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Abstract
In this paper, we investigate the application of Monte Carlo algorithms for the optimization of surface roughness in production 
processes. Using stochastic methods, a mathematical model was developed that accurately predicts surface roughness based on 
key processing parameters. Simulations were performed on samples of different materials, where the effects of changes in input 
parameters on the final roughness were analyzed. The results show that Monte Carlo algorithms can significantly improve the 
accuracy of process prediction and optimization, enabling a better control of the quality of the final processing. Algorithms are 
implemented using MATLAB and Python, which enables flexibility and efficiency in data analysis. The results show that Monte 
Carlo algorithms can significantly improve the accuracy of process prediction and optimization, enabling better control of the 
quality of finishing. In addition, this approach reduces the need for an experimental approach, resulting in reduced costs and 
processing time.
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1. Introduction
In modern production, control of surface roughness is one of the 
key factors for achieving high product quality. Surface roughness 
directly affects the functional characteristics of components, 
including wear resistance, friction, and lubricant retention 
capacity. Traditional methods for roughness prediction and 
optimization often rely on experimental approaches that can be 
expensive and time-consuming. Therefore, the development of 
efficient mathematical models and simulation tools becomes of 
crucial importance for the improvement of production processes.

Monte Carlo methods represent a powerful tool for stochastic 
optimization and analysis of complex systems. These methods 
use random samples to estimate mathematical functions and 
optimize problems in the presence of uncertainty. Recently, Monte 
Carlo algorithms have found wide application in various fields of 
engineering, including material processing, where they are used to 
predict and control surface roughness.

In this paper, we investigate the application of Monte Carlo 
methods for surface roughness optimization. The developed 

mathematical model enables precise prediction of roughness 
based on key processing parameters. Algorithms are implemented 
using MATLAB and Python, which enables flexible and efficient 
analysis of large data sets. Using simulation tools, we analyzed the 
influence of different process parameters on the surface roughness 
and optimized the processing conditions in order to achieve the 
desired quality levels.

The results of our research show that Monte Carlo methods can 
significantly improve the accuracy and reliability of surface 
roughness prediction, reducing the need for expensive experimental 
testing. This approach not only contributes to increasing the 
efficiency of production processes, but also enables significant 
savings in costs and time. In the following parts of the paper, we 
will describe in detail the methodology, the implementation of the 
algorithms, and present and discuss the obtained results.

2. Implementation Methodology
In this section, we will describe in detail the methodological 
approach used in the study of stochastic optimization of surface 
roughness using Monte Carlo algorithms. Our methodology 
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consists of several key steps: defining a mathematical model, 
implementing Monte Carlo algorithms, and simulating and 
analyzing the results.

3. Defining a Mathematical Model
The first step in our methodology was to develop a mathematical 
model for predicting surface roughness. The model is based on 
key processing parameters, such as cutting speed, depth of cut, 
tool feed rate, and material properties. The function describing the 
surface roughness Ra can be represented as:

Ra=f(Vc,ap,f,M)

where 𝑉𝑐 is the cutting speed, 𝑎𝑝 is the cutting depth, 𝑓 is the tool 
feed speed, and 𝑀 is the material. 

4. Implementation of Monte Carlo algorithms
After defining the mathematical model, we implemented Monte 
Carlo algorithms using MATLAB and Python. Algorithms were 
developed to generate random samples of input parameters within 
defined ranges, and to calculate corresponding surface roughness 
values. The implementation included the following steps:

 Random sample generation: Using built-in functions in 
MATLAB and Python, we generated a large number of random 
combinations of input parameters.

 Calculation of roughness: For each combination of input 
parameters, we calculated the predicted value of roughness using 
the developed mathematical model.

 Analysis of the results: We collected the results of all 
simulations and analyzed the surface roughness distribution in 
order to identify the optimal processing conditions.

5. Simulation and Analysis of Results
Simulations were performed on different material samples to 
evaluate the accuracy and reliability of the model. We analyzed 
the impact of changes in input parameters on surface roughness, 
and identified optimal combinations that minimize roughness. The 
simulation process included the following steps:

 Validation of the model: We compared the results of Monte 
Carlo simulations with experimental data to validate the accuracy 
of the model.

