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Abstract 
A very promising alternative recently considered in the literature for the analysis of lifetime data in presence of covariates 
and censored data is given by the class of semiparametric or transformation models. This class of models generalizes the 
usual proportional hazards models, the proportional odds models, and the accelerated failure time models, extensively used 
in lifetime data analysis. In the analysis of lifetime data, especially in medicine, the proportional hazards model has been the 
most used model due to its flexibility without the need to assume a parametric model for the data [1]. Despite this advantage, 
in some applications the needed assumption (proportional hazards) may not be verified and the class of transformation 
models can be quite attractive in data analysis. In obtaining inferences of interest, especially obtaining point estimators 
for the regression parameters assuming transformation models, several proposals have been introduced in the literature, 
as alternatives to the use of the partial likelihood proposed assuming proportional hazards models [1, 2]. In this work, we 
introduce a simple method to obtain inferences for the regression parameters of semiparametric models or transformation 
models under a Bayesian approach considering the unknown hazard rates as latent variables. The posterior summaries of 
interest are obtained using existing MCMC (Markov Chain Monte Carlo) simulation methods. An application with real-time 
medical data illustrates the proposed methodology.
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1. Introduction
In many applications, especially in medicine or engineering 
studies, we have lifetime data in presence of censored observations 
and covariates associated with each individual or unity. In the 
analysis of lifetime data, different parametric or non-parametric 
regression models were proposed in the literature to analyse the 
data, usually in the presence of censoring and covariates [3-5]. In 
this way, three classes of models have been extensively used in 
lifetime data analysis in the presence of censoring and covariates: 
the proportional hazards or PH models, the proportional odds 
or PO models, and accelerated failure time or AFT models 
[1, 6, 7]. In many situations, the needed assumptions for each 
model could be not verified, especially assuming the PH model 
when there are crossing survival curves (usually Kaplan and 
Meier estimates) assuming categorized covariates, that is, the 
assumption of the Cox PH model is not verified. To circumvent 
the lack of proportional hazards, the literature presents several 
studies, considering generalizations of these models, including 
the PH and PO models. One of these generalizations, is given by 
the semiparametric two-sample strategy (YP model) proposed 
by [8]. A unified approach to fit the YP model is introduced using 
Bernstein polynomials to manage the baseline hazard and odds 
under both the frequentist and Bayesian frameworks [9].

A class of models also widely used in the analysis of survival data 
is given by the class of accelerated failure time models where the 
effects of covariates are assumed in a linear form, which can be 
restrictive for many practical problems [3]. Considering more 
flexible nonlinear structures to model relationships between 
covariates and transformed failure times, proposes a class of 
semiparametric models in the analysis of lifetime data [10].

The proportional hazards (PH) model introduced is a semi-
parametric model of simple interpretation where the occurrence 
of censorship is easily accommodated [1]. In addition, it is 
available in most statistical software. The Cox model assumes 
that the hazard function can be written in the form,

where t denotes the lifetime (a value of the random variable T 
> 0) of an individual, h0(t) is a non-negative arbitrary baseline 
hazard function defined by,
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hazard function can be written in the form,

h(t; z) = h0(t)e
βz (1)

where t denotes the lifetime (a value of the random variable T > 0) of a individual, h0(t)

is a non-negative arbitrary baseline hazard function defined by,

h(t) = lim
∆t→0

P (t ≤ T < t+∆t | T ≥ t)

∆t
, (2)

where β is a vector of regression coefficients and z is a vector of covariates. In (1), the
covariates affect the hazard function in a multiplicative way according to the factor eβz.
A special likelihood function was proposed by [1] (denote as a partial likelihood) that
does not depend on the baseline hazard function h0(t), thus allowing inferences on β not
needing to specify a parametric form for the hazard function h0(t). Under fairly weak
regularity conditions, the usual asymptotic properties of likelihood-based inference are
verified [2].

Many other generalizations of the proportional hazards models were introduced in the
literature in recent years. A model averaging method to produce model-based prediction
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where β is a vector of regression coefficients and z is a vector 
of covariates. In (1), the covariates affect the hazard function 
in a multiplicative way according to the factor eβz. A special 
likelihood function was proposed (denote as a partial likelihood) 
that does not depend on the baseline hazard function h0(t), thus 
allowing inferences on β not needing to specify a parametric form 
for the hazard function h0(t) [1]. Under fairly weak regularity 
conditions, the usual asymptotic properties of likelihood-based 
inference are verified [2].

Many other generalizations of the proportional hazards’ 
models were introduced in the literature in recent years. A 
model averaging method to produce model-based prediction 
for survival outcomes defined as a semiparametric model 
averaging prediction (SMAP) method which approximates the 
underlying unstructured nonparametric regression function 
by a weighted sum of low-dimensional nonparametric sub 
models was introduced by [11]. The weights are obtained from 
maximizing the partial likelihood constructed for the aggregated 
model and theoretical properties are discussed for the estimated 
model weights. A semiparametric survival analysis via Dirichlet 
process mixtures of the First Hitting Time (FHT) model was 
introduced, considering several random effects specifications of 
the FHT model under a Bayesian approach [12]. Semi-parametric 
models for longitudinal data and semiparametric transformation 
models for interval-censored data were also introduced in the 
literature [13, 14]. Introduced a study for the comparison of 
parametric and semiparametric survival regression models with 
kernel estimation considering two types of kernel smoothing 
and some bandwidth selection techniques [15]. An overview 
of semiparametric models commonly used in survival analysis, 
including proportional hazards model, proportional odds models 
and linear transformation models was introduced by [16].

Other studies related to the modelling of lifetime data in presence 
of covariates and censored data were introduced in the literature: 
[17] an additive risk model specifying that the hazard function 
associated with a set of possibly time-varying covariates is the 
sum of the baseline hazard function and the regression function 
of covariates in contrast to the usual proportional hazards model 
was introduced by [18, 19]; considered in place of the usual 
Cox-type intensity function for counting process commonly 
used to analyse recurrent event data, a time-transformed Poisson 
process assuming that the covariates have multiplicative effects 
on the mean and rate functions of the counting process; [20] 
considered partly linear transformation models (semiparametric 
regression models) applied to current status data where the 
unknown quantities are the transformation function, a linear 
regression parameter and a nonparametric regression effect 
showing flexible alternatives to the Cox model for current status 
data analysis; [21] introduced a covariate analysis of current 
status data showing that the method is applicable when the logit 
of the conditional probability of survival given the covariates 
is some increasing function of time plus a linear combination 
of the covariates; [22] investigated joint models for a time-to-
event (e.g., survival) and a longitudinal response where the 
longitudinal data are assumed to follow a mixed effects model 
and a proportional hazards model depending on the longitudinal 

random effects and other covariates are assumed for the survival 
endpoint proposing a likelihood based approach that requires only 
the assumption that the random effects have a smooth density; 
[23] studied joint modelling of survival and longitudinal data 
where there are two regression models of interest, the first one for 
survival outcomes, which are assumed to follow a time-varying 
coefficient proportional hazards model and the second one is for 
longitudinal data, which are assumed to follow a random effects 
model proposing a local corrected score estimator and a local 
conditional score estimator to deal with covariate measurement 
error; [24] proposed a semiparametric additive rate model for 
modelling recurrent events in the presence of a terminal event 
where a general transformation model is used to model the 
terminal event; [25] introduced a new class of transformed 
hazard rate models that contains both the multiplicative hazards 
model and the additive hazards model as special cases; [26] 
proposed a general class of semiparametric transformation 
models with random effects to formulate the effects of possibly 
time-dependent covariates on clustered or correlated failure 
times encompassing all commonly used transformation models, 
including proportional hazards and proportional odds models; 
[27] proposed a large class of semiparametric transformation 
models with random effects for the joint analysis of recurrent 
events and a terminal event where the transformation models 
include proportional hazards/intensity and proportional odds 
models.

