
Volume 3 | Issue 5 | 1J Electrical Electron Eng, 2024

Tackling Sexism in Social Media: Multilingual AI Solutions
Research Article

Ron Keinan*

Department of Computer Science, Jerusalem College of
Technology, Lev Academic Center, Israel

*Corresponding Author
Ron Keinan, Department of Computer Science, Jerusalem College of
Technology, Lev Academic Center, Israel.

Submitted: 2024, Sep 05; Accepted: 2024, Oct 01; Published: 2024, Oct 30

Citation: Keinan, R. (2024). Tackling Sexism in Social Media: Multilingual AI Solutions. J Electrical Electron Eng, 3(5), 01-07.

Keywords: Sexism Identification, Machine Learning, TF-IDF, Feature Selection, Char Based n-Grams

Abstract
In this paper, we describe our submission to the EXIST-2024 contest. We participated in Task 1: "Sexism Identification in
Tweets" in both English and Spanish. To classify the tweets for sexist content, we developed various models by altering the
machine learning classifier, feature type (word/character n-grams), feature quantity, and text preprocessing steps. We then
vectorized the text using the TF-IDF embedding technique. After training these configurations on the training dataset, we
selected the best models based on accuracy and F1-score on the development set and used them to predict the test labels.
Our top-performing model achieved an F1 score of 72.23, securing 39th place out of 70 participants.

1. Introduction
The identification of sexism in social networks has become a
critical challenge in the field of Natural Language Processing
(NLP). Detecting and classifying sexist content in social media
posts is crucial for promoting respectful and inclusive online
environments. This task holds significance not only for platforms
managing content but also for addressing broader societal
concerns, such as curbing the spread of harmful stereotypes and
promoting gender equality [1].

Social networks have become central platforms for activism and
global movements, including MeToo, 8M, and Time’sUp. These
movements have empowered women worldwide to share their
experiences of abuse, discrimination, and sexism. While social
media amplifies these voices, it also serves as a breeding ground
for sexism and other forms of disrespectful behavior [2]. As such,
developing automated tools for detecting sexism in social networks
is crucial. These tools can assist in identifying and flagging sexist
content in real-time, contributing to content moderation and
enabling an understanding of how sexism manifests in online
discourse.

In this context, we describe our participation in the EXIST-2024
contest where we focused on Task 1: "Sexism Identification in
Tweets" in English and Spanish [3,4]. Our approach involved
constructing multiple models by varying several components: the
machine learning classifier, the type of features (word or character
n-grams), the quantity of features, and the preprocessing applied

to the text data. We vectorized the text using the Term Frequency-
Inverse Document Frequency (TF-IDF) embedding technique.

The relevance of this task is heightened by the increasing volume
of user-generated content on social media platforms, where rapid
identification and intervention in cases of sexist content can
greatly influence the safety and user experience. By combining
preprocessing, feature extraction, and various machine learning
techniques, our approach adds to ongoing efforts in creating robust
systems for detecting sexist language.

1.1 Background
1.1.1 Feature Extraction
Feature selection plays a crucial role in text classification tasks,
as it helps improve model performance by identifying the most
informative elements from the text. In our approach to sexism
identification, we focused on selecting features based on two
primary types: word n-grams and character n-grams.

1.1.2 Word and Character N-grams
Word n-grams refer to sequences of words that appear together in
the text, capturing syntactic structures and contextual relationships.
By using sequences of words, n-grams enable models to better grasp
the semantic meaning carried by word combinations. For instance,
in a bigram model, pairs of consecutive words are analyzed, while
a trigram model examines sequences of three words. Using the
sentence "The quick brown fox jumps over the lazy dog," bigrams
would include "The quick," "quick brown," "brown fox," and so

Journal of Electrical Electronics Engineering
ISSN: 2834-4928

Volume 3 | Issue 5 | 2J Electrical Electron Eng, 2024

on, while trigrams would cover "The quick brown," "quick brown
fox," and so forth.