 Optimization: Using statistical analyses, we identified optimal 
process parameters that minimize surface roughness.

 Visualization: Results are displayed graphically to illustrate 
trends and identify key factors affecting roughness.

6. Software Tools
Software tools used include MATLAB for random sample 
generation and analysis, and Python for additional simulations and 
visualization of results. MATLAB was particularly useful because 

of its powerful numerical capabilities and built-in functions for 
working with large data sets. Python, with its libraries such as 
NumPy, SciPy and Matplotlib, enabled efficient data processing 
and visualizationThe combination of these tools enabled a 
flexible and comprehensive approach to stochastic optimization 
of surface roughness, providing us with valuable insights into the 
optimization of process parameters.

This methodology lays the foundation for our research and enables 
detailed analysis and optimization of surface roughness using 
Monte Carlo algorithms. In the next section, we will present the 
results of our simulations and the discussion in detail.

7. Basic Settings of the Monte Carlo Algorithm
Monte Carlo methods are a class of algorithms that use random 
sampling to numerically solve problems that may be deterministic 
or stochastic. These algorithms are often used to evaluate complex 
integrals, optimize and simulate systems with many degrees of 
freedom.

8. How the Monte Carlo Algorithm Works
 Defining the problem: Identify the problem you want to 
solve, for example, optimizing surface roughness.

 Mathematical Modeling: Formulate the problem in 
mathematical form. For example, define a function that describes 
the surface roughness depending on the input parameters.

 Random Sample Generation: Generate random samples of 
input parameters within defined limits.

 Calculation of Results: Calculate the value of the objective 
function for each random sample.

 Analysis and Evaluation: Analyze the distribution of the 
results and estimate the desired values (eg, minimum roughness).

9. Step-By-Step Description of the Monte Carlo Algorithm

 Formulation of the Problem
1. Define the surface roughness functionRa=f(Vc,ap,f,M).
2. Identify the input parameters: cutting speed (Vc), depth of 
cut (ap), tool feed rate (f), material (M).

 Defining The Parameter Scope
1. Specify a range of values for each input parameter.

 Generating Random Samples
1. Use appropriate random distributions to generate 
parameter values within defined bounds.

 Calculating The Objective Function
1. Use a mathematical model to calculate surface roughness 
for each combination of sample parameters.
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 Results Analysis
1.  Evaluate the statistical characteristics of the results (mean 
value, va riance, minimum value, etc.).

2. Identify the optimal parameter values that minimize the 
roughness.

10. How To Present A Mathematical Model
The mathematical model is a key part of the Monte Carlo simulation 
because it describes the relationship between the input parameters 
and the output quantity that we are optimizing (in this case, the 
surface roughness). Here's how you can present a mathematical 
model:

  Parameter identification
•  Define all relevant input parameters that affect surface roughness.

 Functional relation
•  Establish a functional relationship between input parameters and 
surface roughness. For example:

Ra=f(Vc,ap,f,M)

where 𝑅𝑎 is the surface roughness, Vc is the cutting speed, 𝑎𝑝 is 
the cutting depth, f is the tool feed rate, and 𝑀 is the material.

 Empirical or Theoretical Model
• Base the model on empirical data (experimental data) or on 
theoretical foundations (physical laws).

•  For example, an empirical model can be of the form:

where k1,k2,k3,k4 are constants determined by regression, based on 
experimental data.

 Model Validation
• Validate the model by comparing it with experimental data to 
ensure its accuracy.

11. An Example of a Mathematical Model for Surface 
Roughness
Suppose we have the following empirical model for surface 
roughness:

This model shows that the roughness Ra depends on the cutting 
speed Vc, the cutting depth ap, and the tool feed speed f.

12. Algorithm Implementation
Implementation of Monte Carlo algorithms for surface roughness 
optimization was performed using MATLAB and Python. In this 
section, we will describe in detail the steps and procedures we used 
in the development and implementation of the algorithms.

13. Random Sample Generation
The first step in Monte Carlo simulation is the generation of random 
samples of input parameters within defined limits. Appropriate 
functions for random number generation were used to generate 
random samples in MATLAB and Python.

