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Abstract
In this paper, we describe our submission to the EXIST-2024 contest. We participated in Task 1: "Sexism Identification in 
Tweets" in both English and Spanish. To classify the tweets for sexist content, we developed various models by altering the 
machine learning classifier, feature type (word/character n-grams), feature quantity, and text preprocessing steps. We then 
vectorized the text using the TF-IDF embedding technique. After training these configurations on the training dataset, we 
selected the best models based on accuracy and F1-score on the development set and used them to predict the test labels. 
Our top-performing model achieved an F1 score of 72.23, securing 39th place out of 70 participants.

1. Introduction
The identification of sexism in social networks has become a 
critical challenge in the field of Natural Language Processing 
(NLP). Detecting and classifying sexist content in social media 
posts is crucial for promoting respectful and inclusive online 
environments. This task holds significance not only for platforms 
managing content but also for addressing broader societal 
concerns, such as curbing the spread of harmful stereotypes and 
promoting gender equality [1].

Social networks have become central platforms for activism and 
global movements, including MeToo, 8M, and Time’sUp. These 
movements have empowered women worldwide to share their 
experiences of abuse, discrimination, and sexism. While social 
media amplifies these voices, it also serves as a breeding ground 
for sexism and other forms of disrespectful behavior [2]. As such, 
developing automated tools for detecting sexism in social networks 
is crucial. These tools can assist in identifying and flagging sexist 
content in real-time, contributing to content moderation and 
enabling an understanding of how sexism manifests in online 
discourse.

In this context, we describe our participation in the EXIST-2024 
contest where we focused on Task 1: "Sexism Identification in 
Tweets" in English and Spanish [3,4]. Our approach involved 
constructing multiple models by varying several components: the 
machine learning classifier, the type of features (word or character 
n-grams), the quantity of features, and the preprocessing applied 

to the text data. We vectorized the text using the Term Frequency-
Inverse Document Frequency (TF-IDF) embedding technique.

The relevance of this task is heightened by the increasing volume 
of user-generated content on social media platforms, where rapid 
identification and intervention in cases of sexist content can 
greatly influence the safety and user experience. By combining 
preprocessing, feature extraction, and various machine learning 
techniques, our approach adds to ongoing efforts in creating robust 
systems for detecting sexist language.

1.1 Background
1.1.1 Feature Extraction
Feature selection plays a crucial role in text classification tasks, 
as it helps improve model performance by identifying the most 
informative elements from the text. In our approach to sexism 
identification, we focused on selecting features based on two 
primary types: word n-grams and character n-grams.

1.1.2 Word and Character N-grams
Word n-grams refer to sequences of words that appear together in 
the text, capturing syntactic structures and contextual relationships. 
By using sequences of words, n-grams enable models to better grasp 
the semantic meaning carried by word combinations. For instance, 
in a bigram model, pairs of consecutive words are analyzed, while 
a trigram model examines sequences of three words. Using the 
sentence "The quick brown fox jumps over the lazy dog," bigrams 
would include "The quick," "quick brown," "brown fox," and so 
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on, while trigrams would cover "The quick brown," "quick brown 
fox," and so forth.

However, word n-grams have limitations, particularly when 
dealing with sparse data and out-of vocabulary words, which 
are common in social media text. To address these challenges, 
we applied TF-IDF weighting to emphasize rare but informative 
n-grams and downplay more common but less useful ones.

Character n-grams, particularly those with word boundaries (char-
wb), divide text into sequences of characters while preserving word 
boundaries. This technique excels in capturing morphological 
patterns and managing text variations such as typos, slang, and 
informal language that are common in social media. For example, 
character n-grams of length six from the word "identification" 
might include "identi," "dentif," and "entifi." The inclusion of 
word boundaries allows the model to maintain word integrity 
while learning from character-level patterns.