However, word n-grams have limitations, particularly when
dealing with sparse data and out-of vocabulary words, which
are common in social media text. To address these challenges,
we applied TF-IDF weighting to emphasize rare but informative
n-grams and downplay more common but less useful ones.

Character n-grams, particularly those with word boundaries (char-
wb), divide text into sequences of characters while preserving word
boundaries. This technique excels in capturing morphological
patterns and managing text variations such as typos, slang, and
informal language that are common in social media. For example,
character n-grams of length six from the word "identification"
might include "identi," "dentif," and "entifi." The inclusion of
word boundaries allows the model to maintain word integrity
while learning from character-level patterns.

Our experiments showed that character n-grams of medium length
(around six characters) consistently outperformed word n-grams.
This suggests that character n-grams are better suited for capturing
the nuanced morphological features and informal expressions
typical of sexist language. Their ability to handle different linguistic
forms and idiomatic expressions was particularly beneficial for
our dataset, which included a diverse range of colloquial sexist
remarks.

1.1.3 Comparative Analysis
Through extensive experimentation, we found that models
using character n-grams with word boundaries achieved higher
accuracy and F1 scores than those using word n-grams alone. This
demonstrates the effectiveness of character n-grams in capturing
subtle and context-dependent expressions of sexism that may not
be detected by word-level features.

1.1.4 TF-IDF Embeddings
To optimize feature selection, we used the Term Frequency-
Inverse Document Frequency (TF-IDF) technique. TF-IDF
helps to quantify the significance of each n-gram by balancing
its occurrence within a document against its frequency across
the dataset, emphasizing informative features that contribute to
classification.

1.1.5 Text Embeddings
Text embeddings are a method for representing text in a continuous
vector space, which allows algorithms to process and analyze text
data effectively. These embeddings capture both semantic and
syntactic similarities between words or documents, aiding a variety
of NLP tasks, such as sentiment analysis, document classification,
and information retrieval.

1.1.6 Types of Text Embeddings
There are different types of text embeddings, each suited to specific
tasks:

• Word Embeddings Word embeddings, like Word2Vec and
GloVe, map individual words to high dimensional vectors
based on their contextual use. Words with similar meanings,
such as "king" and "queen," are positioned close together in
the vector space. Word embeddings are highly effective for
tasks that require understanding word semantics.

• Contextualized Word Embeddings Contextualized word
embeddings, generated by models like ELMo, BERT, and
GPT, provide representations that adapt to a word’s context in a
sentence. Unlike static embeddings, these models can capture
the different meanings of polysemous words, such as "bank"
in the phrases "bank of a river" and "banking institution." This
context sensitivity makes them especially useful for tasks like
named entity recognition and machine translation.

• Document Embeddings Document embeddings extend the
concept of word embeddings to longer text units, such as
sentences or paragraphs. Techniques like Doc2Vec and
Universal Sentence Encoder provide fixed-length vectors that
represent the entire text, useful for document classification
and clustering tasks.

1.1.7 Significance in NLP
Text embeddings represent a significant advancement in NLP
by providing dense and continuous text representations, which
traditional bag-of-words models lack. Embeddings handle large
vocabularies efficiently and capture intricate relationships between
words, greatly improving the performance of various NLP tasks.

1.1.8 TF-IDF Embeddings
In this study, we applied the TF-IDF (Term Frequency-Inverse
Document Frequency) embedding technique to convert text into
numerical form for model training [5].

TF-IDF is a widely used method that calculates the importance of
words by combining their frequency within a document with their
rarity across the entire dataset. Words with high TF-IDF scores are
considered more informative for the classification task.

The TF-IDF (Term Frequency-Inverse Document Frequency)
score is calculated as follows:
 TF-IDF(t,d,D) = TF(t,d) × IDF(t,D) (1)

By employing these diverse embedding techniques, we aimed
to capture the rich semantic and syntactic features of the text,
enhancing the performance of our models in identifying and
classifying sexist content in social media posts.

