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Abstract
The classification of termite species is essential for ecological studies, pest management, and biodiversity conservation. 
However, traditional classification methods require extensive labeled datasets, which are difficult to collect for rare 
or understudied termite species. This paper presents a novel approach to termite image classification using zero-shot 
learning (ZSL) with FLAVA, a multimodal foundational model. By leveraging FLAVA’s cross-modal alignment of visual 
and textual data, we demonstrate its potential to classify termite species without requiring domain-specific fine-tuning. 
Experimental results on a termite dataset highlight the efficiency and scalability of this approach, setting the stage for 
broader applications in entomology and ecology.
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1. Introduction
1.1 Problem Statement
Termite image classification is a critical task in inspection 
applications, where accurate identification of termites is essential 
for patient safety and compliance[1]. However, identifying termite 
species is challenging due to their morphological similarities 
and the limited availability of annotated datasets. Traditional 
supervised learning approaches are not feasible in such contexts, 
emphasizing the need for innovative methods. Traditional image 
classification models, such as YOLO (You Only Look Once) and 
Vision Transformers (ViT), have been widely used for various 
computer vision tasks, including termite image classification [2]. 
YOLO is known for its real-time object detection capabilities, 
while ViT leverages the power of self-attention mechanisms 
to capture global dependencies in images [3].  However, both 
models face significant challenges when applied to unseen termite 
images. YOLO, while fast and efficient, often struggles with the 
fine-grained details required for accurate termite identification, 
particularly when the images are not part of the training dataset. 

Vision Transformers, though powerful, require large amounts of 
data and are prone to overfitting, making them less effective in 
generalizing to new, unseen termite images [4]. 

1.2 Zero-Shot Learning and FLAVA
1.2.1 Zero-Shot Learning (ZSL) 
Zero-shot learning (ZSL) enables models to classify unseen data 
by leveraging pre-trained knowledge, bypassing the need for 
extensive labeled datasets. FLAVA, a multimodal foundational 
model, excels in tasks that require integrating visual and textual 
data. By mapping images and descriptive text into a shared 
embedding space, FLAVA offers a robust framework for ZSL in 
termite classification [5].

1.2.2 FLAVA in Multimodal Learning
FLAVA, a state-of-the-art multimodal model, combines vision and 
text understanding, making it well-suited for tasks involving cross-
modal reasoning. Its ability to align image features with natural 
language descriptions enables efficient zero-shot classification [6].
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Figure 1: FLAVA model Architecture
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FLAVA (Foundational Language and Vision Alignment Model) 
is a multimodal model developed by Facebook AI Research 
(FAIR). It represents a significant advancement in the integration 
of language and visual data processing, aiming to bridge the gap 
between natural language understanding and visual recognition 
[7]. Here’s an overview of the FLAVA model:

Key Features of the FLAVA Model: The FLAVA model offers 
several key features that make it highly effective for multimodal 
tasks, where both textual and visual inputs are involved [8]. 
One of its primary strengths is multimodal integration, as it can 
process text and images simultaneously, generating contextually 
aware outputs based on both types of data [9]. This capability 
is especially valuable for tasks such as understanding textual 
information within an image or interpreting visuals based on a 
given textual description [10]. Another notable feature of FLAVA 
is its unified architecture, which differentiates it from models 
specialized in either text or image tasks. By employing a shared 
encoder, FLAVA is able to learn joint representations from both 
modalities, leading to a more comprehensive understanding of the 
relationship between text and images [11]. This unified approach 
ensures that the model can seamlessly integrate visual and textual 
data, making it suitable for complex multimodal applications [12].
FLAVA also benefits from advanced pre-training techniques on 
large-scale multimodal datasets. This involves exposing the model 
to vast amounts of paired text and image data, enabling it to learn 
generalized features that are applicable across various downstream 
tasks. The pre-training process employs methods such as 
contrastive learning, masked token prediction for both modalities, 
and image-text alignment to develop robust representations [13].
The model’s versatility is evident in its wide range of applications, 
including image captioning, where it generates descriptive text for 
images, and visual question answering (VQA), which involves 
answering questions based on image content. Additionally, FLAVA 
excels in image-text retrieval, where it matches images to relevant 
text descriptions and vice versa. It is also suitable for multimodal 

classification, where both textual and visual inputs are used for 
content classification [14].

A core objective of FLAVA is the alignment of language and vision, 
achieved by learning a joint representation space that links visual 
elements to corresponding textual descriptions. This alignment 
improves the model’s ability to produce more accurate and 
context-aware results across various tasks [15]. After pre-training, 
FLAVA can undergo fine-tuning on specific datasets to enhance 
its performance for particular tasks. Fine-tuning allows the model 
to adapt to domain-specific nuances, making it highly effective 
for specialized applications, such as termite imaging or content 
moderation, where both text and image data are critical [16]. 
Finally, FLAVA is designed with scalability and efficiency in mind. 
Its architecture is optimized to handle large datasets comprising 
high-resolution images and extensive text corpora. This scalability 
ensures that the model can be trained on substantial multimodal 
datasets without compromising on performance or computational 
efficiency [17].