In this study, we introduce a Bayesian analysis of the 
semiparametric or transformed models assuming the complete 
likelihood function obtained from the transformation model 
considering the unknown hazard function as a latent unknown 
variable under a Bayesian approach.

The main goals of this study are:
(i) The introduction of a Bayesian approach for semiparametric 
or transformation models assuming the unknown hazard function 
as a latent random variable with a specified probability density 
function.
(ii) The elicitation of prior distributions for the regression 
parameters using empirical Bayesian methods.
(iii) The use of existing MCMC (Markov Chain Monte Carlo) 
methods to get the posterior summaries of interest.
(iv) The use of some Bayesian criteria, in special, the posterior 
Bayes factor to decide by the best special class of transformation 
model to be assumed in a lifetime data analysis in presence of 
covariates and censored data.

The paper is prepared as follows: section 2 introduces the 
class of semiparametric or transformation models; section 3 
introduces the likelihood function under special classes of the 
semi parametric model; section 6 presents a Bayesian analysis 
considering the unknown hazard function as a random factor 
with a specified probability density function; section 8 presents 
some applications with real medical data sets; section 9 presents 
a simulation study to check the robustness of the proposed 
methodology to different proportions of censored data; finally, 
section 10 presents some concluding remarks.
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2. Transformation Model
Let T denote the failure time, and let z(·) denote a d-vector 
of covariates associated to each individual. Under the 
semiparametric transformation model, the cumulative hazard 
function for T conditional on z is given by,

where G(·) is a specific transformation function that is strictly 
increasing, β is a regression parameter and Λ(·) is an unknown 
increasing function defined 
noting the usual cumulative hazard function not considering the 
presence of the covariate vector z [28].

where Λ0(t) is the baseline cumulative hazard function.

The class of semiparametric models has been recently used as 
an alternative in the analysis of lifetime data in the presence 
of censoring and covariates. A generalization of this class of 
models assuming the presence of a fraction of individuals not 
experiencing the event of interest (cured or non-susceptible 
individuals) was introduced by [29]. Other generalizations of 
the semiparametric model (or transformation models) were 
also proposed in the literature [30, 31]. A generalization of 
the semiparametric models to interval-censored data was 
introduced by and a maximum likelihood estimation approach 
for semiparametric transformation models in the presence of 
interval censored data was introduced by [28, 32]. Presented a 
hierarchical Bayesian approach for semiparametric models (or 
transformation models) assuming the unknown hazards as latent 
factors for semiparametric models; introduced a hierarchical 
Bayesian approach for semiparametric models (or transformation 
models) in presence of cure fraction [33, 34].

Some special cases of the semiparametric model (4) are given by
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(i) If G(x) = x, Λ(t; z) = eβzΛ0(t), where Λ0(t) =

∫ t

0

h0(u)du (h0 is unknown), that is,

we have the proportional hazards model since h(t; z) = eβzh0(t). In this case, two
individuals denoted by i and j with covariates zi and zj have a hazard ratio given
by h(t; zi)/h(t; zj) = eβzih0(t)/e

βzjh0(t) = eβzi/eβzj (does not depend on t, that is,
we have a proportional hazards model).

(ii) If G(x) = log(1+x), we have Λ(t; z) = log
{
1 + eβzΛ0(t)

}
, S(t; z) = exp (−Λ(t; z)) =

exp
(
−log

[
1 + eβzΛ0(t)

])
= 1/

[
1 + eβzΛ0(t)

]
and 1−S(t; z) = eβzΛ0(t)/

[
1 + eβzΛ0(t)

]
,

(S(t) = P (T > t) is the survival function) leading to the proportional odds ratio
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model, since

ORi/ORj = {S(t; zi)/ [1− S(t; zi)]} / {S(t; zj)/ [1− S(t; zj)]}

= {S(t; zi)/S(t; zj)} {[1− S(t; zj)] / [1− S(t; zi)]}

=
{[

1 + eβzjΛ0(t)
]
/
[
1 + eβziΛ0(t)

]}
·

{
eβzjΛ0(t)/

[
1 + eβzjΛ0(t)

]}
·

{[
1 + eβziΛ0(t)

]
/eβziΛ0(t)

}
.

That is, ORi/ORj =
{
eβzjΛ0(t)/e

βziΛ0(t)
}
= eβzj/eβzi (a proportional odds model).

(iii) If G(x) = log(1+rx)/r (r ≥ 0), we have the logarithmic transformation family, with
G(x) = x if r = 0 and G(x) = log(1+x) if r = 1 [28]. In this case we have Λ(t; zi) =

log
{
1 + reβzΛ0(t)

}
/r and S(t, z) = exp(−Λ(t, z)) = exp

(
− log(1 + reβziΛ0(t))

r

)
.

Remark 1 [35]: log(1 + x) ≈ x − x2/2 + x3/3 − · · · (| x |≤ 1 and x ̸= −1). In this
way, Λ(t; z) = log{1 + eβzΛ0(t)} ≈ eβzΛ0(t) (the PH model) and Λ(t; z) = log{1 +

reβzΛ0(t)}/r ≈ eβzΛ0(t) (the PH model).

3 Likelihood function
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S(t; z) = 1/[1 + reβzΛ0(t)]
1/r (9)

where Λ0(t) =

∫ t

0

h0(u)du and the probability density function f(t; z) = −dS(t; z)/dt is

given by,

f(t; z) = eβzh0(t)/[1 + reβzΛ0(t)]
1/r+1 (10)

and h0(t; z) = f(t; z)/S(t; z) = eβzh0(t)/[1 + reβzΛ0(t)].
From 6 the likelihood function based on the ith observation is given by,

L(r, β) =
{
eβzih0(t)/[1 + reβziΛ0(ti)]

}δi (11)
{
1/[1 + reβziΛ0(ti)]

1/r
}

The log-likelihood function is given from (11) by,

l(r, β) = βziδi + δi log[h0(ti)]− δi log[1 + reβziΛ0(ti)] (12)

−
{
log[1 + reβziΛ0(ti)]

}
/r

A special case of (12) is obtained when r =1 (proportional odds model).

6 A Bayesian analysis considering the unknown hazard

function as a random fator

We obtain inferences for the transformation model introduced in section (2) under a
Bayesian approach [36]. Since the baseline hazard function h0(t) is unknown, we assume
h0(t) as a latent unknown random variable. In this way, we assume di = h0(ti) as a
random effect with a gamma probability distribution G(a, b) with mean a/b and variance
a/b2. Thus, the cumulative hazard function is given by, Λ0(ti) = diti. We use standard
MCMC (Markov Chain Monte Carlo) methods as the Gibbs sampling algorithm or the
Metropolis-Hastings algorithm [37, 38] to get the posterior summaries of interest. As-
suming only one covariate, we also assume a gamma prior distribution for the parameter
θ = exp(β) that is, θ ∼ G(c, d) where c and d are known hyperparameters. We assume
the reparameterization θ = exp(β) to have better convergence of the Gibbs sampling
algorithm. Considering a vector of covariates associated with a vector of parameters
θ = (θ1, θ2, θ3, · · · , θk), θj = exp(βj), j = 1,2, ...,k, we assume independent gamma prior
distributions θj ∼ G(cj, dj). Under a Bayesian approach, we use the Bayes formula to
combine a specified prior distribution for the parameters of the model with the likelihood

8
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interest [37, 38]. Assuming only one covariate, we also assume 
a gamma prior distribution for the parameter θ = exp(β) that is, θ 
∼ G(c,d) where c and d are known hyperparameters. We assume 
the reparameterization θ = exp(β) to have better convergence 
of the Gibbs sampling algorithm. Considering a vector of 
covariates associated with a vector of parameters θ = (θ1,θ2,θ3,··· 
,θk),θj = exp(βj),j = 1,2,...,k, we assume independent gamma 
prior distributions θj ∼ G(cj,dj). Under a Bayesian approach, we 
use the Bayes formula to combine a specified prior distribution 
for the parameters of the model with the likelihood function of 
the model, obtaining the posterior distribution from where the 
Bayesian inferences are obtained. Therefore, for θ, the vector of 
parameters of a model describing the behaviour of the data D, if 
P(θ),P(θ | D), and L(D | θ) indicate, respectively, the prior, the 
posterior distributions of θ, and the likelihood function of the 
model, then P(θ | D) ∝ L(D | θ)P(θ).