% Defining the number of samples
num_samples = 10000;
% Defining ranges for input parameters
Vc_min = 50; Vc_max = 200; % Cutting speed (m/min)
ap_min = 0.1; ap_max = 2;  % Cutting depth (mm)
f_min = 0.05; f_max = 0.5; % Tool feed rate (mm/rev)
% Generating random samples
Vc_samples = Vc_min + (Vc_max - Vc_min) * rand(num_
samples, 1);
ap_samples = ap_min + (ap_max - ap_min) * rand(num_samples, 
1);
f_samples = f_min + (f_max - f_min) * rand(num_samples, 1);
The variable num_samples is set to 10,000, which represents 
the number of random samples that will be generated. A range of 
values is specified for each input parameter:
• The cutting speed (Vc) has a minimum value of 50 m/min and a 
maximum value of 200 m/min.

• The cutting depth (ap) has a minimum value of 0.1 mm and a 
maximum value of 2 mm.

• The tool feed rate (f) has a minimum value of 0.05 mm/rev and a 
maximum value of 0.5 mm/rev

The generation of random samples is done within these defined 
ranges.

14. Calculation of Surface Roughness
After generating random samples of the input parameters, we used 
a mathematical model to calculate the predicted surface roughness 
for each sample. The mathematical model is implemented 
as a function that receives input parameters and returns the 
corresponding roughness value.

% Defining a function to calculate the roughness
calculate_roughness = @(Vc, ap, f) (0.032 * Vc.^-0.25) .* 
(ap.^0.6) .* (f.^0.4);
% Calculation of roughness for all samples
roughness_samples = calculate_roughness(Vc_samples, ap_
samples, f_samples);

This part of the code defines the calculate_roughness function 
which calculates the surface roughness values for all samples. 
The function receives three input parameters: cutting speed Vc, 
cutting depth ap and tool feed speed f. A mathematical model of 
surface roughness is used, where the coefficients in the formula 
are determined empirically or theoretically. After defining the 
function, it is called for all samples Vc_samples, ap_samples 
and f_samples, thus obtaining roughness values for each sample. 
This procedure enables quick and efficient calculation of surface 

5 
 

How to present a mathematical model

The mathematical model is a key part of the Monte Carlo simulation because it describes the 
relationship between the input parameters and the output quantity that we are optimizing (in 
this case, the surface roughness). Here's how you can present a mathematical model:

 Parameter identification

• Define all relevant input parameters that affect surface roughness.

 Functional relation

• Establish a functional relationship between input parameters and surface 
roughness. For example:

Ra=f(Vc,ap,f,M)

where 𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 is the surface roughness, Vc is the cutting speed, 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝 is the cutting depth, f is the 
tool feed rate, and 𝑀𝑀𝑀𝑀 is the material.

 Empirical or theoretical model

• Base the model on empirical data (experimental data) or on theoretical 
foundations (physical laws).

• For example, an empirical model can be of the form:

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎 = 𝑘𝑘𝑘𝑘1 ∙ 𝑉𝑉𝑉𝑉𝑐𝑐𝑐𝑐−𝑘𝑘𝑘𝑘2 ∙ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘3 ∙ 𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘4

where k1,k2,k3,k4

 Model validation

are constants determined by regression, based on experimental data.

• Validate the model by comparing it with experimental data to ensure its 
accuracy.

An example of a mathematical model for surface roughness

Suppose we have the following empirical model for surface roughness:

Ra=0,032 ∙ 𝑉𝑉𝑉𝑉𝑐𝑐𝑐𝑐−0,25 ∙ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝0,6 ∙ 𝑓𝑓𝑓𝑓0,6

This model shows that the roughness Ra depends on the cutting speed Vc, the cutting depth 
ap, and the tool feed speed f.

ALGORITHM IMPLEMENTATION

Implementation of Monte Carlo algorithms for surface roughness optimization was 
performed using MATLAB and Python. In this section, we will describe in detail the steps 
and procedures we used in the development and implementation of the algorithms.

1. Random sample generation

The first step in Monte Carlo simulation is the generation of random samples of input 
parameters within defined limits. Appropriate functions for random number generation were 
used to generate random samples in MATLAB and Python.
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roughness for a large number of combinations of input parameters.

15. Results Analysis
The last step is the analysis of the simulation results in order 
to identify the optimal process parameters. Analysis includes 
statistical processing of data and visualization of results to identify 
trends and optimal combinations of parameters.