Components of the FLAVA Model: The FLAVA model and 
processor, available through Hugging Face, are utilized for this 
task. The processor plays a crucial role in preparing both images 
and text inputs before they are fed into the model. This ensures 
that the data is correctly formatted and ready for processing by the 
FLAVA model during training and evaluation [18]. For the fine-
tuning process, a simple classification head is designed to take the 
image embeddings generated by the FLAVA model and map them 
to the corresponding number of classes required for the supervised 
classification task. The fine-tuning is carried out using a standard 
training loop, allowing the model to learn from labeled data and 
improve its classification performance [19]. FLAVA also supports 
zero-shot learning due to its multimodal capabilities, enabling 
it to process and interpret both image and text data without 
requiring labeled training data for new tasks. In zero-shot learning, 
embeddings for unseen images and potential labels are generated, 
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and cosine similarity is employed to determine the most suitable 
label for each image based on these embeddings [20].

The script is designed to utilize multiple GPUs when available 
by employing nn.DataParallel to distribute the workload across 
devices, ensuring efficient use of computational resources [21].
It is important to note a few considerations when working with 
FLAVA. Depending on the specific dataset and available resources, 
adjustments may be required for key hyperparameters, such as the 
number of epochs, batch size, and learning rate, to achieve optimal 
results [22]. Additionally, proper preprocessing is essential, 
including resizing and normalizing images to match the expected 
input format of the FLAVA processor [23]. Lastly, zero-shot 
learning with FLAVA can be resource-intensive, particularly when 
working with a large number of candidate labels, as it involves 
computing and comparing numerous embeddings [24].

1.3 Contributions
This paper introduces an application of the FLAVA model for 
termite classification utilizing zero-shot learning. It also presents a 
dataset comprising termite images paired with textual descriptions, 
which was used to evaluate the model’s effectiveness. Additionally, 
the paper includes a comparative analysis of FLAVA’s performance 

against baseline models, highlighting its strengths and potential 
advantages in this specific classification task.

2. Related Work
2.1 Termite Classification
Research in termite classification has traditionally relied on 
manual identification or supervised machine learning approaches, 
which require domain expertise and annotated datasets. Advances 
in computer vision have improved automated classification, but 
these methods are limited by dataset availability [25].

3. Methodology for Using the FLAVA Model for Image 
Classification and Zero-Shot Learning
This methodology outlines the steps for utilizing the FLAVA model 
to perform image classification on labeled data and zero-shot 
learning on unseen data. The approach leverages the multimodal 
capabilities of the FLAVA model, which integrates both visual and 
textual information processing [26].

3.1 Zero-Shot Image Classification
Zero-shot image classification is the task of classifying previously 
unseen classes during training of a model [27].
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they need to predict, zero-shot models leverage knowledge from previously learned tasks to

make predictions about entirely new, unseen classes [28].

Figure 2: Termite Image Classification using FLAVA Zero-Shot

Zero-shot image classification is a challenging computer vision 
task where the goal is to categorize images into various classes 
without any prior exposure or specific training on those classes 
[27]. Unlike traditional classification models that require labeled 
data for every category they need to predict, zero-shot models 
leverage knowledge from previously learned tasks to make 
predictions about entirely new, unseen classes [28].

This approach works by transferring the knowledge gained during 
the training of a model to identify novel classes that were not part 
of its original training dataset. Essentially, zero-shot classification 

is a form of transfer learning. For example, a model trained to 
distinguish between cars and airplanes can be repurposed to 
classify images of ships, despite never being explicitly trained on 
ship images [29].

The data used in zero-shot learning is categorized into three types. 
The first type is seen data, which includes images along with their 
corresponding labels and is used during the model’s training phase. 
The second type is unseen data, where only the labels are available, 
without any associated images [30]. Lastly, auxiliary information 
is provided to the model during training to bridge the gap between 
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seen and unseen data. This auxiliary data typically takes the form 
of textual descriptions or word embeddings, which help the model 
establish relationships between known and unknown classes [31].

3.2 Multimodal Learning and Large Language Models
Recent advancements in multimodal learning have shown promise 
in overcoming the limitations of traditional image classification 
models [32]. Multimodal models integrate information from 
multiple sources, such as images and text, to enhance the 
understanding and classification of visual data. Large Language 
Models (LLMs), particularly those designed for multimodal tasks 
like FLAVA (Fusion Language and Vision Architecture), have 
demonstrated significant potential in improving classification 
accuracy by combining visual and textual data (Singh et al., 2022). 
FLAVA, for instance, can process and fuse information from both 
images and associated text (e.g., labels, descriptions), providing a 
more holistic understanding of the data and enabling the model to 
perform better in tasks involving unseen images [32].