Our experiments showed that character n-grams of medium length 
(around six characters) consistently outperformed word n-grams. 
This suggests that character n-grams are better suited for capturing 
the nuanced morphological features and informal expressions 
typical of sexist language. Their ability to handle different linguistic 
forms and idiomatic expressions was particularly beneficial for 
our dataset, which included a diverse range of colloquial sexist 
remarks.

1.1.3 Comparative Analysis
Through extensive experimentation, we found that models 
using character n-grams with word boundaries achieved higher 
accuracy and F1 scores than those using word n-grams alone. This 
demonstrates the effectiveness of character n-grams in capturing 
subtle and context-dependent expressions of sexism that may not 
be detected by word-level features.

1.1.4 TF-IDF Embeddings
To optimize feature selection, we used the Term Frequency-
Inverse Document Frequency (TF-IDF) technique. TF-IDF 
helps to quantify the significance of each n-gram by balancing 
its occurrence within a document against its frequency across 
the dataset, emphasizing informative features that contribute to 
classification.

1.1.5 Text Embeddings
Text embeddings are a method for representing text in a continuous 
vector space, which allows algorithms to process and analyze text 
data effectively. These embeddings capture both semantic and 
syntactic similarities between words or documents, aiding a variety 
of NLP tasks, such as sentiment analysis, document classification, 
and information retrieval.

1.1.6 Types of Text Embeddings
There are different types of text embeddings, each suited to specific 
tasks:

• Word Embeddings Word embeddings, like Word2Vec and 
GloVe, map individual words to high dimensional vectors 
based on their contextual use. Words with similar meanings, 
such as "king" and "queen," are positioned close together in 
the vector space. Word embeddings are highly effective for 
tasks that require understanding word semantics.

• Contextualized Word Embeddings Contextualized word 
embeddings, generated by models like ELMo, BERT, and 
GPT, provide representations that adapt to a word’s context in a 
sentence. Unlike static embeddings, these models can capture 
the different meanings of polysemous words, such as "bank" 
in the phrases "bank of a river" and "banking institution." This 
context sensitivity makes them especially useful for tasks like 
named entity recognition and machine translation.

• Document Embeddings Document embeddings extend the 
concept of word embeddings to longer text units, such as 
sentences or paragraphs. Techniques like Doc2Vec and 
Universal Sentence Encoder provide fixed-length vectors that 
represent the entire text, useful for document classification 
and clustering tasks.

1.1.7 Significance in NLP
Text embeddings represent a significant advancement in NLP 
by providing dense and continuous text representations, which 
traditional bag-of-words models lack. Embeddings handle large 
vocabularies efficiently and capture intricate relationships between 
words, greatly improving the performance of various NLP tasks.

1.1.8 TF-IDF Embeddings
In this study, we applied the TF-IDF (Term Frequency-Inverse 
Document Frequency) embedding technique to convert text into 
numerical form for model training [5].

TF-IDF is a widely used method that calculates the importance of 
words by combining their frequency within a document with their 
rarity across the entire dataset. Words with high TF-IDF scores are 
considered more informative for the classification task.

The TF-IDF (Term Frequency-Inverse Document Frequency) 
score is calculated as follows:
 TF-IDF(t,d,D) = TF(t,d) × IDF(t,D)                 (1)

By employing these diverse embedding techniques, we aimed 
to capture the rich semantic and syntactic features of the text, 
enhancing the performance of our models in identifying and 
classifying sexist content in social media posts.

1.2 Machine Learning Classifiers
In our approach, we experimented with several machine learning 
classifiers to identify the most effective model for sexism 
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identification. Each classifier brings specific strengths, and the 
following are the key classifiers we employed:
• Random Forest Classifier (RandomForestClassifier): An 

ensemble learning method that constructs multiple decision 
trees and outputs the majority vote, known for high accuracy 
and resistance to overfitting [6,7].

• Extra Trees Classifier (ExtraTreesClassifier): An ensemble 
model that builds unpruned decision trees from random 
subsets of the data, enhancing model robustness [8]. 