1.2 Machine Learning Classifiers
In our approach, we experimented with several machine learning
classifiers to identify the most effective model for sexism

Volume 3 | Issue 5 | 3J Electrical Electron Eng, 2024

identification. Each classifier brings specific strengths, and the
following are the key classifiers we employed:
• Random Forest Classifier (RandomForestClassifier): An

ensemble learning method that constructs multiple decision
trees and outputs the majority vote, known for high accuracy
and resistance to overfitting [6,7].

• Extra Trees Classifier (ExtraTreesClassifier): An ensemble
model that builds unpruned decision trees from random
subsets of the data, enhancing model robustness [8].

• LightGBM Classifier (LGBMClassifier): A gradient boosting
framework that grows trees leaf-wise, designed for efficiency
and scalability in large datasets [9].

• AdaBoost Classifier (AdaBoostClassifier): A boosting
algorithm that focuses on correcting the errors of previous
classifiers, increasing model accuracy [10].

• Bernoulli Naive Bayes (BernoulliNB): A simple and fast
classifier based on Bayes’ theorem, particularly suited for
binary features [11].

• Support Vector Classifier (SVC): A powerful classifier that
finds a hyperplane to separate classes, known for effectiveness
in high-dimensional spaces [12,13].

By evaluating these classifiers using Lazy Predict, we gained
insights into their performance, leading us to select the most
effective models for sexism classification based on F1 score and
accuracy.

2. Exist 2024 Contest and Task 1 Overview
2.1 Exist 2024
The EXIST 2024 competition centers around the identification of
sexism on social media, particularly within tweets. The main task
of the competition is a binary classification problem, where systems
must determine whether a tweet contains sexist expressions or
behaviors. This includes tweets that are sexist, describe a sexist
situation, or critique sexist conduct.

For example, the following tweets demonstrate instances of both
sexist and non-sexist content:
Sexist:
• “Mujer al volante, tenga cuidado!”
• “People really try to convince women with little to no ass that

they should go out and buy a body.
• Like bih, I don’t need a fat ass to get a man. Never have.”
• Not Sexist:
• “Alguien me explica que zorra hace la gente en el cajero que

se demora tanto.”
• "@messyworldorder it’s honestly so embarrassing to watch

and they’ll be like ’not all white women are like that.’"

2.2 Task 1
In Task 1, participants are required to create models that classify
tweets into these two categories. The challenge lies in distinguishing
the nuanced language and context that reveal sexism. The objective
is to design models capable of identifying not only overtly sexist
comments but also more subtle and context-dependent expressions

of sexism.

The development and evaluation process for these models involves
multiple stages, including data preprocessing, feature extraction,
and the use of diverse machine learning algorithms. The ultimate
goal is to develop reliable tools that contribute to reducing sexism
on social media platforms, thus fostering a more respectful online
discourse.

3. Sexism Identification Methodology
Our methodology for identifying sexism in social media posts
followed a systematic approach, using exclusively the training
and development datasets. The primary goal was to train multiple
machine learning models on the training dataset, then select
the top-performing ones based on accuracy and F1 score on
the development dataset, as specified by the competition. Our
approach builds on previous work that addressed similar sentiment
classification tasks utilizing comparisons of different embedding
methods and regression classifiers [14,15].

3.1 Text Embedding
We began by applying text embedding techniques to represent
the textual data in vectorized form. Specifically, we used Term
Frequency-Inverse Document Frequency (TF-IDF) for each
language in our dataset. TF-IDF transforms text into numerical
vectors, based on the frequency of terms in individual documents
compared to the entire document set. Our experiments involved
several configurations, including:
• Different feature types, such as words, characters, and

character n-grams (e.g., bigrams, trigrams).
• Various feature ranges, from single words to sequences of

characters of varying lengths.
• Different feature amounts, ranging from 1,000 to 20,000, to

determine the optimal number of features for classification.

3.2 Text Preprocessing
Text preprocessing plays a crucial role in Natural Language
Processing, especially for tasks like sexism identification. Social
media texts often contain various types of noise, such as typos,
emojis, slang, HTML tags, spelling errors, and repeated letters.
If not properly handled, this noise can significantly impact model
performance and lead to incorrect analyses.