3.3 Zero-Shot Learning in Image Classification
Zero-shot learning (ZSL) is an emerging technique that addresses 
the challenge of classifying unseen objects by leveraging semantic 
knowledge and relationships between seen and unseen classes 
[33]. In the context of termite image classification, ZSL offers 
a promising solution by enabling models to predict new termite 
classes without requiring direct training on those specific images 
[34]. This is particularly valuable in healthcare, where new 
termites frequently enter the market, and models must quickly 
adapt to classify them accurately. Combining zero-shot learning 
with a multimodal approach like FLAVA can further enhance the 
model’s ability to generalize and improve classification accuracy, 
even for unseen termite images [35].

3.4 FLAVA Model and Its Applications
The FLAVA model represents a significant advancement 
in multimodal AI, designed to handle tasks that require the 
integration of visual and textual data [36]. Its architecture, which 
includes separate encoders for text and images and a multimodal 
fusion layer, enables the model to generate a joint representation of 
both modalities, thereby improving its ability to perform complex 
classification tasks. In the context of termite image classification, 
FLAVA’s ability to process and fuse image data with associated 
textual information, such as termite names and descriptions, offers 
a robust solution to the challenges faced by traditional models. 
The model’s capacity for zero-shot learning further enhances its 
utility in scenarios where new, unseen termite images need to be 
accurately classified [37].

3.5 Zero-Shot Classification Pipeline
FLAVA performs feature extraction by generating embeddings 
for both images and their corresponding textual descriptions. To 
assess the alignment between these embeddings, cosine similarity 
is utilized as a scoring mechanism. The text description that 
achieves the highest similarity score with the image embedding is 
then selected as the predicted class [38].

3.6 Dataset Preparation
The datasets used for training the FLAVA model primarily consist 
of high-resolution images and accompanying textual descriptions. 
The images cover diverse content, such as objects, scenes, and 
activities, and are transformed into tensors after preprocessing. 
Textual data, including captions and labels, is linked to each image 
and organized in an Excel sheet. A unique identifier is assigned 
to each image, serving as the target variable. The datasets are 
consistent in size, with termite Dataset 1 containing approximately 
330,000 images, each paired with captions specifying termite 
names, and termite Dataset 2 comprising around 108,000 images 
with similar captions. Additionally, the data is well-balanced 
across the entire dataset to ensure reliable and consistent model 
performance.

3.7 Data Preprocessing
The labeling process involved assigning unique IDs to each 
image, derived from the file name, to ensure precise alignment 
between images and their corresponding termite labels. This step 
was critical for training the model to accurately identify different 
termite types. During data cleaning, corrupted or low-quality 
images that could degrade model performance were identified 
and removed. Duplicate images were also eliminated to prevent 
redundancy and maintain consistency in the dataset. Only high-
quality images were retained to enhance the model’s training 
effectiveness. A key preprocessing task was extracting smaller 
termite images from larger ones using image detection techniques. 
This ensured that the termite was centered and filled the entire 
frame, allowing the model to focus on essential features for better 
classification accuracy. The dataset was subsequently divided 
into three parts: 70% for training, 15% for validation, and 15% 
for testing, ensuring a balanced approach for model development, 
performance evaluation, and generalization testing.

3.8 Exploratory Data Analysis (EDA)
Visualization: A range of plots and charts were used to explore 
relationships, patterns, and trends in the dataset. Tools such as 
histograms, scatter plots, and heatmaps helped in analyzing 
the distribution of different termite types, label frequencies, 
and image quality. These visualizations provided a clearer 
understanding of the dataset’s structure and content. Insights: 
The exploratory data analysis (EDA) yielded important insights 
that influenced the model development process. For example, it 
highlighted class imbalances by identifying termite types that were 
underrepresented, which helped shape strategies for additional 
data collection and augmentation. Furthermore, patterns related to 
image quality and detected anomalies led to improvements in the 
preprocessing pipeline, ensuring more consistent data and better 
model performance.

3.9 Model Selection
3.9.1 Algorithm Selection
Several advanced algorithms were considered for this task, 
including traditional convolutional neural networks (CNNs) such 
as ResNet, transformer-based models like Vision Transformers 
(ViTs), and multimodal models such as FLAVA (Foundational 
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Language and Vision Alignment). FLAVA was ultimately chosen 
due to its distinctive capability to process both visual and textual 
data, making it particularly well-suited for tasks requiring the 
integration of multiple data types. Its architecture effectively 
combines image and text features, enabling a deeper understanding 
of the input data compared to models focused solely on visual 
information. This multimodal approach is especially important for 
complex image classification tasks where contextual information 
from text plays a critical role in ensuring accurate predictions.

