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Abstract
Extensive and comparative theoretical studies on novel Ionized Gas Thermoelectric Generator (IGTEG) system have shown 
ability of continuous energy extracting from thermal energy of ambient air around standard room temperature and even 
below. This system does not need a temperature gradient in order to work, unlike the other TEGs that use See beck effect, 
and therefore this new system can be utilized in sustainable energy systems, as well as in green cooling solutions, by extract-
ing energy instead of wasting energy in compressing the gas for cooling. This novel system was designed based on Static 
Ratchet Potential (SRP), which is known as a spatially asymmetric electric potential produced by an array of positive and 
negative electrodes. The ratchet potential produces electrical current from random Brownian motion of charged particles 
that are driven by thermal energy. The key parameter of the system is the particles transportation and it was studied un-
der the condition of flashing ratchet potentials utilizing several methods, and compared to previous studies used different 
methods ensuring redundancy. In this study, a different approach is pursued to estimate particles transportation, by evalu-
ating the charged particles distribution, and applying the other conditions of the SRP, and showed agreement in the results 
compared to the previous study. Ultimately, power levels of 10 Watt proved to be achievable from a 1m long system tube of 
10cm radius.
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Introduction 
The Ratchet Potential (RP) or Brownian Ratchet has been in-
vestigated extensively in the literature. Its intrinsic core design 
characterized by Feynman Ratchets is proposed to extract energy 
from random Brownian motion of gas particles as a novel sus-
tainable energy technology [1-4]. The Ratchet Potential work-
ing principle is the directional transport of classical or quantum 
particles in systems that are dominated by random diffusion 
[5]. This directional transport has been gaining much research 
interest in the utilization of ratchet in applications of sensing, 
energy harvesting and separation [7-9]. Ratchet Potential was 
also implemented in many microbiology studies including mi-
cro-machine as in the DNA transport and separation, the translo-
cation of proteins across membranes and bimolecular machine, 
nanotechnology and Nano fluid preconcentration and separa-
tion, particles motion against constant bias, Brownian Motors, 

in addition to infusion and flow control of nanoscale objects in 
fluids [9-16].

Ratchet potential research has been focusing on the Brown-
ian Ratchet implementing flashing potentials and the driving 
forces [17-19]. The particles transport in ratchet potential was 
thoroughly considered in these researches. Many statistical ap-
proaches were implemented to evaluate and generate transpor-
tation equations. Amongst those are Fokker-Planck equation to 
evaluate the time evolution of the probability density function, 
Fick-Jakobs kinetic equation, and the Gaussian white noise, as 
well as the steady-state Smoluchowski equations [20-22]. To 
the best of our knowledge, the flashing ratchet potential and the 
cyclic distribution of free charged particles was not treated thor-
oughly in the literature unlike the transportation of particles.
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nology.
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Thermoelectric Generators (TEG) is a device converting thermal 
energy into electric energy, the common technique used in this 
device is called "See beck effect", which is the production of 
lectric current induced by a temperature gradient between two 
electrical conductors or semiconductors. A new design of Ion-
ized Gas Thermoelectric Generator (IG- TEG) based on RP tech-
nique was theoretically introduced in a previous study, the calcu-
lations showed the success of this system in converting "wasted" 
thermal energy into kinetic energy in a sustainable manner [23]. 
The previous study imposed several conditions and parameters, 
and elaborated opportunities for several improvements for a po-
tentially new green competing technology. 

This work intended to thoroughly verify the operation method-
ology and its relevant parameters, and assess the calculated ef-
ficiency of the IG-TEG compared to the previous study, starting 
by evaluating the charged Particles Distribution Function (PDF) 
inside the Static Ratchet Potential (SRP) that is characterized by 
the fixed electric charge imposed on its electrodes, while keep-
ing its geometry similar to that of the flashing ratchet [23]. The 
evaluation of PDF was conducted using Gauss's flux theorem, 
and verified by using Madelung Constant, where in the previous 
study the number of charged particles was approximated based 
on comparison with semi-conductors charge density [23]. Then 
exploiting the distribution function in the IG-TEG functionality 

examination, such examination will extend to particles transpor-
tation and fluid dynamics calculations inside the SRP, the parti-
cles transportation calculation considered Collison Probability 
(mean free path), current attenuation calculations and particles 
locations in accordance to PDF. After that, the net transportation 
“currents” of both charged and neutral particles was evaluated 
based on the resulting particles transportation by introducing 
energy transportation ratio concept inside the RP electrodes’ 
depletion regions, recalling that in the previous study only the 
attenuation of the kinetic energy of the transporting current were 
considered in the transportation of particles through the RP elec-
trodes [23]. This work is aiming to conduct a deep analysis of 
the novel IG-TEG and assess the validity of the 2nd Law of Ther-
modynamics [24,25].

Design, Methodology and System Setup
The flow dynamics and its characteristics inside the SRP require 
an accurate estimation of PDF. This estimation can be done by 
using Gauss's flux theorem [26]. Considering a system of N 
free charged particles at a temperature 	  distributed inside 
a given volume, the particles are expected to be arranged in sta-
tionary locations producing a zero net electric force [27]. This 
reference state is referred to as the equipotential state (∇V = 0). 
The sequential steps needed from the PDF evaluation to power 
extraction estimation are described in Figure 1.

Figure 1: The sequential steps needed to evaluate the PDF and power extraction estimation

The charged particles will be assumed protons (ionized hydro-
gen H+) and their distribution can be represented as per Figure 2 
and based on the equipotential locations. The linear distribution 
of positive particles can be also extrapolated to volumetric dis-
tribution by keeping their uniformity in y – z plane and vary their 
distribution along the x-axis.

All positive particles will be laid in equipotential locations as de-

picted in Figure 2. The equipotential value vEqu(xj)  for a number 
of positive particles N in one-dimensional (x-axis) distribution 
can be written based on the scalar summation of electric poten-
tials at the  location, which is written as [27].
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Where () is the electrodes’ potential of the SRP as shown in Fig.2, and is given as: 

() = 14      −( −  ) +  +
   +α ( −   + ) + 

  (2) 

 

Where  is the number of a few SRP’s electrodes that can be considered in a central axis, α is the 
ratio of charges that are mounted in positive electrodes to those in negative electrodes. In reference 
to Fig. 2, the number of positive particles (red, green and yellow circles) will determine the 
equipotential value (0, , ), and these values determine the borders of the PDF (, , … . , ). 

 
Fig. 2: Illustration of positive particles distribution and the ratchet parameters 

Table 1 provides realistic values to the numerous parameters appearing in Equation (2). The 
parameters were chosen based on rational values of the methods of microelectrodes manufacturing 
capabilities[28] and material electrical properties, mainly the voltage break-down of dielectric 
coating materials[29].  
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Where v(xj) is the electrodes’ potential of the SRP as shown in 
Figure 2, and is given as:
 

Where M is the number of a few SRP’s electrodes that can be 
considered in a central axis, α is the ratio of charges that are 
mounted in positive electrodes to those in negative electrodes. 
In reference to Figure 2, the number of positive particles (red, 
green and yellow circles) will determine the equipotential value 
(0, V1, V2), and these values determine the borders of the PDF 
(x1, x2….. x6).
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Table 1: Summary of the SRP parameters and their values

Table 1 provides realistic values to the numerous parameters ap-
pearing in Equation (2). The parameters were chosen based on 
rational values of the methods of microelectrodes manufacturing 

capabilities and material electrical properties, mainly the voltage 
break-down of dielectric coating materials [28,29].