For the discrimination of the best model, we use the posterior 
Bayes factor [38].

It is important to point out that other different approaches were 
introduced in the literature for the unknown baseline hazard 
function h0( ) as alternative for the proposed method considered 
in this study. In this way, assumed to approximate the baseline 
hazard function by a Taylor series considering interval-censored 
time-to-event data, but the elicitation of appropriate prior 
distributions for the regression parameters under this model 
approach is not an easy task, where we usually have convergence 
problems for the iterative MCMC simulation method [29].

7. Bayesian Discrimination of the Best Model
Some discrimination criteria such as the Bayesian information 
criterion or BIC and the deviance information criterion or DIC 
could be alternatives in the selection of different models, but 
these standard criteria will always select the models with more 
parameters [39-41]. In this study, in order to select the best 
model, we consider a Bayesian discrimination method, given by 
the posterior Bayes factor where the generated Gibbs samples 
for the parameters of each model are used to obtain Monte Carlo 
estimates of the Bayes factor for the special cases of the semi 
parametric or transformation model [42].

The posterior Bayes factor is as a discrimination criterion 
between two models i and j given by Bij = Vi/Vj where Vk is the 
posterior mean of the likelihood function under model k given 
by, Z

function of the model, obtaining the posterior distribution from where the Bayesian in-
ferences are obtained. Therefore, for θ, the vector of parameters of a model describing
the behavior of the data D, if P (θ), P (θ | D), and L(D | θ) indicate, respectively, the
prior, the posterior distributions of θ, and the likelihood function of the model, then
P (θ | D) ∝ L(D | θ)P (θ).

For the discrimination of the best model, we use the posterior Bayes factor [38] .
It is important to point out that other different approaches were introduced in the

literature for the unknown baseline hazard function h0(t) as alternative for the proposed
method considered in this study. In this way, [29] assumed to approximate the baseline
hazard function by a Taylor series considering interval-censored time-to-event data, but
the eliciation of appropriate prior distributions for the regression parameters under this
model approach is not an easy task, where we usually have convergence problems for the
iterative MCMC simulation method.

7 Bayesian discrimination of the best model

Some discrimination criteria such as the Bayesian information criterion or BIC [39, 40]
and the deviance information criterion or DIC [41] could be alternatives in the selection
of different models, but these standard criteria will always select the models with more
parameters. In this study, in order to select the best model, we consider a Bayesian
discrimination method, given by the posterior Bayes factor [42] where the generated Gibbs
samples for the parameters of each model are used to obtain Monte Carlo estimates of
the Bayes factor for the special cases of the semirametric or transformation model.

The posterior Bayes factor is as a discrimination criterion between two models i and
j given by Bij = Vi/Vj where Vk is the posterior mean of the likelihood function under
model k given by,

Vk =

∫
L(D | θk)P (θk | D)dθk (13)

L(D | θk) is the likelihood function under Model k and P (θk | D) is the joint posterior
distribution of the vector of parameter θk. Observe that Vk is the expected value of the
likelihood function with respect to the joint posterior distribution for θk.

If Bij = Vi/Vj > 1, then the Bayes factor criterion favors model i. Observe that
the corresponding value of Vi for the ith assumed model is given by the product of the
likelihood functions (Monte Carlo estimate from the Gibbs samples) considering each one
of the observations in the sample. This Monte Carlo estimate is obtained directly from
the OpenBUGS software [43].
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L(D | θk) is the likelihood function under Model k and P(θk | D) 
is the joint posterior distribution of the vector of parameter θk. 
Observe that Vk is the expected value of the likelihood function 
with respect to the joint posterior distribution for θk.

If Bij = Vi/Vj > 1, then the Bayes factor criterion favors model i. 
Observe that the corresponding value of Vi for the ith assumed 
model is given by the product of the likelihood functions (Monte 
Carlo estimate from the Gibbs samples) considering each one 
of the observations in the sample. This Monte Carlo estimate is 
obtained directly from the OpenBUGS software [43].

8. Applications
8.1. Example 1
The remission times of 42 patients with acute leukaemia were 
reported in a clinical trial conducted to assess the ability of 
6-mercaptopurine (6-MP) to maintain remission [44]. Each 
patient was randomized to receive 6-MP or a placebo. The study 
finished after one year. The following remission times, in weeks, 
were recorded: 6-MP (21 patients): 6, 6, 6, 7, 10, 13, 16, 22, 
23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+; 
Placebo (21 patients): 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 
12, 12, 15, 17, 22, 23.

8 Applications

8.1 Example 1

The remission times of 42 patients with acute leukemia were reported by [44] in a clini-
cal trial conducted to assess the alility of 6-mercaptopurine (6-MP) to maintain remission.
Each patient was randomized to receive 6-MP or a placebo. The study finished after one
year. The following remission times, in weeks, were recorded: 6-MP (21 patients): 6, 6,
6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+;
Placebo (21 patients): 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23.
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Figure 1: Kaplan-Meier estimated curves for the two groups(example 1)

From Figure 1, we observe that the estimated non-parametric [45] survival plots are
not crossing assuming the two treatment groups, a indication that the PH model could be
used in the data analysis (a subjective decision commonly assumed by medical researchers
in applications to use PH models). Assuming a PH (proportional hazards) model (1) in
presence of only a covariate z(z = 1 for the 6-MP group and z = 2 for the placebo
group), the MLE (maximum likelihood estimator) for the regression parameter β (use of
the partial likelihood function) obtained using the R software is given by β̂ = 1.509(0.470)

where the value in parentheses is the standard error. That is, θ = exp(1.509) = 4.52221.
For a Bayesian analysis of the data considering special classes of the semiparametric

models introduced in section 2, that is, the PH or proportional hazards model denoted
as “model”, the logarithmic transformation model denoted as “model 2” and the PO or
proportional odds ratio model (r = 1) denoted as “model 3” in the logarithmic transfor-
mation model, we assume that the hazard function h0(ti), i = 1, 2, · · · , n is an unknown
latent factor, that is, h0(ti) = di with a gamma distribution G(0.1, 0.1).

As a first model, we assume the PH model (model 1) considering a gamma G(a, b)

prior distribution for the parameter θ (reparameterization of β) with hyperparameters
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Figure 1: Kaplan-Meier Estimated Curves for the Two Groups (Example 1)

From Figure 1, we observe that the estimated non-parametric 
survival plots are not crossing assuming the two treatment 
groups, an indication that the PH model could be used in the data 
analysis (a subjective decision commonly assumed by medical 
researchers in applications to use PH models) [45]. Assuming 
a PH (proportional hazards) model (1) in presence of only a 
covariate z(z = 1 for the 6-MP group and z = 2 for the placebo 
group), the MLE (maximum likelihood estimator) for the 
regression parameter β (use of the partial likelihood function) 
obtained using the R software is given by βb = 1.509(0.470) 
where the value in parentheses is the standard error. That is, θ = 
exp(1.509) = 4.52221.

For a Bayesian analysis of the data considering special classes 
of the semiparametric models introduced in section 2, that is, 
the PH or proportional hazards model denoted as “model”, the 
logarithmic transformation model denoted as “model 2” and the 
PO or proportional odds ratio model (r = 1) denoted as “model 
3” in the logarithmic transformation model, we assume that the 
hazard function h0(ti),i = 1,2,··· ,n is an unknown latent factor, 
that is, h0(ti) = di with a gamma distribution G(0.1,0.1).