• LightGBM Classifier (LGBMClassifier): A gradient boosting 
framework that grows trees leaf-wise, designed for efficiency 
and scalability in large datasets [9].

• AdaBoost Classifier (AdaBoostClassifier): A boosting 
algorithm that focuses on correcting the errors of previous 
classifiers, increasing model accuracy [10].

• Bernoulli Naive Bayes (BernoulliNB): A simple and fast 
classifier based on Bayes’ theorem, particularly suited for 
binary features [11].

• Support Vector Classifier (SVC): A powerful classifier that 
finds a hyperplane to separate classes, known for effectiveness 
in high-dimensional spaces [12,13].

By evaluating these classifiers using Lazy Predict, we gained 
insights into their performance, leading us to select the most 
effective models for sexism classification based on F1 score and 
accuracy.

2. Exist 2024 Contest and Task 1 Overview
2.1 Exist 2024
The EXIST 2024 competition centers around the identification of 
sexism on social media, particularly within tweets. The main task 
of the competition is a binary classification problem, where systems 
must determine whether a tweet contains sexist expressions or 
behaviors. This includes tweets that are sexist, describe a sexist 
situation, or critique sexist conduct.

For example, the following tweets demonstrate instances of both 
sexist and non-sexist content:
Sexist:
• “Mujer al volante, tenga cuidado!”
• “People really try to convince women with little to no ass that 

they should go out and buy a body.
• Like bih, I don’t need a fat ass to get a man. Never have.”
• Not Sexist:
• “Alguien me explica que zorra hace la gente en el cajero que 

se demora tanto.”
• "@messyworldorder it’s honestly so embarrassing to watch 

and they’ll be like ’not all white women are like that.’"

2.2 Task 1
In Task 1, participants are required to create models that classify 
tweets into these two categories. The challenge lies in distinguishing 
the nuanced language and context that reveal sexism. The objective 
is to design models capable of identifying not only overtly sexist 
comments but also more subtle and context-dependent expressions 

of sexism.

The development and evaluation process for these models involves 
multiple stages, including data preprocessing, feature extraction, 
and the use of diverse machine learning algorithms. The ultimate 
goal is to develop reliable tools that contribute to reducing sexism 
on social media platforms, thus fostering a more respectful online 
discourse.

3. Sexism Identification Methodology
Our methodology for identifying sexism in social media posts 
followed a systematic approach, using exclusively the training 
and development datasets. The primary goal was to train multiple 
machine learning models on the training dataset, then select 
the top-performing ones based on accuracy and F1 score on 
the development dataset, as specified by the competition. Our 
approach builds on previous work that addressed similar sentiment 
classification tasks utilizing comparisons of different embedding 
methods and regression classifiers [14,15].

3.1 Text Embedding
We began by applying text embedding techniques to represent 
the textual data in vectorized form. Specifically, we used Term 
Frequency-Inverse Document Frequency (TF-IDF) for each 
language in our dataset. TF-IDF transforms text into numerical 
vectors, based on the frequency of terms in individual documents 
compared to the entire document set. Our experiments involved 
several configurations, including:
• Different feature types, such as words, characters, and 

character n-grams (e.g., bigrams, trigrams).
• Various feature ranges, from single words to sequences of 

characters of varying lengths.
• Different feature amounts, ranging from 1,000 to 20,000, to 

determine the optimal number of features for classification.

3.2 Text Preprocessing
Text preprocessing plays a crucial role in Natural Language 
Processing, especially for tasks like sexism identification. Social 
media texts often contain various types of noise, such as typos, 
emojis, slang, HTML tags, spelling errors, and repeated letters. 
If not properly handled, this noise can significantly impact model 
performance and lead to incorrect analyses.

Previous studies have explored the effects of combining multiple 
preprocessing methods on text classification across different 
datasets [16,17]. Their findings emphasize the importance 
of applying diverse preprocessing techniques systematically. 
Combining these techniques with machine learning can 
considerably improve classification accuracy.