Parameter Value (Unit) Parameter Value (Unit)
Number of electrodes pairs (M) 11 Distance between adjacent similar 

electrodes (D)
5 (mm)

Radius of electrode ring (α) 0.5 (mm) Negative charge mounted in negative 
electrodes (−Q)

1 × 10-10 (C)

Distance between adjacent oppo-
site electrodes (d)

1 (mm) Positive to negative charge ratio (α) 60% (percentile)

The electric potential produced by the linear charge density of 
positive particles is depicted in Figure 3. To have the positive 
particles at equipotential locations (Veq= 0), then the electric po-

tential produced by the distribution of positive particles (V(xpos-

itive particles) should be a mirror symmetry of the electrode’s poten-
tial (V(x)Electrodes) over the -axis, i.e. mathematically:
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Fig. 3: Electric potential of the SRP electrodes and positive particles distribution.  

As seen in Fig. 3, the summation of the Electric Potential of PDF and SRP electrodes is nil ( =0) except at the depletion regions. Therefore, it is very obvious that the electric potential shape 
and the magnitude of SRP electrodes will formulate that of the PDF. 
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As seen in Figure 3, the summation of the Electric Potential 
of PDF and SRP electrodes is nil (V=0) except at the depletion 
regions. Therefore, it is very obvious that the electric potential 
shape and the magnitude of SRP electrodes will formulate that 
of the PDF.

Results and Discussion
Energy harvesting as the intended application of SRP relies on 
the electrical and geometrical factors of the system [23]. These 
factors are determining both the number of these particles and 
their distribution (PDF). Since the thermal energy of the ion-
ized gas positive particles can be extracted by the directional 
transport of these particles, the number of positive particles and 
PDF are significantly affecting the energy harvesting efficiency 
of the SRP. To evaluate the PDF, the total number of positive 
particles needs to be determined. This number depends on the 
equipotential value of the positive particles. For sake of sim-
plicity, the positive particles will be assumed to be located at V 
= 0 equipotential locations. Hence, and in reference to Figure 3, 
the positive charge will be distributed in the allotted semi-cylin-
drical volume π α2 (x6 – x1), where the boundaries of the PDF is 
bounded at x1 = −0.0138 mm to x6= 5.714 mm, and maintaining 
the equipotential condition (VEqu = 0) in every positive particle 
location within the semi-cylindrical space.

Number of Free Positive Particles
To evaluate the total number of positive particles (Np), the cylin-
drical surface shown in Figure 4 is chosen as Gaussian surface 
and this formulated as [27]

The static condition of positive particles in the equipotential lo-
cations (V=0) on the Gaussian surface implies uniform localized 
voltage (∇V = 0) in all directions. Then evaluating Equation (5) 
on the considered cylindrical surface, leads to:

Hence, the total charge of positive particles will be simply the 
difference in the charge between positive and negative electrode, 
and this is calculated leading to:					   
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The total number of positive particles will be evaluated based on 
the unit charged particle
(1.6 × 10-19 C) as:

Figure 4: The cylindrical Gaussian Surface with dimensions 
and geometrical boundaries: cylinder radius is (α), and their bas-
es are located at (x = x6) and (x = x6 + D+ d).

Verification of the Total Number of Free Positive Particles
This is achieved by considering the average distance between 
positive particles and assuming a simple (Primitive) cubic lattice 
(SCL) arrangement of positive particles [30]. Referring to Fig-
ure 3, the “linear-average” of the electric potential  			 
	               can be evaluated as:
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3.2. Verification of the Total Number of Free Positive Particles 

This is achieved by considering the average distance between positive particles and assuming a 
simple (Primitive) cubic lattice[30] (SCL) arrangement of positive particles. Referring to Fig.3, the 
“linear-average” of the electric potential ( ) can be evaluated as:   = 
 

−1 − 
14      −( −  ) +  +

   +α ( −   + ) +  



  

(9) 

 

This gives an average electric potential in the range 612 volts. The average spacing or the SCL 
length ()̅ between positive particles can be geometrically calculated as: 

 ̅ ≅   ( + )
 =  (0.0005) (0.005 + 0.001)2.5 × 10 ≅ 2.66 × 10  (10) 

 

Then determining the electric potential at the central positive particle in SCL arrangement by 
having the cubic root of  such that: 

 2 ≅ 315 

The positive particles in each side of Cartesian coordinated (,  and ) will form the eight 
Cartesian blocks. Hence, the average positive particle potential is evaluated from the triple 
summation of the Madelung Constant[31] of similar charge sign particles, as: 
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Then determining the electric potential at the central positive particle in SCL arrangement by having the cubic root of Np such that:

The positive particles in each side of Cartesian coordinated (x, y and z) will form the eight Cartesian blocks. Hence, the average 
positive particle potential is evaluated from the triple summation of the Madelung Constant of similar charge sign particles, as [31]

The order of this obtained value is in general agreement with 
the result achieved from Equation (9). Specifically, the (16%) 
difference in resulting potential evaluated in Equations (9) and 
(11) is due to the “linear-averaging” of the “non-linear” curve 
of the positive particles distribution electric potential which was 
shown in Figure 3.

Evaluation of the Positive Particles Distribution Function
The relation between electric potential produced by number 
(N) of positive particles distributed in fixed SCL arrangement 
is almost linear for Np ≫ 1 in Equation (11). This is due to the 
fact that as N is increasing the more linear the curve becomes as 
shown in Figure 5.

The linear relation for (Np ≫ 1) in Figure 5 is further explained such that the electric potential  dependence on the distance between 
central particles and other particles			     	       which is in the order of (r-1). The number of positive particles 
N(r) located at r distance will depend on the surface of the sphere of radius r where the positive particles are proportional to its sur-
face (N(r) ∝ 4 π r2). The additional positive particles will be located at the same distance from the central particle, i.e. at the surface 
of a sphere as shown in Figure 6. Thus, the relation between the produced electric potential    	    	 and the number of pos-
itive particles N will be as		        , i.e. the linear relation shown in Figure 5.
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Fig. 6: Positive particles in fixed SCL, and the number of positive particles that will be laid 
at the same distance from the central particle 

Because of the linear relation between the produced electric potential and the number of positive 
particles, the PDF can be evaluated from Fig. 3 by changing the scale of -aixs of the electric 
potential of the PDF (the yellow curve), this can be done by introducing a normalization factor () 
such that: 

 =  ()
 =   ()    

  (12) 

 

Substituting ()  of Equation (4) will lead to determining the normalization 
constant as  = 7.12 × 10. Therefore, the PDF is formulated according to Equation (13) and is 
plotted in Fig. 7:  

() = 7.12 × 104      ( −  ) +  −
   α ( −   + ) + 

  ; 
  ∈ (, ), / 

(13) 

 

  

  
  
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plotted in Fig. 7:  
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Figure 6: Positive particles in fixed SCL, and the number of positive particles that will be laid at the same distance from the central 
particle
Because of the linear relation between the produced electric potential and the number of positive Particles, the PDF can be evaluated 
from Figure 3 by changing the scale of y-aixs of the electric potential of the PDF (the yellow curve), this can be done by introducing 
a normalization factor (C) Such that:

Substituting  			         of Equation (4) will lead to determining the normalization constant as C = 7.12 × 107. There-
fore, the PDF is formulated according to Equation (13) and is Plotted in Figure 7:
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Fig. 7: Positive Particles Distribution Function in the interval  ∈ (, ) in 
the ( − ) plan  

3.4. Positive Particles Transportation: 

The arrangement of SRP and PDF produce subsequent potential barriers (depletion regions) 
surrounding the positive electrodes as shown in Fig. 3, the borders of these barriers are (, , .., ) depending on the equipotential value as illustrated in Fig.2. The potential peak () at these 
barriers and the borders of the depletion region will depend on: 

1. The location of the SRP electrodes; (/) ratio;  
2. The ratio of charges mounted in positive electrodes to those in negative electrodes (α); and 
3. The positive particles distribution (PDF).  

