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Abstract
The dissociation of a protein-ligand complex (PL) can be represented by the equilibrium reaction PL ⇌ P + L, with the 
equilibrium relationship defined by the dissociation constant K such that K =         . In this equation [P] = [P]T – [PL] and 
[L] = [L]T – [PL], where [P]T and [L]T represent the initial total concentrations of the protein and ligand, respectively. 

Case1
If we substitute [P]T – [PL] for [P] and [L]T – [PL] for [L], then equilibrium relationship becomes    
From this, it follows that  

Case2
If we substitute [L]T – [PL] for [L], [P]T – [PL] for [P], and [P]T – [P] for [PL], the equilibrium relationship becomes         
                                          From this it follows that K – [L] = K FFP – FBP [L] (which is an incorrect result).

Conclusion
To avoid obtaining incorrect results, substitutions for ' [PL] ' should not be used in conjunction with substitutions for ' [L] 
' and ' [P] '.
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1. Introduction
A protein in solution can exist in two forms: bound and unbound. 
Depending on the protein's affinity for the ligand, a portion of the 
protein may bind to the ligand while the rest remains unbound. 
If the binding between the protein and ligand is reversible, a 
chemical equilibrium is established between the bound and 
unbound states, represented by the reaction:
P (protein) + L (ligand) ⇌ PL (protein-ligand complex)
The dissociation constant for this equilibrium is:

In this equation, [P] = [P]T – [PL] and [L] = [L]T – [PL], where 
[P]T and [L]T represent the initial total concentrations of the 
protein and ligand, respectively. The dissociation constant K is 
a key measure of a protein's affinity for its ligand. It indicates the 
concentration of the protein needed to achieve a significant level 
of interaction with the ligand. Specifically, when the protein 
concentration equals K, 50% of the ligand will be bound in the 
protein-ligand complex, and the remaining 50% will be free 
"[L]". This is true when the protein is present in excess relative 

to the ligand. Generally, for effective ligand binding, proteins 
should have a K value of 1×10−6 M or lower. Smaller K values 
indicate stronger binding affinity, while higher K values suggest 
weaker binding.

2. Case 1
Using the equilibrium relationship K =             and substituting,
[P]T – [PL] for [P]
[L]T – [PL] for [L] Gives:

K [PL] = [P] T [L] T – [P] T [PL] – [PL] [L] T + [PL] 2

Dividing throughout by [PL] gives:

But
[P]T = [PL] + [P]
And, therefore:
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From this it follows that:

Rearranging:

Discussion
This describes a rectangular hyperbola with key properties:
● Saturation: When [P]≫K, [PL] approaches [L]T

●  Half-saturation: When [P] = K, [PL] =      .  This means 
the dissociation constant equals the free protein concentration 
needed for 50% of the ligand to be bound.
● Linearity: When [P] ≪ K, [PL] is roughly proportional to [P] 
with a slope of        .

3. Case 2
Using the equilibrium relationship K =            and substituting,
[P]T – [PL] for [P]
[L]T – [PL] for [L] 
[P]T – [P] for [PL] Gives:

K ([P] T – [P]) = ([P] T – [PL]) ([L] T – [PL])
K [P]T – K [P] = [P]T [L] T – [P]T [PL] – [PL] [L]T + [PL] 2

Rearranging:
K [P]T – [P]T [L]T + [P]T [PL] = – [PL] [L]T + [PL] 2 + K [P]
[P]T (K – [L]T + [PL]) = [PL] (– [L]T + [PL]) + K [P]

Further, if we substitute:
[L]T = [PL] + [L]
Then we get:

[P]T (K – [PL] – [L] + [PL]) = [PL] (–[PL] – [L] + [PL]) + K [P]

 [P]T (K – [L]) = – [PL] [L] + K [P]

Which is the same as:
[P]T (K – [L]) = K [P] – [PL] [L]

Labeling         as FFP (fraction of free protein) and       as 
FBP (fraction of bound protein), the above expression can be 
rewritten as:

K – [L] = K FFP – FBP [L] ….. [2]

Discussion
● If FFP = FBP = 1, then the left-hand side (LHS) equals the right-
hand side (RHS), making Equation (2) true.
● If FFP = FBP ≠ 1, then the left-hand side (LHS) does not equal 
the right-hand side (RHS), rendering Equation (2) invalid.
● Let's verify the condition "FFP = FBP = 1."
According to the protein conservation law:
[P]T = [PL] + [P]
From this, we get:
1 = FBP + FFP
If we assume FBP = FFP =1, we get:
1 = 2
This shows that the condition FFP = FBP = 1 is impossible, since 
1 is not equal to 2.
In fact, the only way it can happen that K – [L] = K – [L] is if 
both FFP = FBP =1.
Since FFP = FBP ≠ 1, Equation (2) is not valid.

4. Conclusion
In Case 1, the substitutions correctly lead to:

In Case 2, the substitutions produce an incorrect result:
K – [L] = K FFP – FBP [L]
Therefore, Case 1 is correct, while Case 2 is not. Substituting 
[PL] along with substitutions for [L] and [P] should be avoided 
to prevent incorrect results.
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