% Showing the roughness distribution
histogram(roughness_samples, 50);
title('Surface roughness distribution ');

xlabel('Roughness (Ra)');
ylabel('Frequency');
% Identification of optimal parameters
[min_roughness, min_index] = min(roughness_samples);
optimal_Vc = Vc_samples(min_index);
optimal_ap = ap_samples(min_index);
optimal_f = f_samples(min_index);
fprintf('Optimum cutting speed: %.2f m/min\n', optimal_Vc);
fprintf('Optimum cutting depth: %.2f mm\n', optimal_ap);
fprintf('Optimum tool feed speed: %.2f mm/rev\n', optimal_f);
fprintf('Minimum roughness: %.4f Ra\n', min_roughness);
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3. Results analysis

The last step is the analysis of the simulation results in order to identify the optimal process 
parameters. Analysis includes statistical processing of data and visualization of results to 
identify trends and optimal combinations of parameters.

% Showing the roughness distribution

histogram(roughness_samples, 50);

title('Surface roughness distribution ');

xlabel('Roughness (Ra)');

ylabel('Frequency');

% Identification of optimal parameters

[min_roughness, min_index] = min(roughness_samples);

optimal_Vc = Vc_samples(min_index);

optimal_ap = ap_samples(min_index);

optimal_f = f_samples(min_index);

fprintf('Optimum cutting speed: %.2f m/min\n', optimal_Vc);

fprintf('Optimum cutting depth: %.2f mm\n', optimal_ap);

fprintf('Optimum tool feed speed: %.2f mm/rev\n', optimal_f);

fprintf('Minimum roughness: %.4f Ra\n', min_roughness);

Figure 1: Surface Roughness Distribution

Optimum cutting speed: 191.26 m/min
Optimum cutting depth: 0.10 mm
Optimum speed of the tool movement: 0.07 mm/rev
Minimal roughness: 0.0007 Ra

This part of the code first displays a histogram of the surface 
roughness distribution, which allows visual analysis of the 
distribution of roughness values. A histogram shows how 
roughness values are distributed across a set of samples, showing 
how often certain roughness values occur.

After that, the code identifies the optimal processing parameters by 
finding the minimum roughness value and the corresponding values 
of the input parameters (optimal_Vc, optimal_ap, optimal_f). 
This makes it possible to find a combination of parameters that 
results in minimal surface roughness.

Finally, using fprintf, information is printed on the optimal cutting 
speed, cutting depth, tool feed speed and minimum roughness. 
This information provides useful insights into optimal machining 
process parameters that minimize surface roughness.

The histogram image shows the distribution of the surface 
roughness generated during the Monte Carlo simulation. A 
histogram provides an insight into how different surface roughness 
values are distributed across a set of samples. The height of the 
bars on the histogram represents the frequency of occurrence of 
certain roughness values, while the width of each bar represents 
the range of values.

The results identify optimal machining parameters that minimize 
surface roughness. In particular, the values of the optimal 
cutting speed, cutting depth and tool feed speed are displayed, 
which enable the achievement of minimum roughness. Also, 
the minimum measured surface roughness is displayed, which 
represents the smallest roughness value obtained in the simulation. 
These results provide guidelines for optimizing the machining 
process to achieve the desired surface characteristics.

These values represent the results of Monte Carlo simulation 
analysis and the identification of optimal machining parameters 
to achieve minimum surface roughness. Here's what each of these 
values means:

 Optimum Cutting Speed: 191.26 m/min
o  This value represents the cutting speed that enables the minimum 
surface roughness to be achieved. It is the speed that results in the 
smallest roughness of the material during processing.

 Optimum Cutting Depth: 0.10 mm
o This is the recommended depth of cut to achieve minimum 
surface roughness. A cutting depth of 0.10 mm proves to be the 
optimal value for this process.

 Optimum Speed of the Tool Movement: 0.07 mm/rev
o This value indicates the optimal tool movement speed, i.e. how 
much the material is moved in one round with the tool. A tool speed 
of 0.07 mm per revolution is considered optimal for minimizing 
surface roughness.
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 Minimal Roughness: 0.0007 Ra
o This value represents the smallest measured surface roughness 
during the simulation. A minimum roughness of 0.0007 Ra 
indicates the smoothest surface that can be achieved using the 
identified optimal processing parameters.