The system setup confines the positive particles to transport in one degree of freedom in the -
axis, then depending on their kinetic energies and collision probability; the positive particles will 
have the probability to transport through the depletion region in either (+) or (−) direction 
crossing the depletion region. To evaluate the transportation probability, imagine that the steady 
positive particles distributed as in the PDF given in Equation (13) start acquiring kinetic energies 
from the neutral particles by random collisions, the kinetic energy distribution of neutral particles 
will be subject to Maxwell-Boltzmann Distribution. The neutral particles collide randomly with 
the positive particles; hence, it is justified to assume that all positive particles will have averaged 
kinetic energy () from collisions with neutral particles. 

The positive particles have mutual electric repulsive force, and then every positive particle that 
has a collision with neutral particle will make a field-field interaction with the other surrounding 
positive particles exerting the electric field of the collided positive particle. As a result of such 
collisions and electric field-field interactions, all positive particles will oscillate around their 
equipotential locations with displacements depending on: 

1. Their location in the positive particle’s distribution, where outer positive particles will have 
longer displacement oscillations; and 

 () 

 (/) 

 () 

Figure 7: Positive Particles Distribution Function in the interval x ∈ (x1, x6) in the (y-z) plan
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Positive Particles Transportation
The arrangement of SRP and PDF produce subsequent potential 
barriers (depletion regions) surrounding the positive electrodes 
as shown in Figure 3, the borders of these barriers are (x1, x2,….. 
x6) depending on the equipotential value as illustrated in Figure 
2. The potential peak (VB) at these Barriers and the borders of the 
depletion region will depend on:
1. The location of the SRP electrodes; (9/2) ratio;
2. The ratio of charges mounted in positive electrodes to those in 
negative electrodes (α); and
3. The positive particles distribution (PDF).

The system setup confines the positive particles to transport in 
one degree of freedom in the x-axis, then depending on their 
kinetic energies and collision probability; the positive particles 
will have the probability to transport through the depletion re-
gion in either 	  	 direction crossing the depletion re-
gion. To evaluate the transportation probability, imagine that 
the steady positive particles distributed as in the PDF given in 
Equation (13) start acquiring kinetic energies from the neutral 
particles by random collisions, the kinetic energy distribution of 
neutral particles will be subject to Maxwell-Boltzmann Distri-
bution. The neutral particles collide randomly with the positive 
particles; hence, it is justified to assume that all positive particles 
will have averaged kinetic energy  	   from collisions with neu-
tral particles.

The positive particles have mutual electric repulsive force, and 
then every positive particle that has a collision with neutral par-
ticle will make a field-field interaction with the other surround-
ing positive particles exerting the electric field of the collided 
positive particle. As a result of such collisions and electric field-
field interactions, all positive particles will oscillate around their 
equipotential locations with displacements depending on:
1. Their location in the positive particle’s distribution, where 
outer positive particles will have longer displacement oscilla-
tions; and - The kinetic energy acquired from both collisions 
with neutral particles and electric field-field interaction.

According to this configuration, there will be some (y − z) plane 
of positive particles that the electric force in the (+x) direction 
over this plane is equal to that in the (−x) direction. Based on 
this “reflecting” plane, the positive particles located to the right 
of the plane will eventually transport part of their kinetic energy 
as waves toward (+x) direction, and those located to the left of 
the plane will eventually transport part of their kinetic energy 
toward (−x) direction.

To estimate the (x-axis) location of this reflecting plane (xr), con-
sider the PDF in Equation (13),
then the electric force in the two sides of the (y − z) reflecting 
plane:
 

Solving this equation gives (xr ≅ 0.00107 m) in proximity to the 
location of the peak positive particle density as shown in Figure 
7.

Defining the energy transportation ratio (RE) as the kinetic en-
ergy of positive particles transported in the (+x) direction to the 
border (x6), to that of the kinetic energy of positive particle trans-
ported in the (−x) direction to the border (x1). To evaluate (RE), 
the positive particles will be assumed transporting from their 
equipotential locations to the borders (x1, x6) in the direction (+x) 
or (−x) based on their location relevant to (xr). During transpor-
tation, the positive particles will experience random collisions 
with neutral particles, statistically yielding an attenuation in the 
kinetic energy of the transporting positive particles, then:

Where (l) is the mean free path of the neutral gas, from Equation 
(13) and the substituting (xr ≅ 0.00107 m), the relation between 
(RE) and (l) is shown in Figure 8, where  	  was expanded in 
polynomial function to the order (20) to avoid the integral of 
(ex/x) like function, the fitting was conducted using the least-
squares method. The (RE) should have a value of unity for very 
small (l) as well as for very large (l), because of that in the case 
of a very small mean free path, most of positive particles will 
be stopped before reaching the borders, and for very large mean 
free path, most of positive particles will reach the borders, then 
(RE = 1).

The best system performance will be for mean free path in the 
range of 10-4 m as predicted in the previous Ionized Gas Ther-
moelectric Generator (IG-TEG) study, and according to Figure 
8, the best (l) for the operation of the device is in the range ~3 × 
10-4 m, which agrees in the order with what imposed on IG-TEG 
study [23]. At this value of mean free path; the kinetic energy 
transfer in the (+x) direction to the border (x6) is about (3) times 
to that in the (−x) direction to the border (x1), i.e. 

Figure 8: Relation between energy transportation ratio (RE) and 
mean free path (l)

The net kinetic energy transferred (Enet) toward the border (x1), 
can be evaluated using Equation (16) below, in which the ini-
tial positive particle kinetic energy will be assumed equal to the 
mean kinetic energy of the neutral particles, i.e.	                             
hence the (∓x) components of the kinetic energy will be   	
i.e. one degree of freedom. Then:
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- The kinetic energy acquired from both collisions with neutral particles and electric 
field-field interaction.  

According to this configuration, there will be some ( − ) plane of positive particles that the 
electric force in the (+) direction over this plane is equal to that in the (−) direction. Based on 
this “reflecting” plane, the positive particles located to the right of the plane will eventually 
transport part of their kinetic energy as waves toward (+) direction, and those located to the left 
of the plane will eventually transport part of their kinetic energy toward (−) direction. 

To estimate the (-axis) location of this reflecting plane (), consider the PDF in Equation (13), 
then the electric force in the two sides of the ( − ) reflecting plane: 

 

 ()( − )   =
  ()( − ) 

  
(14) 

 

Solving this equation gives ( ≅ 0.00107 ) in proximity to the location of the peak positive 
particle density as shown in Fig.7.  

Defining the energy transportation ratio () as the kinetic energy of positive particles transported 
in the (+) direction to the border (), to that of the kinetic energy of positive particle transported 
in the (−) direction to the border (). To evaluate (), the positive particles will be assumed 
transporting from their equipotential locations to the borders (, ) in the direction (+) or (− ) 
based on their location relevant to (). During transportation, the positive particles will experience 
random collisions with neutral particles, statistically yielding an attenuation in the kinetic energy 
of the transporting positive particles, then: 

 

 =  ()   ()   ()  ()  
 

(15) 

 

Where () is the mean free path of the neutral gas, from Equation (13) and the substituting ( ≅0.00107 ), the relation between () and () is shown in Fig.8, where (()) was expanded in 
polynomial function to the order (20) to avoid the integral of (/) like function, the fitting was 
conducted using the least-squares method. The () should have a value of unity for very small 
() as well as for very large (), because of that in the case of a very small mean free path, most of 
positive particles will be stopped before reaching the borders, and for very large mean free path, 
most of positive particles will reach the borders, then ( = 1). 