As a first model, we assume the PH model (model 1) considering 
a gamma G(a,b) prior distribution for the parameter θ 
(reparameterization of β) with hyperparameters a = 20.25 and 
b = 4.5 where this prior distribution was elicited from prior 
knowledge obtained assuming the PH model under the classical 

approach using the partial likelihood proposed, by solving the 
equations, E(θ) = a/b = 4.5 and var(θ) = a/b2 = 1 (mean and 
variance of the Gamma distribution using the prior information 
obtained from the obtained point estimate for θ = exp(β) using 
the PH model) [1]. Observe that Λ0(ti) = diti, where h0(ti) = dΛ0(ti)/
dti. Also observe that we are using empirical Bayesian methods 
since the prior information from the classical inferences based 
on the partial likelihood for the PH Cox model was used in the 
elicitation of prior for the regression parameter β [40].

From the approximation log(1 + x) ≈ x (remark 1), we also 
assume the same gamma G(20.25,4.5) prior distribution for θ 
assuming “model 2” (logarithmic transformation model) and 
“model 3” (PO model or proportional odds ratio model).

For all cases, we used the OpenBUGS software considering 
a burn-in sample of 1,000 simulated samples discarded to 
eliminate the effects of the initial values in the iterative 
procedure and taking a final sample of size 1, 000 (every 100th in 
100,000 generated Gibbs samples) to get the Monte Carlo Carlo 
estimates for the parameters of interest [43]. The convergence 
of the Gibbs sampling algorithms was verified from trace plots 
of the simulated samples for each parameter. The OpenBUGS 
codes used in this application are presented in an appendix at the 
end of the manuscript. Table 1 shows the posterior summaries 
for each assumed model.
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a = 20.25 and b = 4.5 where this prior distribution was elicited from prior knowledge
obtained assuming the PH model under the classical approach using the partial likelihood
proposed by [1], by solving the equations, E(θ) = a/b = 4.5 and var(θ) = a/b2 = 1

(mean and variance of the Gamma distribution using the prior information obtained from
the obtained obtained point estimate for θ = exp(β) using the PH model). Observe
that Λ0(ti) = diti, where h0(ti) = dΛ0(ti)/dti. Also observe that we are using empiri-
cal Bayesian methods since the prior information from the classical inferences based on
the partial likelihood for the PH Cox model was used in the elicitation of prior for the
regression parameter β [40].

From the approximation log(1 + x) ≈ x (remark 1), we also assume the same gamma
G(20.25, 4.5) prior distribution for θ asssuming “model 2” (logarithmic transformation
model) and “model 3” (PO model or proportional odds ratio model).

For all cases, we used the OpenBUGS software [43] considering a burn-in sample of
1,000 simulated samples discarded to eliminate the effects of the initial values in the iter-
ative procedure and taking a final sample of size 1, 000 (every 100th in 100,000 generated
Gibbs samples) to get the Monte Carlo Carlo estimates for the parameters of interest.
The convergence of the Gibbs sampling algorithms was verified from trace plots of the
simulated samples for each parameter. The OpenBUGS codes used in this application
are presented in an appendix at the end of the manuscript. Table 1 shows the posterior
summaries for each assumed model.

Table 1: Posterior summaries assuming the transformation models (example 1)
β θ r

Mean SD. Mean SD. Mean SD. Bayes Factor
Model 1 1.448 0.235 4.370 1.012 — — V1 = exp(−106.6)

Model 2 1.473 0.226 4.474 0.984 0.376 0.662 V2 = exp(−110.9)

Model 3 1.459 0.231 4.414 1.005 — — V3 = exp(−119.4)

From the results of Table 1, we observe that “model 1” (the PH model) is the best
fitted model for the data using the posterior Bayes factor as a discrimination criterion,
since the Bayesian Monte Carlo estimates for Vk (k indexes each assumed model, that
is, k = 1 for “model 1”, k = 2 for “model 2” and k = 3 for “model 3”) in (13) are given,
respectively by V1 = exp(−106.6), V2 = exp(−110.9) and V3 = exp(−119.4), with larger
value for V1, an indication that “model 1” (PH model) is the best model fitted by the data
set. This result is in agreement with the plots of the Kaplan-Meier curves in Figure 1
(not crossing survival curves, an indication that the PH model is adequate). Observe that
the MLE estimate obtained using the PH model under the partial likelihood was given
by β̂ = 1.509(0.470), that is, the standard error (0.470) obtained from asymptotic results
based on the partial likelihood proposed by [1] is larger than obtained using the Bayesian
approach assuming “model 1”, as a special case of the general semiparametric model. The
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Table 1: Posterior Summaries Assuming the Transformation Models (Example 1)

From the results of Table 1, we observe that “model 1” (the PH 
model) is the best fitted model for the data using the posterior 
Bayes factor as a discrimination criterion, since the Bayesian 
Monte Carlo estimates for Vk (k indexes each assumed model, 
that is, k = 1 for “model 1”, k = 2 for “model 2” and k = 3 for 
“model 3”) in (13) are given, respectively by V1 = exp(−106.6), 
V2 = exp(−110.9) and V3 = exp(−119.4), with larger value for 
V1, an indication that “model 1” (PH model) is the best model 
fitted by the data set. This result is in agreement with the plots 
of the Kaplan-Meier curves in Figure 1 (not crossing survival 
curves, an indication that the PH model is adequate). Observe 
that the MLE estimate obtained using the PH model under the 
partial likelihood was given by βb = 1.509(0.470), that is, the 
standard error (0.470) obtained from asymptotic results based 
on the partial likelihood proposed is larger than obtained using 
the Bayesian approach assuming “model 1”, as a special case of 
the general semiparametric model [1]. The 95% credible interval 
for the parameter r (logarithmic transformation model) obtained 
from the simulated Gibbs samples is given by (0.00005;2.466).

8.2. Example 2
In this example, we consider the data (survival times in day) from 
35 cancer patient treated at the Mayo Clinic: data from sample 1 
(large tumour): 28, 69, 175, 309, 377+, 393+, 421+, 447+, 462+, 
709+, 744+, 770+, 1106+, 1206+; data from sample 2 (small 
tumour): 34, 88, 137, 199, 280, 291, 299+, 300+, 309, 351, 358, 

369, 369, 370, 375, 382, 392, 429+, 451, 1119+ [46]. Define the 
covariate Z denoting both sample groups: Z = 1 for large tumour, 
Z = 0 for small tumour. Assuming the PH model (1) , the hazard 
function is given by h(t | x) = h0(t)e

βz. In this way when z equals 
1 (large tumour) and z is equals 0 (small tumour), we have: h(t 
| z = 1) = h0(t)e

β if z = 1, and h(t | z = 0) = h0(t) if z = 0. The Cox 
proportional hazards model was fitted for tumour size (large and 
small tumours). The 95% confidence interval for eβ is given by 
(0.123; 0.865). From the obtained inference results, we observe 
a statistically significant difference in survival times between 
the two groups. The large tumour group has the highest survival 
times. The MLE estimator for eβ using the partial likelihood 
function is given by 0.327 and the 95% confidence interval is 
given by (0.123; 0.865). The MLE estimate of the β regression 
parameter is given by -1.119. This means that the probability of 
surviving the event is higher in the large tumour group, that is, 
the risk of failure is 67.3% lower in the large tumour group when 
compared to the small tumour group.

From Figure 2, showing the Kaplan-Meier estimates for the 
survival functions in the two groups, we observe that in this 
example it is hard to decide that the PH model is appropriate for 
the data analysis based on the estimated Kaplan-Meier curves.

A reanalysis of the data is considered assuming the semiparametric 
models introduced in section 2.

95% credible interval for the parameter r (logarithmic transformation model) obtained
from the simulated Gibbs samples is given by (0.00005; 2.466).