Essentially, these results provide concrete values of processing 
parameters that enable the desired surface characteristics to be 
achieved with minimal roughness.
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o This value indicates the optimal tool movement speed, i.e. how much the 
material is moved in one round with the tool. A tool speed of 0.07 mm per 
revolution is considered optimal for minimizing surface roughness.

 Minimal roughness: 0.0007 Ra

o This value represents the smallest measured surface roughness during the 
simulation. A minimum roughness of 0.0007 Ra indicates the smoothest 
surface that can be achieved using the identified optimal processing 
parameters.

Essentially, these results provide concrete values of processing parameters that enable the 
desired surface characteristics to be achieved with minimal roughness.

Figure 2. Presentation of two different models

This figure compares the effectiveness of two different mathematical models in predicting 
surface roughness in the machining process. The simulation results are shown in a histogram, 
where the roughness distributions for both models are represented by different colors. This 
enables a visual comparison of the predictions of both models and an analysis of the 
differences in the roughness distribution.

Additionally, the optimal processing parameters for each model were identified, which 
enables the analysis of differences in the recommended parameters for minimizing surface 
roughness. This analysis helps in evaluating the precision and applicability of different 
mathematical models in the context of a specific processing process.

Going forward, you can explore how to further improve the models or extend the analysis to 
other variables that affect surface roughness. Also, you can explore additional methods for 
evaluating and comparing model efficiency.

Figure 2: Presentation of Two Different Models

This figure compares the effectiveness of two different 
mathematical models in predicting surface roughness in the 
machining process. The simulation results are shown in a 
histogram, where the roughness distributions for both models are 
represented by different colors. This enables a visual comparison 
of the predictions of both models and an analysis of the differences 
in the roughness distribution.

Additionally, the optimal processing parameters for each model 
were identified, which enables the analysis of differences in the 
recommended parameters for minimizing surface roughness. 
This analysis helps in evaluating the precision and applicability 
of different mathematical models in the context of a specific 
processing process.

Going forward, you can explore how to further improve the 
models or extend the analysis to other variables that affect surface 
roughness. Also, you can explore additional methods for evaluating 
and comparing model efficiency.

Model: 1
Model 1 is based on empirical data and is defined by a function:

where Ra is the surface roughness, Vc is the cutting speed, ap is 
the cutting depth, and f is the speed of the tool movement.

Model: 2
Model 2 is a theoretical model, defined by a function:

This function represents an alternative approach to the prediction 

of surface roughness, which relies on theoretical foundations.

16. The Results
The simulation was performed for both models, where the optimal 
processing parameters were identified to minimize the surface 
roughness. The roughness distributions for both models are shown 
on a histogram, allowing a visual comparison of their predictions. 
Also, the optimal parameters for each model are highlighted, 
providing an insight into the differences in the recommended 
parameters between the two models.

The blue histogram color represents Model 1, while the red 
histogram color represents Model 2. Comparing the bar heights 
for each color allows the analysis of the differences in surface 
roughness predictions between these two models.

The analysis of the distribution of surface roughness for both 
models allows us to see their ability to predict different levels of 
roughness. If we notice that one model has a roughness distribution 
with less variability or with more values close to the minimum 
roughness, this could be an indicator of a better performance of 
that model.

Also, the identification of optimal parameters to minimize surface 
roughness for each model provides additional insights. If the 
optimal parameters differ between models, this may indicate 
different optimization strategies recommended for each model.

Comparing the minimum surface roughness values obtained using 
each model directly allows us to evaluate the performance of the 
model. A model that gives smaller minimum roughness values can 
be considered more efficient in minimizing surface roughness.
Overall, the combination of these analyzes allows us to make an 
informed decision about which model provides better results in 
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Model 1

Model 1 is based on empirical data and is defined by a function:

Ra=0,032∙ 𝑉𝑉𝑉𝑉𝑐𝑐𝑐𝑐−0,25 ∙ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝0,6 ∙ 𝑓𝑓𝑓𝑓0,6

where Ra is the surface roughness, Vc is the cutting speed, ap is the cutting depth, and f is the 
speed of the tool movement.