The best system performance will be for mean free path in the range of 10  as predicted in the 
previous Ionized Gas Thermoelectric Generator (IG-TEG) study[23], and according to Fig.8, the 
best () for the operation of the device is in the range ~3 × 10 , which agrees in the order with 
what imposed on IG-TEG study[23]. At this value of mean free path; the kinetic energy transfer in 
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As the energy of a net current of positive particles crossing the 
depletion region in the (−x-axis) direction. In addition, the net 
power transfer will be:
 

Where    is the average thermal speed of positive particles in the 
range  		    and to be considered 2 × 103 m/s assuming 
the positive particles are ionized Hydrogen atoms (H+). On the 
other hand, and taking into consideration the conservation of en-
ergy and conservation of linear momentum laws, a current of 
neutral particles crossing the depletion region will be produced 
in accordance, equal in magnitude and opposite in direction, this 
neutral current will work as the energy carrier from the system 
to the outside in the energy harvesting stage.

Positive Particles Transportation in Depletion Region
The quantities of transported positive particles, the electric po-
tential inside the depletion region, the energy transportation ra-
tio, and the system total number of positive particles are cor-
related quantities. Hence, some averaging and approximations 
will be employed with justifications in the evaluation of the elec-
tric potential inside the depletion region, as well as during the 
evaluation of the number of transported particles.

Depending on the electric potential of the system (electrodes 
and positive particles), the transporting positive particles will 
pass through positive electrodes in certain trajectories forming a 
transportation tunnel, this tunnel is located inside the depletion 
region as illustrated in Figure 9(a). The neutral particles will be 
free to pass through the entire space of the depletion region. The 
length of the tunnel (L) will be the same as the length of the 
depletion region   	         as shown in Figure 9(b). The 
trajectories of positive particles are formed based on the mini-
mal electric potential, forming the tunnel in a Cylindrical Anvil 
shape as shown in Figure 9(a), with variable radius depend on 
the system electric potential and the energy transportation ratio 
and the number of transported positive particles.
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kinetic energy of the neutral particles, i.e. ( =  ), hence the (∓) components of the kinetic 

energy will be ( ), i.e. one degree of freedom. Then: 

 

 = 12  2   − 1   ()   ()  
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(16) 

Assuming ( ~0.015 ), then: 

 ≅ 7.69 × 10  ≅ 1.23 × 10  (17) 

As the energy of a net current of positive particles crossing the depletion region in the (−-axis) 
direction. In addition, the net power transfer will be: 

 =  × ̅( − ) ≅ 1.43 × 10  ≅ 2.28 × 10  (18) 

Where (̅) is the average thermal speed of positive particles in the range ( ∈ (, ) and to be 
considered 2 × 10 / assuming the positive particles are ionized Hydrogen atoms (H+). On the 
other hand, and taking into consideration the conservation of energy and conservation of linear 
momentum laws, a current of neutral particles crossing the depletion region will be produced in 
accordance, equal in magnitude and opposite in direction, this neutral current will work as the 
energy carrier from the system to the outside in the energy harvesting stage. 
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3.5. Positive Particles Transportation in Depletion Region: 

The quantities of transported positive particles, the electric potential inside the depletion region, 
the energy transportation ratio, and the system total number of positive particles are correlated 
quantities. Hence, some averaging and approximations will be employed with justifications in the 
evaluation of the electric potential inside the depletion region, as well as during the evaluation of 
the number of transported particles. 

Depending on the electric potential of the system (electrodes and positive particles), the 
transporting positive particles will pass through positive electrodes in certain trajectories forming 
a transportation tunnel, this tunnel is located inside the depletion region as illustrated in Fig.9(a). 
The neutral particles will be free to pass through the entire space of the depletion region. The 
length of the tunnel () will be the same as the length of the depletion region ( =  − ′) as 
shown in Fig. 9(b). The trajectories of positive particles are formed based on the minimal electric 
potential, forming the tunnel in a Cylindrical Anvil shape as shown in Fig. 9(a), with variable 
radius depend on the system electric potential and the energy transportation ratio and the number 
of transported positive particles.  

 
 

 

Fig.9: Transportation Tunnel 

To facilitate the evaluation of the variable radius of the tunnel, assume that the tunnel is a cylinder 
with bases at (, ) as shown in Fig. 9(b), the radius of the tunnel is less than the radius of the 
electrode ( < ). Also assume equal spacing between positive particles inside the tunnel to 
minimize and neglect the electric potential produced by the passing positive particles. 

The cylindrical tunnel radius will depend mainly on the positive electrode potential, where the 
electric potential at the depletion region produced by the system electrodes varies gradually as 
moving away from -axis toward () and () directions. Fig. 10 shows the variation of electric 
potential at ( − ) plane of the positive electrode, produced by few pairs of system electrodes. In 
Fig.10, the adjacent negative electrode approximated as a point charge located at a distance () 
from the positive electrode, and the charge assumed as (−) to represent the effect of positive 
particles near that negative electrode. 
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Figure 9: Transportation Tunnel

To facilitate the evaluation of the variable radius of the tunnel, 
assume that the tunnel is a cylinder with bases at              as 
shown in Figure 9(b), the radius of the tunnel is less than the ra-
dius of the electrode (r < α). Also assume equal spacing between 
positive particles inside the tunnel to minimize and neglect the 
electric potential produced by the passing positive particles.

The cylindrical tunnel radius will depend mainly on the positive 
electrode potential, where the electric potential at the depletion 

region produced by the system electrodes varies gradually as 
moving away from x-axis toward (y) and (z) directions. Figure 
10 shows the variation of electric potential at (y − z) plane of the 
positive electrode, produced by few pairs of system electrodes. 
In Figure 10, the adjacent negative electrode approximated as a 
point charge located at a distance (d) from the positive electrode, 
and the charge assumed as (−αQ) to represent the effect of posi-
tive particles near that negative electrode.
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Fig. 10: Electric potential at the positive electrode ( − ) plane 

where ( =  +  ). 
The positive particles will move in the trajectories with minimum electric potential, i.e. 
(~353 ) trajectory passing the center of the positive ring electrode.  

From Fig. 10, the minimum energy () required for the positive particle to pass through the 
potential barrier (at  = ) is ~530  corresponding to a trajectory located exactly on the -
axis. According to the net power transfer () evaluated in Equation (18), the maximum flow of 
the first pulse will be: 

, =  ≅ 2.67 × 10 / −  (19) 

The maximum number of positive particles of this flow exist at the same time inside the depletion 
region will be: 

 = ̅,/( − ′) (20) 

Where (̅,) is the average speed of positive particles in the x-axis and it varies with the electric 
potential inside the depletion region as: 

̅, = 2 ( −  ())  (21) 

Where () is the electric potential at the -axis inside the depletion region, noting that the 
minimum electric potential is (() = 0) at the borders (, ′) of the depletion region, and the 
maximum electric potential at the -axis is (() = /), hence the average speed of positive 
particles in the x-axis (̅,) can be approximately assumed as: 

̅, = 12 2  ≅ 1.6 × 10 / (22) 

 () 

()  

14 
 

  

Fig. 10: Electric potential at the positive electrode ( − ) plane 

where ( =  +  ). 
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Where () is the electric potential at the -axis inside the depletion region, noting that the 
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The positive particles will move in the trajectories with min-
imum electric potential, i.e.                        trajectory passing 
the center of the positive ring electrode. From Figure 10, the 
minimum energy (ET) required for the positive particle to pass 
through the potential barrier (at x = xB) is ~530 eV corresponding 
to a trajectory located exactly on the x - axis. According to the 
net power transfer (Pnet) evaluated in Equation (18), the maxi-
mum flow of the first pulse will be:

The maximum number of positive particles of this flow exist at 
the same time inside the depletion region will be:

Where          is the average speed of positive particles in the x-ax-
is and it varies with the electric potential inside the depletion 
region as:

Where V(x) is the electric potential at the x-axis inside the deple-
tion region, noting that the minimum electric potential is (V(x) 
= 0) at the borders	 of the depletion region, and the max-
imum electric potential at the x-axis is  		     
hence the average speed of positive particles in the x-axis 	  
can be approximately assumed as:

This speed value is way far from the relativistic limits (~10-4 c) 
thus, eliminating the need to consider relativistic analysis. Sub-
stituting the average speed in Equation (22) into Equation (20) 
gives:

Equation 23 represent the number of positive particles coexist-
ing inside the depletion region simultaneously. Considering the 
length of the depletion region, the electric potential produced by 
these positive particles will be in the range 1-3 Volts, so it will be 
neglected compared to the system electric potential (> 530 V). 
As a result, the flow of positive particles will be passing through 
the depletion region in a single trajectory located at the x-axis.