8.2 Example 2

In this example, we consider the data (survival times in day) from 35 cancer patient
treated at the Mayo Clinic [46]: data from sample 1 (large tumor): 28, 69, 175, 309, 377+,
393+, 421+, 447+, 462+, 709+, 744+, 770+, 1106+, 1206+; data from sample 2 (small
tumor): 34, 88, 137, 199, 280, 291, 299+, 300+, 309, 351, 358, 369, 369, 370, 375, 382,
392, 429+, 451, 1119+. Define the covariate Z denoting both sample groups: Z = 1 for
large tumor, Z = 0 for small tumor. Assuming the PH model (1) , the hazard function is
given by h(t | x) = h0(t)e

βz. In this way when z equals 1 (large tumor) and z is equals 0
(small tumor), we have: h(t | z = 1) = h0(t)e

β if z = 1, and h(t | z = 0) = h0(t) if z = 0.
The Cox proportional hazards model was fitted for tumor size (large and small tumors).
The 95% confidence interval for eβ is given by (0.123; 0.865). From the obtained inference
results, we observe a statistical significant difference in survival times between the two
groups. The large tumor group has the highest survival times. The MLE estimator for
eβ using the partial likelihood function is given by 0.327 and the 95% confidence interval
is given by (0.123; 0.865). The MLE estimate of the β regression parameter is given by
-1.119. This means that the probability of surviving the event is higher in the large tumor
group, that is, the risk of failure is 67.3% lower in the large tumor group when compared
to the small tumor group.

From Figure 2, showing the Kaplan-Meier estimates for the survival functions in the
two groups, we observe that in this example it is hard to decide that the PH model is
appropriate for the data analysis based on the estimated Kaplan-Meier curves.

A reanalysis of the data is considered assuming the semiparametric models introduced
in section 2.
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Figure 2: Kaplan-Meier estimated curves for the two groups (example 2)
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Figure 2: Kaplan-Meier Estimated Curves for the Two Groups (Example 2)

For a Bayesian analysis of the data considering the semiparametric 
models introduced in section 2 (the proportional hazards model 
denoted as “model 1”, the logarithmic transformation model 
denoted as “model 2” and the proportional odds ratio model (r = 
1) denoted as “model 3” in the logarithmic transformation model) 

we also assume that the hazard function h0(ti),i = 1,2,...,n is an 
unknown latent factor, with a gamma distribution G(0.1,0.1). 
For “model 1” (PH model), we assume a gamma G(1.07,3.27) 
prior distribution for the parameter θ where the elicitation of 
the hyperparameters in the gamma prior distribution for the 
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parameter was obtained by solving the equations E(θ) = a/b = 
0.327 and var(θ) = a/b2 = 0.1. We used the prior information of 
the Cox PH model (β estimated by -1.119), that is, exp(−1.119) 
= 0.327. Assuming “model 2” (logarithmic transformation 
model) and “model 3” (PO model), we assumed the same 
gamma prior distribution G(1.07,3.27) for the parameter θ and 
a non-informative gamma G(0.1,0.1) prior distribution for the 
parameter r in “model 2” (logarithmic transformation model). 
We used the same Gibbs simulation procedure considered in 
example 1 to simulate samples of the joint posterior distribution 
of interest. Table 2 shows the posterior summaries for each 
assumed model.

From the results of Table 2, we have the Bayesian Monte Carlo 
estimates (13), V1 = exp(−153.3), V2 = exp(−156.3) and V3 = 
exp(−162.8), an indication that “model 1” (PH model) possibly 
is the best model fitted by the data set (larger value for V1). A 95% 
credible interval for the parameter r (logarithmic transformation 
model or “model 2”) obtained from the simulated Gibbs samples 
is given by (1.3; 1.38). Although the posterior Bayesian criterion 
indicates “model 1”, since the Monte Carlo estimates for V1 and 
V2 are very close and the 95% credible interval for the parameter 
r (logarithmic transformation model) contain only values larger 
than 1, the use of “model 2” could be a conservative better 
alternative for the data analysis of this data set (see also Figure 
2).

For a Bayesian analysis of the data considering the semiparametric models introduced
in section 2 (the proportional hazards model denoted as “model 1”, the logarithmic trans-
formation model denoted as “model 2” and the proportional odds ratio model (r = 1)

denoted as “model 3” in the logarithmic transformation model) we also assume that the
hazard function h0(ti), i = 1, 2, . . . , n is an unknown latent factor, with a gamma dis-
tribution G(0.1, 0.1). For “model 1” (PH model), we assume a gamma G(1.07, 3.27)

prior distribution for the parameter θ where the eliciation of the hyperparameters in
the gamma prior distribution for the parameter was obtained by solving the equations
E(θ) = a/b = 0.327 and var(θ) = a/b2 = 0.1. We used the prior information of the
Cox PH model (β estimated by -1.119), that is, exp(−1.119) = 0.327. Assuming “model
2” (logarithmic transformation model) and “model 3” (PO model), we assumed the same
gamma prior distribution G(1.07, 3.27) for the parameter θ and a non-informative gamma
G(0.1, 0.1) prior distribution for the parameter r in “model 2” (logarithmic transformation
model). We used the same Gibbs simulation procedure considered in example 1 to sim-
ulate samples of the joint posterior distribution of interest. Table 2 shows the posterior
summaries for each assumed model.

From the results of Table 2, we have the Bayesian Monte Carlo estimates (13), V1 =

exp(−153.3), V2 = exp(−156.3) and V3 = exp(−162.8), an indication that “model 1”
(PH model) possibly is the best model fitted by the data set (larger value for V1). A
95% credible interval for the parameter r (logarithmic transformation model or “model
2”) obtained from the simulated Gibbs samples is given by (1.3; 1.38). Although the
posterior Bayesian criterion indicates “model 1”, since the Monte Carlo estimates for V1

and V2 are very close and the 95% credible interval for the parameter r (logarithmic
transformation model) contain only values larger than 1, the use of “model 2” could be a
conservative better alternative for the data analysis of this data set (see also Figure 2).

Table 2: Posterior summaries assuming the transformation models (example 2)
β θ r

Mean SD. Mean SD. Mean SD. Bayes Factor
Model 1 -1.810 1.258 0.296 0.300 — — V1 = exp(−153.3)

Model 2 -1.663 1.107 0.315 0.305 0.333 0.603 V2 = exp(−156.3)

Model 3 -1.568 1.144 0.338 0.320 — — V3 = exp(−162.8)

8.3 Example 3

In this example, the data refer to a study described in [47], carried at with 90 males
patients diagnosed in the period 1970-1978 with laryngeal cancer and who were followed
up to 01/01/1983. For each patient, the age (in year) was recorded at diagnosis and the
stage of the disease (I = primary tumor, II = involvement of nodules,III = metastasis, IV

13

Table 2: Posterior Summaries Assuming the Transformation Models (Example 2)

8.3. Example 3
In this example, the data refer to a study described, carried at 
with 90 males’ patients diagnosed in the period 1970-1978 with 
laryngeal cancer and who were followed up to 01/01/1983 [4]. 
For each patient, the age (in year) was recorded at diagnosis and 
the stage of the disease (I = primary tumour, II = involvement 
of nodules, III = metastasis, IV = combines of three previous 
stages) as well as their respective failure or censor times (in 
months). The stages are ordered by the degree of seriousness of 
the disease (less serious to more serious).

Assuming the proportional hazards model where h(t | z)h0(t)
eβz with covariate vector z = (z1,z2,z3,z4,z5,z6,z7), z1 denotes stage 
II, z2 denotes stage III, z3 denotes stage IV, z4 denotes age, z5 
denotes the interaction between age and stage II, z6 denotes the 
interaction between age and stage III, and z7 denotes interaction 
between age and stage IV, we obtained the maximin likelihood 
estimator (MLE) for the vector of regression parameters β (use 
of the software R), given b

[1].

For a Bayesian analysis of the data considering the semiparametric 
models introduced in section 2 (the proportional hazards model 
denoted as “model 1”, the logarithmic transformation model 
denoted as “model 2” and the proportional odds ratio model (r = 
1) denoted as “model 3” in the logarithmic transformation model) 
we also assume that the hazard function h0(ti),i = 1,2,··· ,n is an 
unknown latent factor, with a gamma distribution G(0.1,0.1).