In our work, we implemented a thorough preprocessing strategy to 
clean and standardize the textual data before further analysis. This 
ensured that the models received high-quality inputs, enhancing 
their ability to correctly identify and classify sexist content.
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3.3 Lazy Predict
Lazy Predict is an open-source Python library that simplifies the 
process of building and comparing multiple machine learning 
models. It allows for the quick benchmarking of different 
algorithms without extensive manual coding, providing a 
streamlined interface for efficient model evaluation [18].

In the context of sexism identification, Lazy Predict was 
particularly useful during the initial model selection phase. With a 
wide variety of machine learning classifiers available, we needed a 
systematic way to compare their performance on our dataset. Lazy 
Predict automatically trained and evaluated multiple models with 

default hyperparameters, giving us a comprehensive overview of 
the algorithms most suitable for our task.

Lazy Predict compared a range of machine learning classifiers, 
including: Ada Boost Classifier, Bagging Classifier, Bernoulli 
NB, Calibrated Classifier CV, Decision Tree Classifier, Dummy 
Classifier, Extra Tree Classifier, ExtraTreesClassifier, Gaussian 
NB, KNeighbors Classifier, NuSVC, Passive Aggressive Classifier, 
Perceptron, Quadratic Discriminant Analysis, Random Forest 
Classifier, Ridge Classifier, Ridge Classifier CV, SGD Classifier, 
SVC, and LGBM Classifier. The results of these comparisons on 
our data are presented in Table 1. (Appendices).

Model Accuracy Balanced Accuracy F1 Score Time Taken
ExtraTreesClassifier 0.734104046 0.731715653 0.731389883 82.78278661
LGBM Classifier 0.726396917 0.724293441 0.724220837 6.884508371
Random Forest Classifier 0.716763006 0.713832506 0.712489727 29.08332467
Bagging Classifier 0.706165703 0.703156112 0.701514649 157.2697315
AdaBoost Classifier 0.695568401 0.692479717 0.690518216 51.01095295
Bernoulli NB 0.691714836 0.690796903 0.691232741 2.754544497
SVC 0.685934489 0.682405123 0.679168563 233.5694647
NuSVC 0.681117534 0.678913192 0.678410111 232.2601142
Nearest Centroid 0.675337187 0.674771167 0.675151581 2.109311104
Decision Tree Classifier 0.671483622 0.670094208 0.670357222 33.56897783
Perceptron 0.661849711 0.660454248 0.660690278 4.56968379
Extra Tree Classifier 0.654142582 0.653128622 0.653515573 2.80695343
SGD Classifier 0.655105973 0.651847009 0.648841001 5.900460243
Logistic Regression 0.650289017 0.648934589 0.649169867 8.320355654
Passive Aggressive Classifier 0.647398844 0.646404797 0.646789552 7.302331448
Linear SVC 0.628131021 0.62717317 0.627549493 69.49884391
Linear Discriminant Analysis 0.619460501 0.619342328 0.619497601 159.9661644
Ridge Classifier 0.619460501 0.619342328 0.619497601 11.12075329
Calibrated Classifier CV 0.625240848 0.619234598 0.601675594 294.2782121
Ridge Classifier CV 0.61849711 0.618402479 0.618539615 162.7189815

                                                                               Table 1: Lazy Predict Results

3.4 Model Training and Selection
Once the text data was vectorized, we proceeded with training a 
diverse range of machine learning models on the training dataset. 
These models included:
• Extra Trees Classifier
• LightGBM Classifier
• Random Forest Classifier
• AdaBoost Classifier
• Bernoulli Naive Bayes
• Support Vector Classifier (SVC)
For each model, we evaluated its accuracy and F1 score on the 
development dataset. We experimented with different feature 
combinations to fine-tune performance. The models showing the 
best results on the development dataset were selected for further 
evaluation.