Neutral Particles Transportation
The neutral particles exist in the depletion region by random 
Brownian motion, the Brownian density of neutral particles	
that exist in the depletion region by Brownian motion can be 
evaluated based on the neutral particles mean free path  		
		  and assuming that the neutral particles are He-
lium (He) gas particles in the standard room temperature, with a 
diameter
(d = 0.225 nm), as:

 

Additional neutral particles will exist in the depletion region, 
these additional neutral particles introduced to the depletion 
region by the net flow of neutral particles in the     direction 
explained in subsection 3.4. In accordance to the law of Conser-
vation of Energy:
 

Noting that  	          then from Equations (25) and (19):
 

The majority of collisions initiating the flow of neutral parti-
cles were occurred at the positive particles high-density region, 
a distance about 5before the border compared to the mean free 
path 0.3 mm. Hence, the energy gained by neutral particles from 
collisions with positive particles will be distributed equally 
among a large number  		  of positive particles, assum-
ing that after each collision, two collided particles will share the 
collision energy. Then, the neutral particles flow can be assumed 
homogeneous and mono-energetic inside the depletion region. 
Then the density of neutral particles increment rate with time 
will be:
 

Then:

Where (V) is the volume of the transportation tunnel			 
				       Then the mean free path 
inside the transportation tunnel will be a function of time, as:
 

The mean free path will increase with time, starting from the 
initial mean free path 	          as shown in Figure 11. The 
increase in the mean free path inside the depletion region will 
decrease the positive particles current passing through the deple-
tion region, hence decreasing the neutral current increments, and 
so on until reaching terminal currents      and      

Figure 11: Mean free path time variation due to increasing of 
neutral particle flow
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This speed value is way far from the relativistic limits (~10 ), thus, eliminating the need to 
consider relativistic analysis. Substituting the average speed in Equation (22) into Equation (20) 
gives: 

 = 43.4  (23) 

Equation 23 represent the number of positive particles coexisting inside the depletion region 
simultaneously. Considering the length of the depletion region, the electric potential produced by 
these positive particles will be in the range 1 , so it will be neglected compared to the 
system electric potential (> 530 ). As a result, the flow of positive particles will be passing 
through the depletion region in a single trajectory located at the -axis. 

3.6. Neutral Particles Transportation:  

The neutral particles exist in the depletion region by random Brownian motion, the Brownian 
density of neutral particles (,±) that exist in the depletion region by Brownian motion can be 
evaluated based on the neutral particles mean free path (~3 × 10 ), and assuming that the 
neutral particles are Helium (He) gas particles in the standard room temperature, with a diameter 
( = 0.225 ), as: 

,± = 1     ≅ 2.1 × 10 / (24) 

Additional neutral particles will exist in the depletion region, these additional neutral particles 
introduced to the depletion region by the net flow of neutral particles in the (+) direction 
explained in subsection 3.4. In accordance to the law of Conservation of Energy: 

 12 ± ±
±

=  12  


 (25) 

Noting that (± ≅ 4 ), then from Equations (25) and (19): 

±, = ,2 = 1.34 × 10 / sec  (+) (26) 

The majority of collisions initiating the flow of neutral particles were occurred at the positive 
particles high-density region, a distance about 5 before the border compared to the mean free 
path 0.3 . Hence, the energy gained by neutral particles from collisions with positive particles 
will be distributed equally among a large number (~2/.~10) of positive particles, assuming 
that after each collision, two collided particles will share the collision energy. Then, the neutral 
particles flow can be assumed homogeneous and mono-energetic inside the depletion region. Then 
the density of neutral particles increment rate with time will be: ±() = 1 ± = ±   /.  (27) 

15 
 

This speed value is way far from the relativistic limits (~10 ), thus, eliminating the need to 
consider relativistic analysis. Substituting the average speed in Equation (22) into Equation (20) 
gives: 

 = 43.4  (23) 

Equation 23 represent the number of positive particles coexisting inside the depletion region 
simultaneously. Considering the length of the depletion region, the electric potential produced by 
these positive particles will be in the range 1 , so it will be neglected compared to the 
system electric potential (> 530 ). As a result, the flow of positive particles will be passing 
through the depletion region in a single trajectory located at the -axis. 

3.6. Neutral Particles Transportation:  

The neutral particles exist in the depletion region by random Brownian motion, the Brownian 
density of neutral particles (,±) that exist in the depletion region by Brownian motion can be 
evaluated based on the neutral particles mean free path (~3 × 10 ), and assuming that the 
neutral particles are Helium (He) gas particles in the standard room temperature, with a diameter 
( = 0.225 ), as: 

,± = 1     ≅ 2.1 × 10 / (24) 

Additional neutral particles will exist in the depletion region, these additional neutral particles 
introduced to the depletion region by the net flow of neutral particles in the (+) direction 
explained in subsection 3.4. In accordance to the law of Conservation of Energy: 

 12 ± ±
±

=  12  


 (25) 

Noting that (± ≅ 4 ), then from Equations (25) and (19): 

±, = ,2 = 1.34 × 10 / sec  (+) (26) 

The majority of collisions initiating the flow of neutral particles were occurred at the positive 
particles high-density region, a distance about 5 before the border compared to the mean free 
path 0.3 . Hence, the energy gained by neutral particles from collisions with positive particles 
will be distributed equally among a large number (~2/.~10) of positive particles, assuming 
that after each collision, two collided particles will share the collision energy. Then, the neutral 
particles flow can be assumed homogeneous and mono-energetic inside the depletion region. Then 
the density of neutral particles increment rate with time will be: ±() = 1 ± = ±   /.  (27) 

15 
 

This speed value is way far from the relativistic limits (~10 ), thus, eliminating the need to 
consider relativistic analysis. Substituting the average speed in Equation (22) into Equation (20) 
gives: 

 = 43.4  (23) 

Equation 23 represent the number of positive particles coexisting inside the depletion region 
simultaneously. Considering the length of the depletion region, the electric potential produced by 
these positive particles will be in the range 1 , so it will be neglected compared to the 
system electric potential (> 530 ). As a result, the flow of positive particles will be passing 
through the depletion region in a single trajectory located at the -axis. 

3.6. Neutral Particles Transportation:  

The neutral particles exist in the depletion region by random Brownian motion, the Brownian 
density of neutral particles (,±) that exist in the depletion region by Brownian motion can be 
evaluated based on the neutral particles mean free path (~3 × 10 ), and assuming that the 
neutral particles are Helium (He) gas particles in the standard room temperature, with a diameter 
( = 0.225 ), as: 

,± = 1     ≅ 2.1 × 10 / (24) 

Additional neutral particles will exist in the depletion region, these additional neutral particles 
introduced to the depletion region by the net flow of neutral particles in the (+) direction 
explained in subsection 3.4. In accordance to the law of Conservation of Energy: 

 12 ± ±
±

=  12  


 (25) 

Noting that (± ≅ 4 ), then from Equations (25) and (19): 

±, = ,2 = 1.34 × 10 / sec  (+) (26) 

The majority of collisions initiating the flow of neutral particles were occurred at the positive 
particles high-density region, a distance about 5 before the border compared to the mean free 
path 0.3 . Hence, the energy gained by neutral particles from collisions with positive particles 
will be distributed equally among a large number (~2/.~10) of positive particles, assuming 
that after each collision, two collided particles will share the collision energy. Then, the neutral 
particles flow can be assumed homogeneous and mono-energetic inside the depletion region. Then 
the density of neutral particles increment rate with time will be: ±() = 1 ± = ±   /.  (27) 

15 
 

This speed value is way far from the relativistic limits (~10 ), thus, eliminating the need to 
consider relativistic analysis. Substituting the average speed in Equation (22) into Equation (20) 
gives: 

 = 43.4  (23) 

Equation 23 represent the number of positive particles coexisting inside the depletion region 
simultaneously. Considering the length of the depletion region, the electric potential produced by 
these positive particles will be in the range 1 , so it will be neglected compared to the 
system electric potential (> 530 ). As a result, the flow of positive particles will be passing 
through the depletion region in a single trajectory located at the -axis. 