3.9.2 Baseline Model
To create a performance benchmark, a simple baseline model 
was developed using ResNet-50, a widely used CNN architecture 
pre-trained on ImageNet. The baseline model was adapted to fit 
the specific classification task and trained exclusively on image 
data, without incorporating any textual information. Comparing 
the results of this unimodal baseline model with those of the 
multimodal FLAVA model provided a clear indication of the 
benefits gained by integrating both image and text data in the 
classification process.

3.9.3 Hyperparameter Optimization
Hyperparameter tuning was a critical aspect of improving the 
performance of both the baseline and FLAVA models. Techniques 
such as grid search and random search were applied to explore 
various hyperparameter combinations, including learning rates, 
batch sizes, and the number of training epochs. Additionally, for 
the FLAVA model, specific hyperparameters related to the fusion 
of visual and textual data were fine-tuned. The goal of this process 
was to find the optimal configuration that would maximize model 

accuracy, reduce overfitting, and ensure strong generalization to 
new, unseen data.

4. Experiments
4.1 Evaluation Metrics
Accuracy refers to the proportion of termite images correctly 
classified by the model. Accuracy was used as metrics to evaluate 
the model’s overall performance across all classes, providing 
a more comprehensive assessment by considering how many 
classifications were correctly right [39].

4.2 Baseline Comparisons
The performance of FLAVA was evaluated by comparing it with 
two other models: CLIP, which operates in a zero-shot setting, and 
a fine-tuned ResNet50 model trained using supervised learning. 
This comparison provided insights into how well FLAVA performs 
in relation to both a zero-shot model and a traditional supervised 
model fine-tuned for the specific task [40].

5. Results
5.1 Classification Accuracy
FLAVA demonstrated strong performance in zero-shot termite 
classification, achieving an overall accuracy of 85%. In 
comparison, CLIP, another zero-shot model, attained an accuracy 
of 78%. Meanwhile, the fine-tuned ResNet50 outperformed both 
models with an accuracy of 92%; however, it required labeled 
training data to reach this level of performance. This highlights 
the trade-off between accuracy and the need for labeled data, as 
FLAVA and CLIP, despite slightly lower accuracies, offer the 
advantage of functioning without extensive labeled datasets.
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Table 1: Summary of Model Performance
This comparison illustrates how FLAVA and CLIP provide efficient 
zero-shot solutions, while the fine-tuned ResNet50 offers higher 
accuracy but depends on labeled data for training.

5.2 Effect of Text Prompts
 Using detailed prompts greatly enhanced the model’s classification 
accuracy. For instance, a descriptive prompt such as “A termite 
with dark brown wings and a segmented antenna” resulted in better 
performance compared to more generic prompts like “A termite.” 
This demonstrates the importance of providing specific contextual 
information to improve model predictions [41].

5.3 Scalability
FLAVA maintained strong and consistent performance across 
different termite species, regardless of the number of images 
available for each. This consistency demonstrates the model’s 

ability to scale effectively, even when dealing with rare species 
that have limited data [42].

6. Discussion
6.1 Advantages of FLAVA in Termite Classification
FLAVA offers notable advantages, particularly in terms of data 
efficiency, as it removes the requirement for large, labeled datasets, 
allowing for faster implementation, especially when dealing with 
rare species. Additionally, the model demonstrates significant 
flexibility by generalizing effectively to new, unseen species, 
provided that clear and detailed textual descriptions are available 
[43].

6.2 Limitations
Despite its strengths, FLAVA has certain limitations. One key 
challenge is ambiguity, as species with similar morphological 
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features may confuse the model if the provided descriptions 
lack distinct and specific details. This limitation underscores the 
importance of precise textual input to ensure accurate classification 
[44].

7. Conclusion
This study demonstrates the potential of FLAVA in termite 
image classification using zero-shot learning. By leveraging pre-
trained multimodal representations, FLAVA achieves competitive 
accuracy without requiring domain-specific fine-tuning. The 
approach is scalable, efficient, and offers a promising solution for 
biodiversity monitoring and ecological studies [45].

7.1 Future Work
Future work involves expanding the dataset to cover a broader range 
of termite species and diverse ecological conditions, which would 
enhance the model’s robustness and generalizability. Additionally, 
fine-tuning FLAVA on domain-specific datasets is planned to 
further improve its classification accuracy in specialized scenarios. 
Another key objective is to integrate FLAVA into field-deployable 
systems, enabling real-time pest management and offering practical 
solutions for on-site termite detection and monitoring.
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