3.5 Test Prediction
Finally, to decide which models would label the test dataset, we 
formed three groups of models: the top 10, top 50, and top 100 
models. Each group was used to label the test dataset. For each 
tweet, we selected the majority label (sexist or not sexist) and 
generated a JSON file containing the predictions.

4. Results
Table presents the accuracy rankings and F1 scores of the 
models for Task 1. For each language, the table shows the top-
performing model, feature type, feature range, number of features, 
preprocessing details, classifier type, and the corresponding scores 
from the development phase.
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Classifier Type Range Amount Preprocessing Accuracy F1
ExtraTreesClassifier char 6 20000 remove_punctuation 0.7649 0.7640
ExtraTreesClassifier char 6 10000 remove_spaces 0.7649 0.7640
RandomForestClassifier char 6 10000 remove_punctuation 0.7649 0.7631
RandomForestClassifier char 6 17500 remove_punctuation 0.7620 0.7600
ExtraTreesClassifier char 6 10000 remove_punctuation 0.7611 0.7600
RandomForestClassifier char 6 15000 None 0.7592 0.7567
ExtraTreesClassifier char 6 17500 None 0.7582 0.7573
ExtraTreesClassifier char 6 7500 remove_numerical_punct_spaces 0.7582 0.7572
ExtraTreesClassifier char 6 12500 remove_spaces 0.7582 0.7572
ExtraTreesClassifier char 6 7500 remove_spaces 0.7572 0.7562
ExtraTreesClassifier char 6 7500 remove_punctuation 0.7572 0.7562
ExtraTreesClassifier char 6 12500 remove_punctuation 0.7563 0.7553
ExtraTreesClassifier char 6 15000 None 0.7563 0.7551
LGBMClassifier char 3 17500 None 0.7563 0.7537
LGBMClassifier char 3 17500 remove_punctuation 0.7563 0.7537
LGBMClassifier char 3 17500 remove_spaces 0.7563 0.7537
LGBMClassifier char 3 17500 remove_numerical_punct_spaces 0.7563 0.7537
ExtraTreesClassifier char 6 10000 remove_numerical_punct_spaces 0.7553 0.7545
RandomForestClassifier char 6 15000 remove_numerical_punct_spaces 0.7553 0.7527
ExtraTreesClassifier char 6 10000 None 0.7543 0.7534
RandomForestClassifier char 6 12500 remove_punctuation 0.7543 0.7526
LGBMClassifier char_wb 3 17500 None 0.7543 0.7522
LGBMClassifier char_wb 3 17500 remove_punctuation 0.7543 0.7522
LGBMClassifier char_wb 3 17500 remove_spaces 0.7543 0.7522
LGBMClassifier char_wb 3 17500 remove_numerical_punct_spaces 0.7543 0.7522
RandomForestClassifier char 6 17500 None 0.7543 0.7520
RandomForestClassifier char 6 17500 remove_spaces 0.7543 0.7519
RandomForestClassifier char 6 12500 None 0.7534 0.7515
LGBMClassifier char 3 15000 None 0.7534 0.7512
LGBMClassifier char 3 15000 remove_punctuation 0.7534 0.7512
LGBMClassifier char 3 15000 remove_spaces 0.7534 0.7512
LGBMClassifier char 3 15000 remove_numerical_punct_spaces 0.7534 0.7512
LGBMClassifier char 3 12500 None 0.7534 0.7511
LGBMClassifier char 3 12500 remove_punctuation 0.7534 0.7511
LGBMClassifier char 3 12500 remove_spaces 0.7534 0.7511
LGBMClassifier char 3 12500 remove_numerical_punct_spaces 0.7534 0.7511
RandomForestClassifier char 6 20000 remove_spaces 0.7534 0.7509
ExtraTreesClassifier char 6 15000 remove_numerical_punct_spaces 0.7524 0.7516
ExtraTreesClassifier char 6 17500 remove_spaces 0.7524 0.7516
ExtraTreesClassifier char_wb 6 5000 remove_spaces 0.7524 0.7507
RandomForestClassifier char 6 15000 remove_punctuation 0.7524 0.7505
RandomForestClassifier char 6 20000 remove_punctuation 0.7524 0.7500
LGBMClassifier char_wb 3 2500 None 0.7524 0.7494
LGBMClassifier char_wb 3 2500 remove_punctuation 0.7524 0.7494
LGBMClassifier char_wb 3 2500 remove_spaces 0.7524 0.7494
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LGBMClassifier char_wb 3 2500 remove_numerical_punct_spaces 0.7524 0.7494
ExtraTreesClassifier char 6 20000 remove_numerical_punct_spaces 0.7514 0.7504
LGBMClassifier char_wb 3 5000 None 0.7514 0.7496
LGBMClassifier char_wb 3 5000 remove_punctuation 0.7514 0.7496
LGBMClassifier char_wb 3 5000 remove_spaces 0.7514 0.7496