Previous studies have explored the effects of combining multiple
preprocessing methods on text classification across different
datasets [16,17]. Their findings emphasize the importance
of applying diverse preprocessing techniques systematically.
Combining these techniques with machine learning can
considerably improve classification accuracy.

In our work, we implemented a thorough preprocessing strategy to
clean and standardize the textual data before further analysis. This
ensured that the models received high-quality inputs, enhancing
their ability to correctly identify and classify sexist content.

Volume 3 | Issue 5 | 4J Electrical Electron Eng, 2024

3.3 Lazy Predict
Lazy Predict is an open-source Python library that simplifies the
process of building and comparing multiple machine learning
models. It allows for the quick benchmarking of different
algorithms without extensive manual coding, providing a
streamlined interface for efficient model evaluation [18].

In the context of sexism identification, Lazy Predict was
particularly useful during the initial model selection phase. With a
wide variety of machine learning classifiers available, we needed a
systematic way to compare their performance on our dataset. Lazy
Predict automatically trained and evaluated multiple models with

default hyperparameters, giving us a comprehensive overview of
the algorithms most suitable for our task.

Lazy Predict compared a range of machine learning classifiers,
including: Ada Boost Classifier, Bagging Classifier, Bernoulli
NB, Calibrated Classifier CV, Decision Tree Classifier, Dummy
Classifier, Extra Tree Classifier, ExtraTreesClassifier, Gaussian
NB, KNeighbors Classifier, NuSVC, Passive Aggressive Classifier,
Perceptron, Quadratic Discriminant Analysis, Random Forest
Classifier, Ridge Classifier, Ridge Classifier CV, SGD Classifier,
SVC, and LGBM Classifier. The results of these comparisons on
our data are presented in Table 1. (Appendices).

Model Accuracy Balanced Accuracy F1 Score Time Taken
ExtraTreesClassifier 0.734104046 0.731715653 0.731389883 82.78278661
LGBM Classifier 0.726396917 0.724293441 0.724220837 6.884508371
Random Forest Classifier 0.716763006 0.713832506 0.712489727 29.08332467
Bagging Classifier 0.706165703 0.703156112 0.701514649 157.2697315
AdaBoost Classifier 0.695568401 0.692479717 0.690518216 51.01095295
Bernoulli NB 0.691714836 0.690796903 0.691232741 2.754544497
SVC 0.685934489 0.682405123 0.679168563 233.5694647
NuSVC 0.681117534 0.678913192 0.678410111 232.2601142
Nearest Centroid 0.675337187 0.674771167 0.675151581 2.109311104
Decision Tree Classifier 0.671483622 0.670094208 0.670357222 33.56897783
Perceptron 0.661849711 0.660454248 0.660690278 4.56968379
Extra Tree Classifier 0.654142582 0.653128622 0.653515573 2.80695343
SGD Classifier 0.655105973 0.651847009 0.648841001 5.900460243
Logistic Regression 0.650289017 0.648934589 0.649169867 8.320355654
Passive Aggressive Classifier 0.647398844 0.646404797 0.646789552 7.302331448
Linear SVC 0.628131021 0.62717317 0.627549493 69.49884391
Linear Discriminant Analysis 0.619460501 0.619342328 0.619497601 159.9661644
Ridge Classifier 0.619460501 0.619342328 0.619497601 11.12075329
Calibrated Classifier CV 0.625240848 0.619234598 0.601675594 294.2782121
Ridge Classifier CV 0.61849711 0.618402479 0.618539615 162.7189815

 Table 1: Lazy Predict Results

3.4 Model Training and Selection
Once the text data was vectorized, we proceeded with training a
diverse range of machine learning models on the training dataset.
These models included:
• Extra Trees Classifier
• LightGBM Classifier
• Random Forest Classifier
• AdaBoost Classifier
• Bernoulli Naive Bayes
• Support Vector Classifier (SVC)
For each model, we evaluated its accuracy and F1 score on the
development dataset. We experimented with different feature
combinations to fine-tune performance. The models showing the
best results on the development dataset were selected for further
evaluation.