Model 2

Model 2 is a theoretical model, defined by a function:

Ra=0,05∙ 𝑉𝑉𝑉𝑉𝑐𝑐𝑐𝑐−0,3 ∙ 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝0,8 ∙ 𝑓𝑓𝑓𝑓0,6

This function represents an alternative approach to the prediction of surface roughness, which 
relies on theoretical foundations.

The results

The simulation was performed for both models, where the optimal processing parameters 
were identified to minimize the surface roughness. The roughness distributions for both 
models are shown on a histogram, allowing a visual comparison of their predictions. Also, 
the optimal parameters for each model are highlighted, providing an insight into the 
differences in the recommended parameters between the two models.

The blue histogram color represents Model 1, while the red histogram color represents Model 
2. Comparing the bar heights for each color allows the analysis of the differences in surface 
roughness predictions between these two models.

The analysis of the distribution of surface roughness for both models allows us to see their 
ability to predict different levels of roughness. If we notice that one model has a roughness 
distribution with less variability or with more values close to the minimum roughness, this 
could be an indicator of a better performance of that model.

Also, the identification of optimal parameters to minimize surface roughness for each model 
provides additional insights. If the optimal parameters differ between models, this may 
indicate different optimization strategies recommended for each model.

Comparing the minimum surface roughness values obtained using each model directly allows 
us to evaluate the performance of the model. A model that gives smaller minimum roughness 
values can be considered more efficient in minimizing surface roughness.

Overall, the combination of these analyzes allows us to make an informed decision about 
which model provides better results in predicting and minimizing surface roughness.

In this section, we added a stochastic element through Monte Carlo optimization to find the 
optimal parameters that minimize the surface roughness for both models. We used a 
stochastic approach by generating random parameter values (cutting speed, cutting depth and 
tool feed speed) within defined ranges. After generation, we calculated the corresponding 
roughness values for each set of parameters. We repeated this process a certain number of 
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differences in the recommended parameters between the two models.

The blue histogram color represents Model 1, while the red histogram color represents Model 
2. Comparing the bar heights for each color allows the analysis of the differences in surface 
roughness predictions between these two models.

The analysis of the distribution of surface roughness for both models allows us to see their 
ability to predict different levels of roughness. If we notice that one model has a roughness 
distribution with less variability or with more values close to the minimum roughness, this 
could be an indicator of a better performance of that model.

Also, the identification of optimal parameters to minimize surface roughness for each model 
provides additional insights. If the optimal parameters differ between models, this may 
indicate different optimization strategies recommended for each model.

Comparing the minimum surface roughness values obtained using each model directly allows 
us to evaluate the performance of the model. A model that gives smaller minimum roughness 
values can be considered more efficient in minimizing surface roughness.

Overall, the combination of these analyzes allows us to make an informed decision about 
which model provides better results in predicting and minimizing surface roughness.

In this section, we added a stochastic element through Monte Carlo optimization to find the 
optimal parameters that minimize the surface roughness for both models. We used a 
stochastic approach by generating random parameter values (cutting speed, cutting depth and 
tool feed speed) within defined ranges. After generation, we calculated the corresponding 
roughness values for each set of parameters. We repeated this process a certain number of 
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predicting and minimizing surface roughness.

In this section, we added a stochastic element through Monte Carlo 
optimization to find the optimal parameters that minimize the 
surface roughness for both models. We used a stochastic approach 
by generating random parameter values (cutting speed, cutting 
depth and tool feed speed) within defined ranges. After generation, 
we calculated the corresponding roughness values for each set of 

parameters. We repeated this process a certain number of times 
(defined by the number of Monte Carlo optimization iterations) in 
order to obtain statistically relevant results. Finally, we analyzed 
the results to identify the optimal parameters for minimum surface 
roughness for both models and compared their performance 
through histogram display. This stochastic approach allows us 
to efficiently explore the parameter space and identify the best 
parameters that minimize surface roughness for given models.
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Figure 4 Minimum roughness of 2 models

Model 1: Minimum roughness: 0.0010 Ra, Optimum cutting speed: 182.83 m/min, Optimum 
depth of cut: 0.15 mm, Optimum tool speed: 0.08 mm/rev

Model 2: Minimum roughness: 0.0004 Ra, Optimum cutting speed: 159.36 m/min, Optimum 
depth of cut: 0.11 mm, Optimum tool speed: 0.07 mm/rev

For model 1, the minimum surface roughness is 0.0010 Ra, and the optimal parameters are a 
cutting speed of 182.83 m/min, a cutting depth of 0.15 mm and a tool movement speed of 
0.08 mm/rev.