Assuming “model 1” (PH model), we assume gamma G(a,b) 

prior distributions for the parameters θ1,θ2,θ3,θ4,θ5,θ6, and θ7, that 
is, θ1 = exp(β1) ∼ G(354,1000000);θ2 = exp(β2) ∼ G(885,1000);θ3 
= exp(β3) ∼ G(2332,1000);θ4 = exp(β4) ∼ G(997,1000);θ5 = 
exp(β5) ∼ G(1128,1000);θ6 = exp(β6) ∼ G(1011,1000) and θ7 = 
exp(β7) ∼ G(1014,1000).

In the elicitation of these prior distributions we used the prior 
information of the Cox PH model where β1 was estimated by 
−7.9461, that is, exp(−7.9461) = 0.000354;β2 was estimated by 
−0.1225, that is, exp(−0.1225) = 0.884706;β3 was estimated 
by 0.8470, that is, exp(0.8470) = 2.33264;β4 was estimated by 
−0.0026, that is, exp(−0.0026) = 0,997403;β5 was estimated 
by 0.1203, that is, exp(0.1203) = 1.12784;β6 was estimated by 
0.0114, that is, exp(0.0114) = 1.01147 and β7 was estimated by 
0.0137, that is, exp(0.0137) = 1.01379. We also assume the same 
gamma prior distributions for the parameters θ1,θ2,θ3,θ4,θ5,θ6, 
and θ7 considered for “model 1” (PH model) assuming “model 
2” (logarithmic transformation model) and “model 3” (PO 
model) and a gamma G(1,1) prior distribution for the parameter 
r in “model 2” (logarithmic transformation model).

For all cases, we used the OpenBUGS software considering 
a burn-in sample of 31,000 simulated samples discarded 
to eliminate the effects of the initial values in the iterative 
procedure and taking a final sample of size 1,000 (every 50th in 
50,000 generated Gibbs samples) to get the Monte Carlo Carlo 
estimates for the parameters of interest  [43]. The convergence 
of the Gibbs sampling algorithms was verified from trace plots 
of the simulated samples for each parameter. Table 3 shows the 
posterior summaries for each assumed model.

= combines of three previous stages) as well as their respective failure or censor times (in
months). The stages are ordered by the degree of seriousness of the disease (less serious
to more serious).

Assuming the [1] proportional hazards model where h(t | z)h0(t)e
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vector z = (z1, z2, z3, z4, z5, z6, z7), z1 denotes stage II, z2 denotes stage III, z3 denotes
stage IV, z4 denotes age, z5 denotes the interaction between age and stage II, z6 denotes
the interaction between age and stage III, and z7 denotes interaction between age and
stage IV, we obtained the maximin likelihood estimator (MLE) for the vector of regres-
sion parameters β (use of the software R), given by, β̂1 = −7.9461, β̂2 = −0.1225, β̂3 =

0.8470, β̂4 = −0.0026, β̂5 = 0.1203, β̂6 = 0.0114, and β̂7 = 0.0137.
For a Bayesian analysis of the data considering the semiparametric models introduced

in section 2 (the proportional hazards model denoted as “model 1”, the logarithmic trans-
formation model denoted as “model 2” and the proportional odds ratio model (r = 1)
denoted as “model 3” in the logarithmic transformation model) we also assume that the
hazard function h0(ti), i = 1, 2, · · · , n is an unknown latent factor, with a gamma distri-
bution G(0.1, 0.1).

Assuming “model 1” (PH model), we assume gamma G(a,b) prior distributions for
the parameters θ1, θ2, θ3, θ4, θ5, θ6, and θ7, that is, θ1 = exp(β1) ∼ G(354, 1000000); θ2 =
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exp(β5) ∼ G(1128, 1000); θ6 = exp(β6) ∼ G(1011, 1000) and θ7 = exp(β7) ∼ G(1014, 1000).
In the elicitation of these prior distributions we used the prior information of the Cox
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2” (logarithmic transformation model) and “model 3” (PO model) and a gamma G(1, 1)

prior distribution for the parameter r in “model 2” (logarithmic transformation model).
For all cases, we used the OpenBUGS software [43] considering a burn-in sample of

31,000 simulated samples discarded to eliminate the effects of the initial values in the
iterative procedure and taking a final sample of size 1,000 (every 50th in 50,000 generated
Gibbs samples) to get the Monte Carlo Carlo estimates for the parameters of interest.
The convergence of the Gibbs sampling algorithms was verified from trace plots of the
simulated samples for each parameter. Table 3 shows the posterior summaries for each
assumed model.
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Table 3: Posterior summaries assuming the transforma-
tion models (example 3)

Mean SD. 95% credible interval Bayes Factor

Model 1
β1 -7.945 0.054 (-8.048 ; -7.844)

β2 -0.122 0.033 (-0.189 ; -0.058)

β3 0.846 0.020 (0.806 ; 0.886)

β4 -0.020 0.007 (-0.033 ; -0.004) V1 = −113.0

β5 0.113 0.010 (0.094 ; 0.132)

β6 0.016 0.013 (-0.008 ; 0.045)

β7 0.016 0.015 (-0.012 ; 0.051)

Model 2
β1 -7.948 0.053 (-8.058 ; -7.850)

β2 -0.103 0.033 (-0.161 ; -0.039)

β3 0.850 0.012 (0.826 ; 0.871)

β4 -0.011 0.010 (-0.029 ; 0.008) V2 = −135.8

β5 0.126 0.019 (0.094 ; 0.166)

β6 0.017 0.015 (-0.007 ; 0.047)

β7 0.023 0.013 (0.006 ; 0.049)

r 1.341 0.020 (1.300 ; 1.380)

Model 3
β1 -7.942 0.053 (-8.053 ; -7.839)

β2 -0.124 0.033 (-0.191 ; -0.061)

β3 0.847 0.020 (0.807 ; 0.888)

β4 -0.018 0.011 (-0.041 ; 0.003 ) V3 = −130.7

β5 0.127 0.013 (0.096 ; 0.155)

β6 0.021 0.015 (-0.007 ; 0.052)

β7 0.023 0.018 (-0.012 ; 0.062)

From the results of Table 3, we observe that “model 1” (the PH model) is the best
fitted model for the data using the posterior Bayes factor as a discrimination criterion,
since the Bayesian Monte Carlo estimates for Vk, k = 1, 2, 3 in (13) are given respectively
by, V1 = exp(−113.0), V2 = exp(−135.8) and V3 = exp(−130.7), with larger value for
V1, an indication that “model 1” (PH model) is the best model fitted by the data set.
Assuming “model 1” (the PH model), we observe that the covariates age and interaction
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Table 3: Posterior Summaries Assuming the Transformation Models (Example 3)

From the results of Table 3, we observe that “model 1” (the PH 
model) is the best fitted model for the data using the posterior 
Bayes factor as a discrimination criterion, since the Bayesian 
Monte Carlo estimates for Vk,k = 1,2,3 in (13) are given 
respectively by, V1 = exp(−113.0),V2 = exp(−135.8) and V3 = 
exp(−130.7), with larger value for V1, an indication that “model 
1” (PH model) is the best model fitted by the data set. Assuming 
“model 1” (the PH model), we observe that the covariates 
age and interaction between age and stage III do not present 
significant effects on the response survival time since the 95% 
credible intervals for the regression parameters β4 and β6 contain 
the zero value. All the other covariates have significant effects 
on the response of interest.

Figure 3 shows the plots of the Kaplan-Meier nonparametric 
estimates for the survival functions considering each categorized 
covariate. From the plots of Figure 3 we observe that the needed 

assumption of PH Cox model (not crossing curves considering 
the categorized covariates) is observed considering each 
categorized covariate.