3.5 Test Prediction
Finally, to decide which models would label the test dataset, we
formed three groups of models: the top 10, top 50, and top 100
models. Each group was used to label the test dataset. For each
tweet, we selected the majority label (sexist or not sexist) and
generated a JSON file containing the predictions.

4. Results
Table presents the accuracy rankings and F1 scores of the
models for Task 1. For each language, the table shows the top-
performing model, feature type, feature range, number of features,
preprocessing details, classifier type, and the corresponding scores
from the development phase.

Volume 3 | Issue 5 | 5J Electrical Electron Eng, 2024

Classifier Type Range Amount Preprocessing Accuracy F1
ExtraTreesClassifier char 6 20000 remove_punctuation 0.7649 0.7640
ExtraTreesClassifier char 6 10000 remove_spaces 0.7649 0.7640
RandomForestClassifier char 6 10000 remove_punctuation 0.7649 0.7631
RandomForestClassifier char 6 17500 remove_punctuation 0.7620 0.7600
ExtraTreesClassifier char 6 10000 remove_punctuation 0.7611 0.7600
RandomForestClassifier char 6 15000 None 0.7592 0.7567
ExtraTreesClassifier char 6 17500 None 0.7582 0.7573
ExtraTreesClassifier char 6 7500 remove_numerical_punct_spaces 0.7582 0.7572
ExtraTreesClassifier char 6 12500 remove_spaces 0.7582 0.7572
ExtraTreesClassifier char 6 7500 remove_spaces 0.7572 0.7562
ExtraTreesClassifier char 6 7500 remove_punctuation 0.7572 0.7562
ExtraTreesClassifier char 6 12500 remove_punctuation 0.7563 0.7553
ExtraTreesClassifier char 6 15000 None 0.7563 0.7551
LGBMClassifier char 3 17500 None 0.7563 0.7537
LGBMClassifier char 3 17500 remove_punctuation 0.7563 0.7537
LGBMClassifier char 3 17500 remove_spaces 0.7563 0.7537
LGBMClassifier char 3 17500 remove_numerical_punct_spaces 0.7563 0.7537
ExtraTreesClassifier char 6 10000 remove_numerical_punct_spaces 0.7553 0.7545
RandomForestClassifier char 6 15000 remove_numerical_punct_spaces 0.7553 0.7527
ExtraTreesClassifier char 6 10000 None 0.7543 0.7534
RandomForestClassifier char 6 12500 remove_punctuation 0.7543 0.7526
LGBMClassifier char_wb 3 17500 None 0.7543 0.7522
LGBMClassifier char_wb 3 17500 remove_punctuation 0.7543 0.7522
LGBMClassifier char_wb 3 17500 remove_spaces 0.7543 0.7522
LGBMClassifier char_wb 3 17500 remove_numerical_punct_spaces 0.7543 0.7522
RandomForestClassifier char 6 17500 None 0.7543 0.7520
RandomForestClassifier char 6 17500 remove_spaces 0.7543 0.7519
RandomForestClassifier char 6 12500 None 0.7534 0.7515
LGBMClassifier char 3 15000 None 0.7534 0.7512
LGBMClassifier char 3 15000 remove_punctuation 0.7534 0.7512
LGBMClassifier char 3 15000 remove_spaces 0.7534 0.7512
LGBMClassifier char 3 15000 remove_numerical_punct_spaces 0.7534 0.7512
LGBMClassifier char 3 12500 None 0.7534 0.7511
LGBMClassifier char 3 12500 remove_punctuation 0.7534 0.7511
LGBMClassifier char 3 12500 remove_spaces 0.7534 0.7511
LGBMClassifier char 3 12500 remove_numerical_punct_spaces 0.7534 0.7511
RandomForestClassifier char 6 20000 remove_spaces 0.7534 0.7509
ExtraTreesClassifier char 6 15000 remove_numerical_punct_spaces 0.7524 0.7516
ExtraTreesClassifier char 6 17500 remove_spaces 0.7524 0.7516
ExtraTreesClassifier char_wb 6 5000 remove_spaces 0.7524 0.7507
RandomForestClassifier char 6 15000 remove_punctuation 0.7524 0.7505
RandomForestClassifier char 6 20000 remove_punctuation 0.7524 0.7500
LGBMClassifier char_wb 3 2500 None 0.7524 0.7494
LGBMClassifier char_wb 3 2500 remove_punctuation 0.7524 0.7494
LGBMClassifier char_wb 3 2500 remove_spaces 0.7524 0.7494