3.6. Neutral Particles Transportation:  

The neutral particles exist in the depletion region by random Brownian motion, the Brownian 
density of neutral particles (,±) that exist in the depletion region by Brownian motion can be 
evaluated based on the neutral particles mean free path (~3 × 10 ), and assuming that the 
neutral particles are Helium (He) gas particles in the standard room temperature, with a diameter 
( = 0.225 ), as: 

,± = 1     ≅ 2.1 × 10 / (24) 

Additional neutral particles will exist in the depletion region, these additional neutral particles 
introduced to the depletion region by the net flow of neutral particles in the (+) direction 
explained in subsection 3.4. In accordance to the law of Conservation of Energy: 

 12 ± ±
±

=  12  


 (25) 

Noting that (± ≅ 4 ), then from Equations (25) and (19): 

±, = ,2 = 1.34 × 10 / sec  (+) (26) 

The majority of collisions initiating the flow of neutral particles were occurred at the positive 
particles high-density region, a distance about 5 before the border compared to the mean free 
path 0.3 . Hence, the energy gained by neutral particles from collisions with positive particles 
will be distributed equally among a large number (~2/.~10) of positive particles, assuming 
that after each collision, two collided particles will share the collision energy. Then, the neutral 
particles flow can be assumed homogeneous and mono-energetic inside the depletion region. Then 
the density of neutral particles increment rate with time will be: ±() = 1 ± = ±   /.  (27) 

15 
 

This speed value is way far from the relativistic limits (~10 ), thus, eliminating the need to 
consider relativistic analysis. Substituting the average speed in Equation (22) into Equation (20) 
gives: 

 = 43.4  (23) 

Equation 23 represent the number of positive particles coexisting inside the depletion region 
simultaneously. Considering the length of the depletion region, the electric potential produced by 
these positive particles will be in the range 1 , so it will be neglected compared to the 
system electric potential (> 530 ). As a result, the flow of positive particles will be passing 
through the depletion region in a single trajectory located at the -axis. 

3.6. Neutral Particles Transportation:  

The neutral particles exist in the depletion region by random Brownian motion, the Brownian 
density of neutral particles (,±) that exist in the depletion region by Brownian motion can be 
evaluated based on the neutral particles mean free path (~3 × 10 ), and assuming that the 
neutral particles are Helium (He) gas particles in the standard room temperature, with a diameter 
( = 0.225 ), as: 

,± = 1     ≅ 2.1 × 10 / (24) 

Additional neutral particles will exist in the depletion region, these additional neutral particles 
introduced to the depletion region by the net flow of neutral particles in the (+) direction 
explained in subsection 3.4. In accordance to the law of Conservation of Energy: 

 12 ± ±
±

=  12  


 (25) 

Noting that (± ≅ 4 ), then from Equations (25) and (19): 

±, = ,2 = 1.34 × 10 / sec  (+) (26) 

The majority of collisions initiating the flow of neutral particles were occurred at the positive 
particles high-density region, a distance about 5 before the border compared to the mean free 
path 0.3 . Hence, the energy gained by neutral particles from collisions with positive particles 
will be distributed equally among a large number (~2/.~10) of positive particles, assuming 
that after each collision, two collided particles will share the collision energy. Then, the neutral 
particles flow can be assumed homogeneous and mono-energetic inside the depletion region. Then 
the density of neutral particles increment rate with time will be: ±() = 1 ± = ±   /.  (27) 

15 
 

This speed value is way far from the relativistic limits (~10 ), thus, eliminating the need to 
consider relativistic analysis. Substituting the average speed in Equation (22) into Equation (20) 
gives: 

 = 43.4  (23) 

Equation 23 represent the number of positive particles coexisting inside the depletion region 
simultaneously. Considering the length of the depletion region, the electric potential produced by 
these positive particles will be in the range 1 , so it will be neglected compared to the 
system electric potential (> 530 ). As a result, the flow of positive particles will be passing 
through the depletion region in a single trajectory located at the -axis. 

3.6. Neutral Particles Transportation:  

The neutral particles exist in the depletion region by random Brownian motion, the Brownian 
density of neutral particles (,±) that exist in the depletion region by Brownian motion can be 
evaluated based on the neutral particles mean free path (~3 × 10 ), and assuming that the 
neutral particles are Helium (He) gas particles in the standard room temperature, with a diameter 
( = 0.225 ), as: 

,± = 1     ≅ 2.1 × 10 / (24) 

Additional neutral particles will exist in the depletion region, these additional neutral particles 
introduced to the depletion region by the net flow of neutral particles in the (+) direction 
explained in subsection 3.4. In accordance to the law of Conservation of Energy: 

 12 ± ±
±

=  12  


 (25) 

Noting that (± ≅ 4 ), then from Equations (25) and (19): 

±, = ,2 = 1.34 × 10 / sec  (+) (26) 

The majority of collisions initiating the flow of neutral particles were occurred at the positive 
particles high-density region, a distance about 5 before the border compared to the mean free 
path 0.3 . Hence, the energy gained by neutral particles from collisions with positive particles 
will be distributed equally among a large number (~2/.~10) of positive particles, assuming 
that after each collision, two collided particles will share the collision energy. Then, the neutral 
particles flow can be assumed homogeneous and mono-energetic inside the depletion region. Then 
the density of neutral particles increment rate with time will be: ±() = 1 ± = ±   /.  (27) 

15 
 

This speed value is way far from the relativistic limits (~10 ), thus, eliminating the need to 
consider relativistic analysis. Substituting the average speed in Equation (22) into Equation (20) 
gives: 

 = 43.4  (23) 

Equation 23 represent the number of positive particles coexisting inside the depletion region 
simultaneously. Considering the length of the depletion region, the electric potential produced by 
these positive particles will be in the range 1 , so it will be neglected compared to the 
system electric potential (> 530 ). As a result, the flow of positive particles will be passing 
through the depletion region in a single trajectory located at the -axis. 

3.6. Neutral Particles Transportation:  

The neutral particles exist in the depletion region by random Brownian motion, the Brownian 
density of neutral particles (,±) that exist in the depletion region by Brownian motion can be 
evaluated based on the neutral particles mean free path (~3 × 10 ), and assuming that the 
neutral particles are Helium (He) gas particles in the standard room temperature, with a diameter 
( = 0.225 ), as: 

,± = 1     ≅ 2.1 × 10 / (24) 

Additional neutral particles will exist in the depletion region, these additional neutral particles 
introduced to the depletion region by the net flow of neutral particles in the (+) direction 
explained in subsection 3.4. In accordance to the law of Conservation of Energy: 

 12 ± ±
±

=  12  


 (25) 

Noting that (± ≅ 4 ), then from Equations (25) and (19): 

±, = ,2 = 1.34 × 10 / sec  (+) (26) 

The majority of collisions initiating the flow of neutral particles were occurred at the positive 
particles high-density region, a distance about 5 before the border compared to the mean free 
path 0.3 . Hence, the energy gained by neutral particles from collisions with positive particles 
will be distributed equally among a large number (~2/.~10) of positive particles, assuming 
that after each collision, two collided particles will share the collision energy. Then, the neutral 
particles flow can be assumed homogeneous and mono-energetic inside the depletion region. Then 
the density of neutral particles increment rate with time will be: ±() = 1 ± = ±   /.  (27) 

15 
 

This speed value is way far from the relativistic limits (~10 ), thus, eliminating the need to 
consider relativistic analysis. Substituting the average speed in Equation (22) into Equation (20) 
gives: 

 = 43.4  (23) 

Equation 23 represent the number of positive particles coexisting inside the depletion region 
simultaneously. Considering the length of the depletion region, the electric potential produced by 
these positive particles will be in the range 1 , so it will be neglected compared to the 
system electric potential (> 530 ). As a result, the flow of positive particles will be passing 
through the depletion region in a single trajectory located at the -axis. 

