman, 1952, Cercignani, 1988).
Furthermore one can derive in addition from the second Friedman equation for an

initially expanding universe with R as its radial scale and R  0 (see e.g. Fahr, 2023) the
result:

:
which for R  0 leads to the request vac  5. This then permits the following range of

polytrope values for vac:
vac  3,5

where the open brackets hereby mean that the border values   3 and   5 must be
excluded for an expanding universe with positive vacuum pressure, when causing an
initial scale expansion. Hence the permitted range of values for the vacuum polytrope
index is given by:

3  vac  5

This result would perhaps strongly suggest a value of   4, which is interesting as
such and also is perhaps way-paving, since for different reasons Fahr (2024) had
derived from a different context the following relation for the vacuum energy as function
of the cosmic scale:

vacR  vac,o   R0
R 

which now with the upper suggestion for vac would thus yield a consistent solution
with;

vacR  vac,o   R0
R 4

where vac,o  vac,oR0t is the vacuum energy density at the reference scale
R0  R0t.
This however nicely fits together with a derivation of the matter density

m  moRt/Ro4 which was derived by Fahr (2024) for the plausible case that matter
in the universe is generated from the energy decay of the initial vacuum energy by a
quantized matter condensation process. So things seem nicely to support eachother.
Nevertheless it would, however, be wrongly concluded on this basis that as result one
would obtain from the above equations the outcome that the ratio of m and vac would be
constant, even though the result perhaps first seems to indicate this by:

m
vac  mc2

vac  m0c2
vac,0

but one has to pay attention to the important point that
m0c2
vac,0  m0tc2

vac,0t
 const

vac  3. A positive vacuum pressure hereby must be requested in analogy to the
thermodynamic pressure expressing the quantity "pressure" as the mean kinetic energy,
i.e. a positive moment of the distribution function fv as function of the particle velocity
v, - if symmetric and isotropic - given by  fv  mv2/2  v2dv  4m

3  fvv4dv  0 (see
e.g. Chapman, 1952, Cercignani, 1988).
Furthermore one can derive in addition from the second Friedman equation for an

initially expanding universe with R as its radial scale and R  0 (see e.g. Fahr, 2023) the
result:

:
which for R  0 leads to the request vac  5. This then permits the following range of

polytrope values for vac:
vac  3,5

where the open brackets hereby mean that the border values   3 and   5 must be
excluded for an expanding universe with positive vacuum pressure, when causing an
initial scale expansion. Hence the permitted range of values for the vacuum polytrope
index is given by:

3  vac  5

This result would perhaps strongly suggest a value of   4, which is interesting as
such and also is perhaps way-paving, since for different reasons Fahr (2024) had
derived from a different context the following relation for the vacuum energy as function
of the cosmic scale:

vacR  vac,o   R0
R 

which now with the upper suggestion for vac would thus yield a consistent solution
with;

vacR  vac,o   R0
R 4

where vac,o  vac,oR0t is the vacuum energy density at the reference scale
R0  R0t.
This however nicely fits together with a derivation of the matter density

m  moRt/Ro4 which was derived by Fahr (2024) for the plausible case that matter
in the universe is generated from the energy decay of the initial vacuum energy by a
quantized matter condensation process. So things seem nicely to support eachother.
Nevertheless it would, however, be wrongly concluded on this basis that as result one
would obtain from the above equations the outcome that the ratio of m and vac would be
constant, even though the result perhaps first seems to indicate this by:

m
vac  mc2

vac  m0c2
vac,0

but one has to pay attention to the important point that
m0c2
vac,0  m0tc2

vac,0t
 const

vac  3. A positive vacuum pressure hereby must be requested in analogy to the
thermodynamic pressure expressing the quantity "pressure" as the mean kinetic energy,
i.e. a positive moment of the distribution function fv as function of the particle velocity
v, - if symmetric and isotropic - given by  fv  mv2/2  v2dv  4m