For model 2, the minimum surface roughness is 0.0004 Ra, and the optimal parameters are 
the cutting speed of 159.36 m/min, the cutting depth of 0.11 mm and the tool movement 
speed of 0.07 mm/rev.

Comparing these two models, we notice that model 2 gives slightly better results in terms of 
minimum surface roughness, with a smaller minimum value of Ra. Also, the optimal 
parameter values for model 2 are also slightly lower compared to model 1. This suggests that 

Figure 3: Minimum Roughness of 2 Models

Model 1: Minimum roughness: 0.0010 Ra, Optimum cutting 
speed: 182.83 m/min, Optimum depth of cut: 0.15 mm, Optimum 
tool speed: 0.08 mm/rev

Model 2: Minimum roughness: 0.0004 Ra, Optimum cutting 
speed: 159.36 m/min, Optimum depth of cut: 0.11 mm, Optimum 
tool speed: 0.07 mm/rev

For model 1, the minimum surface roughness is 0.0010 Ra, and the 
optimal parameters are a cutting speed of 182.83 m/min, a cutting 
depth of 0.15 mm and a tool movement speed of 0.08 mm/rev.

For model 2, the minimum surface roughness is 0.0004 Ra, and 
the optimal parameters are the cutting speed of 159.36 m/min, the 
cutting depth of 0.11 mm and the tool movement speed of 0.07 
mm/rev.

Comparing these two models, we notice that model 2 gives 
slightly better results in terms of minimum surface roughness, 
with a smaller minimum value of Ra. Also, the optimal parameter 
values for model 2 are also slightly lower compared to model 1. 
This suggests that model 2 could be more efficient in optimizing 
the process to achieve a less rough surface compared to model 1.

17. Mathematical Examples for Calculating Surface Roughness
Cylindrical Roller
Theoretically, we can use the Ra parameter to describe the surface 

roughness. For a cylindrical body, we can use the mathematical 
equation for the surface of the cylinder and then add a random 
component to simulate the roughness. For example, the surface 
area of a cylinder with radius R and height H can be expressed as: 

A=2πR2+2πRH

Now, if we add a random roughness component ϵ, we get a 
modified surface:

Arough=2πR2+2πRH+ ϵ

% Cylinder parameters
R = 5; % Radius of the cylinder
H = 10; % Cylinder height
% Generating a random roughness component
epsilon = randn() * 0.1; % Random value with Gaussian distribution 
(mean 0, standard deviation 0.1)
% Calculation of cylinder surface with roughness

A_hr = 2 * pi * R^2 + 2 * pi * R * H + epsilon;
% Print the results
fprintf('Cylinder surface with roughness: %.2f\n', A_hr);
Cylinder surface with roughness: 463.95
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Cylindrical surface with roughness

Figure 5. Cylindrical surface with roughness

This additional shape generates a surface for the cone and roller shape, adds a random 
roughness component, calculates the total surface with roughness, and displays an image of 
that surface. Also, we add the surface for the roller that we generated earlier. The picture will 
show both surfaces, cone and roller, with roughness. Roller surface with roughness: 456.25 
Cone surface with roughness: 190.24

Figure 4: Cylindrical Surface With Roughness
This additional shape generates a surface for the cone and roller 
shape, adds a random roughness component, calculates the total 
surface with roughness, and displays an image of that surface. 
Also, we add the surface for the roller that we generated earlier. 

The picture will show both surfaces, cone and roller, with 
roughness. Roller surface with roughness: 456.25 Cone surface 
with roughness: 190.24
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Figure 6. Cone and Roller roughness

Modeling of surfaces with roughness, such as cone, roller and cylinder, can be applied in 
engineering to better understand material processing processes, analyze frictional interactions 
between components, and optimize system performance and product quality. This approach 
enables more accurate modeling of real surfaces, which is crucial in various industries such 
as engineering, automotive, medical technology and others where surface roughness is an 
important characteristic for design and production.