3.6. Neutral Particles Transportation:  

The neutral particles exist in the depletion region by random Brownian motion, the Brownian 
density of neutral particles (,±) that exist in the depletion region by Brownian motion can be 
evaluated based on the neutral particles mean free path (~3 × 10 ), and assuming that the 
neutral particles are Helium (He) gas particles in the standard room temperature, with a diameter 
( = 0.225 ), as: 

,± = 1     ≅ 2.1 × 10 / (24) 

Additional neutral particles will exist in the depletion region, these additional neutral particles 
introduced to the depletion region by the net flow of neutral particles in the (+) direction 
explained in subsection 3.4. In accordance to the law of Conservation of Energy: 

 12 ± ±
±

=  12  


 (25) 

Noting that (± ≅ 4 ), then from Equations (25) and (19): 

±, = ,2 = 1.34 × 10 / sec  (+) (26) 

The majority of collisions initiating the flow of neutral particles were occurred at the positive 
particles high-density region, a distance about 5 before the border compared to the mean free 
path 0.3 . Hence, the energy gained by neutral particles from collisions with positive particles 
will be distributed equally among a large number (~2/.~10) of positive particles, assuming 
that after each collision, two collided particles will share the collision energy. Then, the neutral 
particles flow can be assumed homogeneous and mono-energetic inside the depletion region. Then 
the density of neutral particles increment rate with time will be: ±() = 1 ± = ±   /.  (27) 

15 
 

This speed value is way far from the relativistic limits (~10 ), thus, eliminating the need to 
consider relativistic analysis. Substituting the average speed in Equation (22) into Equation (20) 
gives: 

 = 43.4  (23) 

Equation 23 represent the number of positive particles coexisting inside the depletion region 
simultaneously. Considering the length of the depletion region, the electric potential produced by 
these positive particles will be in the range 1 , so it will be neglected compared to the 
system electric potential (> 530 ). As a result, the flow of positive particles will be passing 
through the depletion region in a single trajectory located at the -axis. 

3.6. Neutral Particles Transportation:  

The neutral particles exist in the depletion region by random Brownian motion, the Brownian 
density of neutral particles (,±) that exist in the depletion region by Brownian motion can be 
evaluated based on the neutral particles mean free path (~3 × 10 ), and assuming that the 
neutral particles are Helium (He) gas particles in the standard room temperature, with a diameter 
( = 0.225 ), as: 

,± = 1     ≅ 2.1 × 10 / (24) 

Additional neutral particles will exist in the depletion region, these additional neutral particles 
introduced to the depletion region by the net flow of neutral particles in the (+) direction 
explained in subsection 3.4. In accordance to the law of Conservation of Energy: 

 12 ± ±
±

=  12  


 (25) 

Noting that (± ≅ 4 ), then from Equations (25) and (19): 

±, = ,2 = 1.34 × 10 / sec  (+) (26) 

The majority of collisions initiating the flow of neutral particles were occurred at the positive 
particles high-density region, a distance about 5 before the border compared to the mean free 
path 0.3 . Hence, the energy gained by neutral particles from collisions with positive particles 
will be distributed equally among a large number (~2/.~10) of positive particles, assuming 
that after each collision, two collided particles will share the collision energy. Then, the neutral 
particles flow can be assumed homogeneous and mono-energetic inside the depletion region. Then 
the density of neutral particles increment rate with time will be: ±() = 1 ± = ±   /.  (27) 

15 
 

This speed value is way far from the relativistic limits (~10 ), thus, eliminating the need to 
consider relativistic analysis. Substituting the average speed in Equation (22) into Equation (20) 
gives: 

 = 43.4  (23) 

Equation 23 represent the number of positive particles coexisting inside the depletion region 
simultaneously. Considering the length of the depletion region, the electric potential produced by 
these positive particles will be in the range 1 , so it will be neglected compared to the 
system electric potential (> 530 ). As a result, the flow of positive particles will be passing 
through the depletion region in a single trajectory located at the -axis. 

3.6. Neutral Particles Transportation:  

The neutral particles exist in the depletion region by random Brownian motion, the Brownian 
density of neutral particles (,±) that exist in the depletion region by Brownian motion can be 
evaluated based on the neutral particles mean free path (~3 × 10 ), and assuming that the 
neutral particles are Helium (He) gas particles in the standard room temperature, with a diameter 
( = 0.225 ), as: 

,± = 1     ≅ 2.1 × 10 / (24) 

Additional neutral particles will exist in the depletion region, these additional neutral particles 
introduced to the depletion region by the net flow of neutral particles in the (+) direction 
explained in subsection 3.4. In accordance to the law of Conservation of Energy: 

 12 ± ±
±

=  12  


 (25) 

Noting that (± ≅ 4 ), then from Equations (25) and (19): 

±, = ,2 = 1.34 × 10 / sec  (+) (26) 

The majority of collisions initiating the flow of neutral particles were occurred at the positive 
particles high-density region, a distance about 5 before the border compared to the mean free 
path 0.3 . Hence, the energy gained by neutral particles from collisions with positive particles 
will be distributed equally among a large number (~2/.~10) of positive particles, assuming 
that after each collision, two collided particles will share the collision energy. Then, the neutral 
particles flow can be assumed homogeneous and mono-energetic inside the depletion region. Then 
the density of neutral particles increment rate with time will be: ±() = 1 ± = ±   /.  (27) 

15 
 

This speed value is way far from the relativistic limits (~10 ), thus, eliminating the need to 
consider relativistic analysis. Substituting the average speed in Equation (22) into Equation (20) 
gives: 

 = 43.4  (23) 

Equation 23 represent the number of positive particles coexisting inside the depletion region 
simultaneously. Considering the length of the depletion region, the electric potential produced by 
these positive particles will be in the range 1 , so it will be neglected compared to the 
system electric potential (> 530 ). As a result, the flow of positive particles will be passing 
through the depletion region in a single trajectory located at the -axis. 

3.6. Neutral Particles Transportation:  

The neutral particles exist in the depletion region by random Brownian motion, the Brownian 
density of neutral particles (,±) that exist in the depletion region by Brownian motion can be 
evaluated based on the neutral particles mean free path (~3 × 10 ), and assuming that the 
neutral particles are Helium (He) gas particles in the standard room temperature, with a diameter 
( = 0.225 ), as: 

,± = 1     ≅ 2.1 × 10 / (24) 

Additional neutral particles will exist in the depletion region, these additional neutral particles 
introduced to the depletion region by the net flow of neutral particles in the (+) direction 
explained in subsection 3.4. In accordance to the law of Conservation of Energy: 

 12 ± ±
±

=  12  


 (25) 

Noting that (± ≅ 4 ), then from Equations (25) and (19): 

±, = ,2 = 1.34 × 10 / sec  (+) (26) 

The majority of collisions initiating the flow of neutral particles were occurred at the positive 
particles high-density region, a distance about 5 before the border compared to the mean free 
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Then: 

±() = ,± + ±   / (28) 

Where () is the volume of the transportation tunnel (( − ′) ≅ 8.47 × 10 ). Then 
the mean free path inside the transportation tunnel will be a function of time, as: 

 () = 1  ±  + ,±  (29) 

The mean free path will increase with time, starting from the initial mean free path (~3 × 10 ) 
as shown in Fig. 11. The increase in the mean free path inside the depletion region will decrease 
the positive particles current passing through the depletion region, hence decreasing the neutral 
current increments, and so on until reaching terminal currents () and (±). 