                                                                                    Table 2: 50 Best Results
The most prominent classifiers among the top models were the 
ExtraTreesClassifier, Random Forest  Classifier, and LGBM 
Classifier, all of which are based on ensemble learning techniques 
such as random forests and boosting. Naive Bayes, a simpler yet 
effective classifier, also performed well.

While preprocessing is often considered beneficial in machine 
learning tasks, there was a balance between models that used 
preprocessing and those that worked better with raw text. 
More advanced preprocessing methods, such as stemming or 
lemmatization, might yield further improvements.

In terms of feature types, character sequences outperformed word 
sequences, with medium-length character n-grams (approximately 
six characters) proving more effective than shorter or longer 
sequences. Additionally, models with over 10,000 features 
generally performed better, indicating the need for a rich feature 
set to capture subtle nuances in the tweets.

Our best submission, a combination of the top 50 models, ranked 
39th in the competition. A second submission, combining the top 
100 models, ranked 41st, while the submission using only the top 
10 models ranked 47th.

5. Conclusions
This paper outlines our participation in the EXIST 2024 
competition, focusing on the task of sexism identification in 
tweets. Through extensive experimentation with models, text 
preprocessing methods, feature types, and feature amounts, we 
identified the most effective models based on accuracy and F1 
score on the development dataset.

The ExtraTreesClassifier, Random Forest Classifier, and LGBM 
Classifier emerged as the top-performing models, leveraging 
ensemble learning techniques like bagging and boosting. 
We observed a balance between models with and without 
preprocessing, suggesting that while preprocessing can improve 
performance, it is not universally necessary. Character n-grams, 
particularly medium-length sequences, proved more effective than 
word sequences for capturing sexist language, and a larger feature 
set generally led to better results.

Overall, our study highlights the complexity of sexism 
identification on social media and the importance of leveraging a 
variety of techniques and models for robust performance. These 
insights contribute to ongoing efforts to build accurate and reliable 
models for sexism detection on online platforms.

Future Work
This work opens several directions for future research and 
improvement. A significant avenue is exploring advanced 
preprocessing methods like stemming, lemmatization, and context-
aware normalization. These techniques could improve model 
generalization and robustness in handling linguistic variation.

Augmenting the training dataset with more examples from diverse 
sources and languages is another important step, as it could 
enhance the models’ ability to generalize across different contexts 
and cultures.

Conducting detailed error analysis to understand recurring 
misclassifications, such as sarcasm, irony, or cultural references, 
is also critical. This analysis can help improve model accuracy.

Exploring additional feature types, including domain-specific 
features, may provide a more nuanced understanding of sexist 
language. Incorporating semantic and syntactic features or external 
knowledge bases could also yield improvements.

Finally, extending this research to include deep learning models 
like BERT or Transformers for sexism identification is a promising 
direction, particularly in handling the unique challenges of various 
languages with different morphological structures and idiomatic 
expressions.

By addressing these areas, we aim to further improve the 
effectiveness of sexism identification models, contributing to the 
broader goal of reducing sexism and promoting equality.
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