3  fvv4dv  0 (see
e.g. Chapman, 1952, Cercignani, 1988).
Furthermore one can derive in addition from the second Friedman equation for an

initially expanding universe with R as its radial scale and R  0 (see e.g. Fahr, 2023) the
result:

:
which for R  0 leads to the request vac  5. This then permits the following range of

polytrope values for vac:
vac  3,5

where the open brackets hereby mean that the border values   3 and   5 must be
excluded for an expanding universe with positive vacuum pressure, when causing an
initial scale expansion. Hence the permitted range of values for the vacuum polytrope
index is given by:

3  vac  5

This result would perhaps strongly suggest a value of   4, which is interesting as
such and also is perhaps way-paving, since for different reasons Fahr (2024) had
derived from a different context the following relation for the vacuum energy as function
of the cosmic scale:

vacR  vac,o   R0
R 

which now with the upper suggestion for vac would thus yield a consistent solution
with;

vacR  vac,o   R0
R 4

where vac,o  vac,oR0t is the vacuum energy density at the reference scale
R0  R0t.
This however nicely fits together with a derivation of the matter density

m  moRt/Ro4 which was derived by Fahr (2024) for the plausible case that matter
in the universe is generated from the energy decay of the initial vacuum energy by a
quantized matter condensation process. So things seem nicely to support eachother.
Nevertheless it would, however, be wrongly concluded on this basis that as result one
would obtain from the above equations the outcome that the ratio of m and vac would be
constant, even though the result perhaps first seems to indicate this by:

m
vac  mc2

vac  m0c2
vac,0

but one has to pay attention to the important point that
m0c2
vac,0  m0tc2

vac,0t
 const

vac  3. A positive vacuum pressure hereby must be requested in analogy to the
thermodynamic pressure expressing the quantity "pressure" as the mean kinetic energy,
i.e. a positive moment of the distribution function fv as function of the particle velocity
v, - if symmetric and isotropic - given by  fv  mv2/2  v2dv  4m

3  fvv4dv  0 (see
e.g. Chapman, 1952, Cercignani, 1988).
Furthermore one can derive in addition from the second Friedman equation for an

initially expanding universe with R as its radial scale and R  0 (see e.g. Fahr, 2023) the
result:

:
which for R  0 leads to the request vac  5. This then permits the following range of

polytrope values for vac:
vac  3,5

where the open brackets hereby mean that the border values   3 and   5 must be
excluded for an expanding universe with positive vacuum pressure, when causing an
initial scale expansion. Hence the permitted range of values for the vacuum polytrope
index is given by:

3  vac  5

This result would perhaps strongly suggest a value of   4, which is interesting as
such and also is perhaps way-paving, since for different reasons Fahr (2024) had
derived from a different context the following relation for the vacuum energy as function
of the cosmic scale:

vacR  vac,o   R0
R 

which now with the upper suggestion for vac would thus yield a consistent solution
with;

vacR  vac,o   R0
R 4

where vac,o  vac,oR0t is the vacuum energy density at the reference scale
R0  R0t.
This however nicely fits together with a derivation of the matter density

m  moRt/Ro4 which was derived by Fahr (2024) for the plausible case that matter
in the universe is generated from the energy decay of the initial vacuum energy by a
quantized matter condensation process. So things seem nicely to support eachother.
Nevertheless it would, however, be wrongly concluded on this basis that as result one
would obtain from the above equations the outcome that the ratio of m and vac would be
constant, even though the result perhaps first seems to indicate this by:

m
vac  mc2

vac  m0c2
vac,0

but one has to pay attention to the important point that
m0c2
vac,0  m0tc2

vac,0t
 const

but it has to be clearly realized that a universe which at its expansion converts vacuum
energy into matter, needs to have the quantities m0 and vac,0 not as prefixed cosmic
constants, but as cosmically variable quantities, variable with cosmic time t in any forms
like:

m0  m0t
and

vac,0  vac,0t

The above functions of cosmic time t have been studied in more detail in an earlier
paper by Fahr and Heyl (2024), and it becomes evident there that a variety of possible
solutions does exist, alltogether making it a highly nontrivial problem to answer the
question concerning the total mass MU or the total energy EU of the whole universe. One
may rather have to live with the puzzling fact that these quantities are not - as often
thought: "cosmic constants", - but quantities variable with cosmic time t, in line with the
earlier Machìan ideas concerning a scale-related behaviour of inertial cosmic masses
(see Mach, 1914).
In order to fullfill for instance the above mentioned request for an initially explosive

Big-Bang- universe one had to have at the beginning of cosmic time t  0 no or nearly
no cosmic matter at all compressed compressed by its gravitational pull in a singularity,
but only a dominating cosmic vacuum energy. This means one should rather have as
initial conditions : m0  m0t  0  0 and vac,0t  0/m0t  0c2   !
To fullfill these latter requests we have shown (Fahr and Heyl, 2024) that perhaps the

following relations could be helpfull:
mR, t  m,0  R/R04  exp t

t0  1
and:

vacR, t  vac,0  R/R04  exp1  t
t0 

where the coefficient  implies something like the cosmic time period of a conversion of
vacuum energy into matter energy. This then shows that under these conditions in fact

the ratio

mR,T
vacR,T

 m,0
vac,0 exp t

t0  1  1  t
t0   m,0

vac,0 exp2a t
t0  1

is not a cosmic constant, but a time-variable cosmic quantity, all the more, if this
conversion period  itself is time-dependent !

Conclusions

We have shown in this paper above that the initial explosion of the universe cannot be
caused by a singularity of overdense, hot cosmic matter, because the overdense matter
would have to be extremely hot and highly relativistic. This would, however, just
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may rather have to live with the puzzling fact that these quantities are not - as often
thought: "cosmic constants", - but quantities variable with cosmic time t, in line with the
earlier Machìan ideas concerning a scale-related behaviour of inertial cosmic masses
(see Mach, 1914).
In order to fullfill for instance the above mentioned request for an initially explosive

Big-Bang- universe one had to have at the beginning of cosmic time t  0 no or nearly
no cosmic matter at all compressed compressed by its gravitational pull in a singularity,
but only a dominating cosmic vacuum energy. This means one should rather have as
initial conditions : m0  m0t  0  0 and vac,0t  0/m0t  0c2   !
To fullfill these latter requests we have shown (Fahr and Heyl, 2024) that perhaps the

following relations could be helpfull:
mR, t  m,0  R/R04  exp t

t0  1
and:

vacR, t  vac,0  R/R04  exp1  t
t0 

where the coefficient  implies something like the cosmic time period of a conversion of
vacuum energy into matter energy. This then shows that under these conditions in fact

the ratio

mR,T
vacR,T

 m,0
vac,0 exp t

t0  1  1  t
t0   m,0

vac,0 exp2a t
t0  1

is not a cosmic constant, but a time-variable cosmic quantity, all the more, if this
conversion period  itself is time-dependent !

Conclusions

We have shown in this paper above that the initial explosion of the universe cannot be
caused by a singularity of overdense, hot cosmic matter, because the overdense matter
would have to be extremely hot and highly relativistic. This would, however, just
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reflected in the two Friedman differerential equations [1]. As we 
show here, an initial centrifugal, explosive event of the universe 
can only cosmically and physically be caused by a pressurized 
cosmic vacuum with properties that we derive as function of 
the scale R and time t of the universe in this article. We can 
show that a conversion process converting vacuum energy into 
quantized massive matter can be discussed which explains why 
at present times we find a partially materialized universe with 
stars, galaxies and clusters of galaxies in it as consequence of 
the ongoing vacuum energy decay at the ongoing expansion of 
the universe [6-14].
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