 
Fig. 11: Mean free path time variation due to increasing of neutral particle flow 

 

3.7. Positive Particles and Neutral Particles Terminal Currents:  

To evaluate the correlated terminal currents () and (±), a conservative approximation will be 
imposed to facilitate the evaluation, in which the positive particles current attenuation will be 
considered only before the voltage peak point (), where positive particles experience a collision 
after this point will not significantly affect the transportation of these particles because of the 
electric drifting force. Then the positive particles current attenuation will be: 

 = ,  −( − )  = ,  −( − )    2  + ,±  (30) 

This equation involves (()/) term, stipulating that the solution of this equation will be in 
the form of Lambert W Function (Omega Function – ()), as:  

 = 2        ,  2   −  ( − ) ,±  (31) 
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as shown in Fig. 11. The increase in the mean free path inside the depletion region will decrease 
the positive particles current passing through the depletion region, hence decreasing the neutral 
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The slow decreasing in the positive current (I+) can be explained 
based on the followings:
• The current resistance is related to the mean free path (l), which 
depend on the variant number of neutral particles  		   
the depletion region as given in Equation (29);
• The value of            depend on the variant neutral particles 
current        as given in equation (28); and
• The neutral particles current       is correlated to the value of the 
current       itself as given in Equation (26).

Then, once the positive particles current       decrease, the current 
resistance decrease as well. The resulting       from this correlated 
relation will be as shown in Figure 12, where the positive parti-
cles terminal current will be decreasing with time in a slowing 
pattern as (t → ∞). This slowing attenuation can be explained 
by noting the slow decreasing of mean free path shown in Fig-
ure 11, due to the slow increasing of neutral particles in the de-
pletion region, where the relation between current attenuation 
and mean free path is expressed by Equation (30). The energy 
extraction can be executed early within the first 100 seconds by 
letting the neutral current escape from the system in tangential 
slits (while the positive particles current remains confined by 
electrodes potential to move inside the circular system trajecto-

ry), and then from Figure 12, the positive particles current can 
be assumed in the range   

Once the neutral current       starts escaping from the system, 
the mean free path can be assumed constant as predicted from 
Equation (29). Hence, the maximum extracted power from the 
escaped neutral current (Pmax) can be evaluated based on the lin-
ear relation between particles current (I) and the power (P) car-
ried by this current (at constant pressure and volume, based on 
the Ideal Gas
Law), as:
 

Hence, considering the result of that the positive particles cur-
rent can be assumed in the range                                        and 
from Equations (18), (19) and (32):
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To evaluate the correlated terminal currents (I+) and (I+) , a conservative approximation will be imposed to facilitate the evaluation, 
in which the positive particles current attenuation will be considered only before the voltage peak point (xB)  , where positive par-
ticles experience a collision after this point will not significantly affect the transportation of these particles because of the electric 
drifting force. Then the positive particles current attenuation will be:
 

This equation involves		    term, stipulating that the solution of this equation will be in the form of Lambert W Function 
(Omega Function – W (z)), as:
   

For the current controlling parameters summarized in Table.2, where the distance	    was estimated from Figure 3; the result-
ing positive particles terminal current (I+) can be found as shown in Figure 12, where the foreseen timely current decrease with time 
shows slow current decay, as given for 105 seconds in Figure 12.
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For the current controlling parameters summarized in Table.2, where the distance ( − ) was 
estimated from Fig.3; the resulting positive particles terminal current () can be found as shown 
in Fig.12, where the foreseen timely current decrease with time shows slow current decay, as given 
for 10 seconds in Fig.12. 
 

Table.2: Current controlling parameters and their values 

Parameter Value (Unit) Parameter Value (Unit) 

is the volume of the 
transportation tunnel: 

() 8.47 × 10 () 

Distance between border 
() and voltage peak 
location () in depletion 
region:  

( − ) 

0.00013 () 

Helium (He) gas 
particles diameter: 

() 
0.225 () 

First pulse positive particle 
current: 

(, ) 
2.67 × 10  

(/) 

Time: 

() Second 
Initial neutral particles 
density in depletion region: 

(,±) 

2.1 × 10  
(/) 

 

The slow decreasing in the positive current () can be explained based on the followings: 

- The current resistance is related to the mean free path (), which depend on the variant 
number of neutral particles (±()) the depletion region as given in Equation (29); 

- The value of (±()) depend on the variant neutral particles current (±) as given in 
equation (28); and 

- The neutral particles current (±) is correlated to the value of the current () itself as given 
in Equation (26). 

Then, once the positive particles current () decrease, the current resistance decrease as well. The 
resulting () from this correlated relation will be as shown in Fig.12, where the positive particles 
terminal current will be decreasing with time in a slowing pattern as ( → ∞). This slowing 
attenuation can be explained by noting the slow decreasing of mean free path shown in Fig.11, due 
to the slow increasing of neutral particles in the depletion region, where the relation between 
current attenuation and mean free path is expressed by Equation (30). The energy extraction can 
be executed early within the first 100 seconds by letting the neutral current escape from the system 
in tangential slits (while the positive particles current remains confined by electrodes potential to 
move inside the circular system trajectory), and then from Fig.12, the positive particles current can 
be assumed in the range ~5 × 10 /. 

Once the neutral current (±) starts escaping from the system, the mean free path can be assumed 
constant as predicted from Equation (29). Hence, the maximum extracted power from the escaped 
neutral current () can be evaluated based on the linear relation between particles current () 17 
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The result in Equation (33) can be used to estimate the power 
that can be extracted from a 1 m long system tube with a radi-
us of 10 cm, which considered a rational dimension that allows 
neutral particles flow to escape from the system tube, and based 
on the following conditions:
• Geometrical parameters of the electrodes given in Table 1; and
• Considering the same efficiency assumption (10%) as ex-
plained in the previous study [23].
The resulting power extraction will be in the order 10 Watts, 
which considered as a promising new green technology, and new 
effective cooling system that is producing rather than consuming 
power.

Conclusion
This study explains in computational manner the relation be-
tween the correlated parameters controlling the IG-TEG, includ-
ing the geometrical parameters (D, d, a), electrical parameters 
(Q, αQ, Nq), and system pressure (neutral particles density and 
mean free path). In this study, a new theoretical method was 
conducted to evaluate the power production of the IG-TEG, and 
compared to the previous results [23]. The comparison shows 
agreement in the order of power extraction ~10 W /m3. The theo-
retical evaluations conducted in this study was deeply extended 
compared to the previous study, where the new evaluation meth-
od was based on the evaluation of Positive Particles Distribution 
Function (PDF) in a given periodic interval of Static Ratchet 
Potentila (SRP), and including the transportation probabilities 
inside the RP electrodes’ depletion reegio [23]. The PDF eval-
uation was based on V = 0 equipotential locations of positive 
particles assumption, and extrapolating the volumetric distribu-
tion of positive particles from the linear distribution of particles, 
assuming uniformity in y − z plane. The Gauss's flux theorem 
was applied on a linear sequent of 		      and   		
charged SRP electrodes. The evaluation of charge enclosed in-
side the Gaussian surface concluded that the total charge of free 
charged particles was ~0.4 × 10−10 C, carried by a total number of 
positive particles ~2.5 × 108 per pair of SRP electrodes, yielding 
a correlated particle density in the order ~1016 m-3. This result 
was verified thoroughly by the analytical method of Madelung 
Constant, assuming that the equipotential locations are laid in 
the basis of simple cubic lattice (SCL).
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