Volume 3 | Issue 5 | 6J Electrical Electron Eng, 2024

LGBMClassifier char_wb 3 2500 remove_numerical_punct_spaces 0.7524 0.7494
ExtraTreesClassifier char 6 20000 remove_numerical_punct_spaces 0.7514 0.7504
LGBMClassifier char_wb 3 5000 None 0.7514 0.7496
LGBMClassifier char_wb 3 5000 remove_punctuation 0.7514 0.7496
LGBMClassifier char_wb 3 5000 remove_spaces 0.7514 0.7496

 Table 2: 50 Best Results
The most prominent classifiers among the top models were the
ExtraTreesClassifier, Random Forest Classifier, and LGBM
Classifier, all of which are based on ensemble learning techniques
such as random forests and boosting. Naive Bayes, a simpler yet
effective classifier, also performed well.

While preprocessing is often considered beneficial in machine
learning tasks, there was a balance between models that used
preprocessing and those that worked better with raw text.
More advanced preprocessing methods, such as stemming or
lemmatization, might yield further improvements.

In terms of feature types, character sequences outperformed word
sequences, with medium-length character n-grams (approximately
six characters) proving more effective than shorter or longer
sequences. Additionally, models with over 10,000 features
generally performed better, indicating the need for a rich feature
set to capture subtle nuances in the tweets.

Our best submission, a combination of the top 50 models, ranked
39th in the competition. A second submission, combining the top
100 models, ranked 41st, while the submission using only the top
10 models ranked 47th.

5. Conclusions
This paper outlines our participation in the EXIST 2024
competition, focusing on the task of sexism identification in
tweets. Through extensive experimentation with models, text
preprocessing methods, feature types, and feature amounts, we
identified the most effective models based on accuracy and F1
score on the development dataset.

The ExtraTreesClassifier, Random Forest Classifier, and LGBM
Classifier emerged as the top-performing models, leveraging
ensemble learning techniques like bagging and boosting.
We observed a balance between models with and without
preprocessing, suggesting that while preprocessing can improve
performance, it is not universally necessary. Character n-grams,
particularly medium-length sequences, proved more effective than
word sequences for capturing sexist language, and a larger feature
set generally led to better results.

Overall, our study highlights the complexity of sexism
identification on social media and the importance of leveraging a
variety of techniques and models for robust performance. These
insights contribute to ongoing efforts to build accurate and reliable
models for sexism detection on online platforms.

Future Work
This work opens several directions for future research and
improvement. A significant avenue is exploring advanced
preprocessing methods like stemming, lemmatization, and context-
aware normalization. These techniques could improve model
generalization and robustness in handling linguistic variation.

Augmenting the training dataset with more examples from diverse
sources and languages is another important step, as it could
enhance the models’ ability to generalize across different contexts
and cultures.

Conducting detailed error analysis to understand recurring
misclassifications, such as sarcasm, irony, or cultural references,
is also critical. This analysis can help improve model accuracy.

Exploring additional feature types, including domain-specific
features, may provide a more nuanced understanding of sexist
language. Incorporating semantic and syntactic features or external
knowledge bases could also yield improvements.

Finally, extending this research to include deep learning models
like BERT or Transformers for sexism identification is a promising
direction, particularly in handling the unique challenges of various
languages with different morphological structures and idiomatic
expressions.

By addressing these areas, we aim to further improve the
effectiveness of sexism identification models, contributing to the
broader goal of reducing sexism and promoting equality.