8.4. Example 4
In this example, let us consider the survival times (T) in days and 
a set of prognostic factors or covariates from 137 lung cancer 
patients, presented in appendix I of [7]. The covariates include 
the Karnofsky measure of the overall performance status (KPS) 
of the patients at into the trial, time in months from diagnosis 
to entry into the trial (DIAGTIME), age in year (AGE), prior 
therapy (INDPRI, yes or no), histological type of tumour, and 
type the therapy. There are four histological types of tumour: 
adeno, small, large, and squamous cell and two types of 
therapies: standard and experimental. The value of KPS have 
the following meanings: 10 – 30 completely hospitalized, 40 – 
60 partial confinement, 70 – 90 able to care to self.
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First, we define several index (or dummy) variables for the 
categorical variables and the censoring status. Let CENS = 0 
when the survival time T is censored and 1 otherwise; IDADE 
= 1, INDSMA = 1 and INDSQU = 1 if the type of cancer cell 
is adeno, small, and squamous, respectively, and 0 otherwise; 
INDTHE = 1 if the standard therapy is received and 0 otherwise; 
and INDPRI = 1 if there is a prior therapy and 0 otherwise.

In this application, we assume only the covariate KPS and three 
cancer cell index variables: INDSQU, INDADE and INDSMA. 
First assuming the Cox PH model (1) we obtained from the 
partial likelihood using the R software the MLE estimates: 
-0.0229 (0.0044) for the regression parameter β1 (KPS); -0.0814 
(0.2794) for the regression parameter β2 (INDSQU); 1.0610 
(0.2950) for the regression parameter β3 (INDADE) and 0.6940 

(0.2532) for the regression parameter β4 (INDSMA). Only the 
covariate INDSQU do not show significant effect on the survival 
times (p-value > 0.05).

For a Bayesian analysis of the data considering the semiparametric 
models introduced in section 2 (the proportional hazards model 
denoted as “model 1”, the logarithmic transformation model 
denoted as “model 2” and the proportional odds ratio model (r = 
1) denoted as “model 3” in the logarithmic transformation model) 
we also assume that the hazard function h0(ti),i = 1,2,...,n is an 
unknown latent factor, with a gamma distribution G(0.1,0.1). We 
also assume gamma G(a,b) prior distributions for the parameters 
θ1,θ2,θ3, and θ4, that is, θ1 = exp(β1) ∼ G(9.77,10);θ2 = exp(β2) 
∼ G(9.22,10);θ3 = exp(β3) ∼ G(28.89,10) and θ4 = exp(β4) ∼ 
G(20.02,10).
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Figure 3: Kaplan-Meier estimated curves considering each covariate (example 3)

In the elicitation of the prior distributions we used the prior information of the Cox PH
model (1) where β1 was estimated by -0.022981, that is, exp(−0.022981) = 0.977281;β2

was estimated by -0.081376, that is, exp(−0.081376) = 0.921847;β3 was estimated by
1.061042, that is, exp(1.061042) = 2.889379 and β4 was estimated by 0.694003, that is,
exp(0.694003) = 2.001713. We also assume the same gamma prior distributions for the
parameters θ1, θ2, θ3 and θ4 considered for “model 1” (PH model) assuming “model 2” (log-
arithmic transformation model) and “model 3” (PO model) and a gamma G(1,1) prior
distribution for the parameter r in “model 2” (logarithmic transformation model). For all
cases, we have used the OpenBUGS software [43] considering a burn-in sample of 11,000
simulated samples discarded to eliminate the effects of the initial values in the iterative
procedure and taking a final sample of size 1,000 (every 100th in 100,000 generated Gibbs
samples) to get the Monte Carlo estimates for the parameters of interest. The convergence
of the Gibbs sampling algorithms was verified from trace plots of the simulated samples
for each parameter. Table 4 shows the posterior summaries for each assumed model.

From the results of Table 4, we observe that “model 1” (the PH model) is the best
fitted model for the data using the posterior Bayes factor as a discrimination crite-
rion, since the Bayesian Monte Carlo estimates for Vk, k = 1.2.3 in (13) are given by
V1 = exp(−715.8), V2 = exp(−725.4) and V3 = exp(−762.1), with larger value for V1,
an indication that “model 1” (PH model) is the best model fitted by the data set. As-
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In the elicitation of the prior distributions we used the prior 
information of the Cox PH model (1) where β1 was estimated by 
-0.022981, that is, exp(−0.022981) = 0.977281;β2 was estimated 
by -0.081376, that is, exp(−0.081376) = 0.921847;β3 was 
estimated by 1.061042, that is, exp(1.061042) = 2.889379 and β4 
was estimated by 0.694003, that is, exp(0.694003) = 2.001713. 
We also assume the same gamma prior distributions for the 
parameters θ1,θ2,θ3 and θ4 considered for “model 1” (PH model) 
assuming “model 2” (logarithmic transformation model) and 
“model 3” (PO model) and a gamma G(1,1) prior distribution 
for the parameter r in “model 2” (logarithmic transformation 
model). For all cases, we have used the OpenBUGS software 
considering a burn-in sample of 11,000 simulated samples 
discarded to eliminate the effects of the initial values in the 

iterative procedure and taking a final sample of size 1,000 (every 
100th in 100,000 generated Gibbs samples) to get the Monte Carlo 
estimates for the parameters of interest [43]. The convergence 
of the Gibbs sampling algorithms was verified from trace plots 
of the simulated samples for each parameter. Table 4 shows the 
posterior summaries for each assumed model.

From the results of Table 4, we observe that “model 1” (the PH 
model) is the best fitted model for the data using the posterior 
Bayes factor as a discrimination criterion, since the Bayesian 
Monte Carlo estimates for Vk,k = 1.2.3 in (13) are given by V1 
= exp(−715.8),V2 = exp(−725.4) and V3 = exp(−762.1), with 
larger value for V1, an indication that “model 1” (PH model) is 
the best model fitted by the data set. Assuming “model 1” (the 
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PH model), we observe that the covariates KPS, INDADE and 
INDSMA show significant effects on the survival times since the 

95% credible intervals for the regression parameters β1,β3 and β4 
do not contain the zero value.

suming “model 1” (the PH model), we observe that the covariates KPS, INDADE and
INDSMA show significant effects on the survival times since the 95% credible intervals
for the regression parameters β1, β3 and β4 do not contain the zero value.

Table 4: Posterior summaries assuming the transformation models (example 4)
Mean SD. 95% Credible Interval Bayes Factor

Model 1
β1 -0.066 0.005 (-0.076 ; -0.056)
β2 -0.0044 0.299 (-0.660 ; 0.493) V1 = −715.8

β3 0.996 0.188 (0.613 ; 1.371)
β4 0.640 0.210 (0.226 ; 1.030)

Model 2
β1 -0.065 0.005 (-0.075 ; -0.053)
β2 -0.050 0.308 (-0.689 ; 0.524)
β3 1.010 0.185 (0.629 ; 1.353) V2 = −725.4

β4 0.661 0.210 (0.247 ; 1.077)
r 0.171 0.153 (0.006 ; 0.579)

Model 3
β1 -0.054 0.006 (-0.066 ; -0.041)
β2 -0.046 0.288 (-0.631 ; 0.481) V3 = −762.1

β3 1.016 0.193 (0.611 ; 1.366)
β4 0.654 0.218 (0.222 ; 1.072)

Figure 4 shows the plots of the Kaplan-Meier nonparametric estimates for the survival
functions considering each categorized covariate. From the plots of Figure 4 we observe
that the needed assumption of PH Cox model (not crossing curves) are observed in this
example in agreement with the obtained results. Also observe from the results in Table 4,
that the 95% credible interval for the parameter r (logarithmic transformation model or
“model 2” ) is given by (0.006;0.579) an indidication that the PH model is the best model
(values close to zero).
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Figure 4 shows the plots of the Kaplan-Meier nonparametric 
estimates for the survival functions considering each categorized 
covariate. From the plots of Figure 4 we observe that the needed 
assumption of PH Cox model (not crossing curves) are observed 
in this example in agreement with the obtained results. Also 

observe from the results in Table 4, that the 95% credible interval 
for the parameter r (logarithmic transformation model or “model 
2” ) is given by (0.006;0.579) an indication that the PH model is 
the best model (values close to zero).
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Figure 4: Kaplan-Meier estimated curves considering each covariate (example 4)