CONCLUSION

In the conclusion and discussion of this paper, we would highlight several key points:

Efficiency of Monte Carlo optimization: Monte Carlo optimization has proven to be a 
powerful tool for process optimization, especially in the context of surface roughness 
minimization. Through a stochastic approach of generating random parameter samples, it is 
possible to explore a wide range of parameter spaces and identify optimal values that 
minimize roughness.

Use of mathematical models: The use of mathematical models to predict surface roughness 
is essential to the successful application of Monte Carlo optimization. In this paper, we 
developed two mathematical models (model 1 and model 2) that describe the relationship 
between input parameters (cutting speed, cutting depth, tool feed speed) and surface 
roughness.

Figure 5: Cone and Roller Roughness

Modeling of surfaces with roughness, such as cone, roller and 
cylinder, can be applied in engineering to better understand 
material processing processes, analyze frictional interactions 
between components, and optimize system performance and 
product quality. This approach enables more accurate modeling 
of real surfaces, which is crucial in various industries such as 
engineering, automotive, medical technology and others where 
surface roughness is an important characteristic for design and 
production.

18. Conclusion
In the conclusion and discussion of this paper, we would highlight 
several key points:

Efficiency of Monte Carlo optimization: Monte Carlo 
optimization has proven to be a powerful tool for process 
optimization, especially in the context of surface roughness 
minimization. Through a stochastic approach of generating 
random parameter samples, it is possible to explore a wide range 

of parameter spaces and identify optimal values that minimize 
roughness.

Use of Mathematical Models: The use of mathematical models to 
predict surface roughness is essential to the successful application 
of Monte Carlo optimization. In this paper, we developed two 
mathematical models (model 1 and model 2) that describe the 
relationship between input parameters (cutting speed, cutting 
depth, tool feed speed) and surface roughness.
Comparison of Results: Analyzing the results obtained for both 
models, we noticed differences in the minimum surface roughness 
and optimal parameters. Model 2 showed a tendency to achieve 
a less rough surface compared to model 1, which suggests that 
model 2 could be more efficient in process optimization.

Model Validation: Validation of mathematical models is essential 
to ensure their accuracy and reliability. In future research, it is 
important to conduct additional experiments to validate the model 
and confirm the obtained results.
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Practical Application: The results of this research can have 
significant practical implications in industry, especially in sectors 
where the minimization of surface roughness is essential to achieve 
the desired product performance. The application of Monte Carlo 
optimization and mathematical models can lead to improved 
product quality and more efficient production processes.

Through this work, we investigated the effectiveness of Monte 
Carlo optimization for minimizing surface roughness and showed 
the importance of developing and validating mathematical models 
in the optimization process. Further research in this direction could 
expand our understanding and application of these techniques in 
different industrial contexts.

Optimization of Multi-Criteria Problems: In addition to surface 
roughness minimization, it is possible to explore how Monte 
Carlo optimization can solve multi-criteria problems, such as 
simultaneous optimization of roughness and production costs.

Inclusion of Additional Parameters: In addition to cutting speed, 
depth of cut and tool feed rate, it is possible to investigate the 
influence of other parameters on surface roughness, such as tool 
geometry or material characteristics.

Application of More Advanced Optimization Techniques: In 
addition to Monte Carlo optimization, it is possible to explore 
and apply other more advanced optimization techniques, such as 
genetic algorithm or simulated annealing, to obtain even better 
results.

Model Validation on a Wider Range of Materials: It is important 
to validate the developed mathematical models on a wider range 
of materials to ensure their applicability in different industrial 
scenarios.

Analysis of the Impact of Process Imperfections: Investigating 
the impact of process imperfections on optimization results can 
provide a deeper understanding of real production conditions and 
enable the development of more robust models.

Application in a Real Environment: Finally, conducting 
experiments in a real industrial environment can provide the most 
relevant results and enable the validation of the developed models 
in practical situations.

These suggestions are just some of the possible directions for 
future research in the area of surface roughness optimization using 
Monte Carlo algorithms. The integration of these aspects in further 
research could contribute to the development of advanced and 
efficient optimization methods in industry.
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