References
1. Jha, A., Mamidi, R. (2017). When does a compliment become

sexist? analysis and classification of ambivalent sexism using
twitter data, in: Proceedings of the Second Workshop on NLP
and Computational Social Science.

2. Rodríguez-Sánchez, F., Carrillo-de-Albornoz, J., & Plaza, L.
(2020). Automatic classification of sexism in social networks:
An empirical study on twitter data. IEEE Access, 8, 219563-
219576.

3. Plaza, L., Carrillo-de-Albornoz, J., Morante, R., Amigó,
E., Gonzalo, J., Spina, D., & Rosso, P. (2023, September).
Overview of exist 2023–learning with disagreement for
sexism identification and characterization. In International
Conference of the Cross-Language Evaluation Forum for
European Languages (pp. 316-342). Cham: Springer Nature
Switzerland.

4. Plaza, L., Carrillo-de-Albornoz, J., Morante, R., Amigó,

Volume 3 | Issue 5 | 7J Electrical Electron Eng, 2024

E., Gonzalo, J., Spina, D., & Rosso, P. (2023, September).
Overview of exist 2023–learning with disagreement for
sexism identification and characterization. In International
Conference of the Cross-Language Evaluation Forum for
European Languages (pp. 316-342). Cham: Springer Nature
Switzerland.

5. Ramos, J. (2003). Using tf-idf to determine word relevance
in document queries. In Proceedings of the first instructional
conference on machine learning (Vol. 242, No. 1, pp. 29-48).

6. Breiman, L. (1996). Bagging predictors. Machine learning,
24, 123-140.

7. Breiman, L. (2001). Random forests. Machine learning, 45,
5-32.

8. Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely
randomized trees. Machine learning, 63, 3-42.

9. Alzamzami, F., Hoda, M., & El Saddik, A. (2020). Light
gradient boosting machine for general sentiment classification
on short texts: a comparative evaluation. IEEE access, 8,
101840-101858.

10. Schapire, R. E. (2013). Explaining adaboost. In Empirical
inference: festschrift in honor of vladimir N. Vapnik (pp. 37-
52). Berlin, Heidelberg: Springer Berlin Heidelberg.

11. Kim, S. B., Han, K. S., Rim, H. C., & Myaeng, S. H. (2006).
Some effective techniques for naive bayes text classification.
IEEE transactions on knowledge and data engineering, 18(11),
1457-1466.

12. Vapnik, V. (1995). Support-vector networks. Machine
learning, 20, 273-297.

13. Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for
support vector machines. ACM transactions on intelligent
systems and technology (TIST), 2(3), 1-27.

14. Keinan, R., & HaCohen-Kerner, Y. (2023, July). JCT at
SemEval-2023 Tasks 12 A and 12B: Sentiment Analysis for
Tweets Written in Low-resource African Languages using
Various Machine Learning and Deep Learning Methods,
Resampling, and HyperParameter Tuning. In Proceedings
of the 17th International Workshop on Semantic Evaluation
(SemEval-2023) (pp. 365-378).

15. Keinan, R. (2024). Text Mining at SemEval-2024 Task
1: Evaluating Semantic Textual Relatedness in Low-
resource Languages using Various Embedding Methods and
Machine Learning Regression Models. In Proceedings of
the 18th International Workshop on Semantic Evaluation
(SemEval-2024) (pp. 420-431).

16. HaCohen-Kerner, Y., Yigal, Y., & Miller, D. (2019). The
Impact of Preprocessing on the Classification of Mental
Disorders. In ICDM (Posters) (pp. 52-66).

17. HaCohen-Kerner, Y., Miller, D., & Yigal, Y. (2020). The
influence of preprocessing on text classification using a bag-
of-words representation. PloS one, 15(5), e0232525.

18. Putra, M. I. J., & Alexander, V. (2023). Comparison of
Machine Learning Land Use-Land Cover Supervised
Classifiers Performance on Satellite Imagery Sentinel 2 using
Lazy Predict Library. Indonesian Journal of Data and Science,
4(3), 183-189.

Copyright: ©2024 Ron Keinan. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

https://opastpublishers.com