9 A Simulation Study

In this section, we assume simulated sample from the Weibull distribution with prob-
ability density function (pdf) f(t) = ata−1e−(t/b)a/ba, t > 0 with survival function S(t) =

e−(t/b)a and hazard function h(t) = f(t)/S(t) = ata−1/ba, where a is the shape parameter
and b is the scale parameter. Let us assume only a covariate Z (Z = 0 for treatment 1 or
control and Z = 1 for treatment 2) and the proportional hazard model h(t) = h0(t)e

βz.
For treatment 1 (control Z = 0) we have hazard function h1(t) = ata−1/(b1)

a and for
treatment 2 (Z = 1), we have hazard function h2(t) = ata−1/(b2)

a, that is, we are as-
suming the same shape parameter a, but different scale parameters b1 and b2. That
is, h2(t) = ata−1/(b2)

a = (ba1/b
a
2)at

a−1/(b1)
a = eβata−1/(b1)

a = eβh1(t) (proportional
hazard), where eβ = (b1/b2)

a, or, β = a log(b1/b2). For simulation study, we assume
a = 1.5, b1 = 30, b2 = 50, that is, β = a log(b1/b2) = 1.5 log(30/50) = −0.766238. Also,
let us consider n = 100. Table ?? shows the generated data (without censoring and with
censoring). The five groups of simulated data are given by: group 1 with 100 observations
without censoring, group 2 with 100 observations in presence of a small proportion of
randomly censored (8 censored observations), group 3 with 100 observations in presence
of a moderate proportion of randomly censored (27 censored observations), group 4 with
100 observations in presence of a large proportion of randomly censored (43 censored ob-
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9. A Simulation Study
In this section, we assume simulated sample from the Weibull 
distribution with probability density function (pdf) f(t) = ata−1e−

(t/b)a/ba,t > 0 with survival function S(t) = e−(t/b)a and hazard 
function h(t) = f(t)/S(t) = ata−1/ba, where a is the shape parameter 
and b is the scale parameter. Let us assume only a covariate Z 
(Z = 0 for treatment 1 or control and Z = 1 for treatment 2) and 
the proportional hazard model h(t) = h0(t)e

βz. For treatment 1 
(control Z = 0) we have hazard function h1(t) = ata−1/(b1)

a and 
for treatment 2 (Z = 1), we have hazard function h2(t) = ata−1/
(b2)a, that is, we are assuming the same shape parameter a, but 
different scale parameters b1 and b2. That is,
      (proportional 
hazard), where eβ = (b1/b2)

a, or, β = alog(b1/b2). For simulation 
study, we assume a = 1.5,b1 = 30,b2 = 50, that is, β = alog(b1/
b2) = 1.5log(30/50) = −0.766238. Also, let us consider n = 
100. Table 5 shows the generated data (without censoring and 
with censoring). The five groups of simulated data are given 
by: group 1 with 100 observations without censoring, group 
2 with 100 observations in presence of a small proportion of 
randomly censored (8 censored observations), group 3 with 
100 observations in presence of a moderate proportion of 
randomly censored (27 censored observations), group 4 with 
100 observations in presence of a large proportion of randomly 
censored (43 censored observations) and group 5 with 100 type 
I censoring – observations censored for > 50, that is, censored 

observations denoted by 50+ with 13 censored observations).

For a Bayesian analysis of the data considering the semiparametric 
models introduced in section 2 (the proportional hazards model 
denoted as “model 1”, the logarithmic transformation model 
denoted as “model 2” and the proportional odds ratio model (r = 
1) denoted as “model 3” in the logarithmic transformation model) 
we also assume that the hazard function h0(ti),i = 1,2,··· ,n is an 
unknown latent factor, with a gamma distribution G(0.1,0.1). We 
assume a gamma G(21.46,46) prior distribution for the parameter 
θ = exp(β). Observe that θ = exp(−0.766238) = 0.46652174 
= 21.46/46 (the mean of the gamma prior distribution for θ). 
Table 5 shows the posterior summaries of interest. Assuming 
the PH model and the partial likelihood function proposed the 
maximum likelihood estimate of the regression parameter (data 
without censored observations) is given by - 0.862(0.422) [1].

From the obtained Bayesian inference results using standard 
existing MCMC methods, we observe from Table 5 the 
robustness of the proposed methodology, considering different 
proportions of censored data. I all cases the posterior Bayesian 
factor criterion indicates the PH model, a special case of the 
semiparametric or transformation model, as the best model 
(larger value of V1) to be assumed in the data analysis (correct 
decision).
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Figure 4: Kaplan-Meier estimated curves considering each covariate (example 4)

9 A Simulation Study

In this section, we assume simulated sample from the Weibull distribution with prob-
ability density function (pdf) f(t) = ata−1e−(t/b)a/ba, t > 0 with survival function S(t) =

e−(t/b)a and hazard function h(t) = f(t)/S(t) = ata−1/ba, where a is the shape parameter
and b is the scale parameter. Let us assume only a covariate Z (Z = 0 for treatment 1 or
control and Z = 1 for treatment 2) and the proportional hazard model h(t) = h0(t)e

βz.
For treatment 1 (control Z = 0) we have hazard function h1(t) = ata−1/(b1)
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Figure 4: Kaplan-Meier estimated curves considering each covariate (example 4)

9 A Simulation Study
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servations) and group 5 with 100 type I censoring – observations censored for > 50, that
is, censored observations denoted by 50+ with 13 censored observations).

For a Bayesian analysis of the data considering the semiparametric models introduced
in section 2 (the proportional hazards model denoted as “model 1”, the logarithmic trans-
formation model denoted as “model 2” and the proportional odds ratio model (r = 1)
denoted as “model 3” in the logarithmic transformation model) we also assume that the
hazard function h0(ti), i = 1, 2, · · · , n is an unknown latent factor, with a gamma distri-
bution G(0.1, 0.1). We assume a gamma G(21.46, 46) prior distribution for the parameter
θ = exp(β). Observe that θ = exp(−0.766238) = 0.46652174 = 21.46/46 (the mean of
the gamma prior distribution for θ). Table 5 shows the posterior summaries of interest.
Assuming the PH model and the partial likelihood function proposed by [1] the maximum
likelihood estimate of the regression parameter (data without censored observations) is
given by - 0.862(0.422).

From the obtained Bayesian inference results using standard existing MCMC methods,
we observe from Table 5 the robustness of the proposed methodology, considering different
proportions of censored data. I all cases the posterior Bayesian factor criterion indicates
the PH model, a special case of the semiparametric or transformation model, as the best
model (larger value of V1) to be asumed in the data analysis (correct decision).

Table 5: Simulated data (n = 100; a = 1.5, b1 = 30,
b2 = 50, β = −0.766238)

Group 1 (without censoring)

2.9 52.7 21.6 18.8 20.2 65.3 43.1 44.5 20.4 48.2

(l) (s) (l) (m) (m) (m,l) (l) (s)

29.8 16.5 46.4 2.7 44.4 34.7 20.6 42.9 41.6 18.2

(l) (l) (l) (s,m,l) (s) (s,l)

31.2 1.2 7.2 17.9 47.6 5.1 44.7 24.1 7.7 34.0

(m) (l) (l) (m,l)

16.3 11.2 16.4 74.1 12.3 3.6 29.0 59.8 4.8 39.3

(l) (s) (l) (l) (l) (s)

10.2 1.2 28.7 9.2 56.2 16.5 16.4 37.4 26.1 2.9
(m,l) (l) (m) (m) (m,l) (m,l) (m) (m)

Group 2 (without censoring)

38.4 71.4 14.0 59.9 29.9 25.4 21.7 49.8 24.9 80.9

(m) (l) (l) (l) (l)

34.3 75.1 78.1 26.5 54.5 16.9 95.9 47.6 0.9 13.2

(l) (l) (m) (m) (m) (m) (l) (m)

2056.1 76.2 17.2 23.7 67.9 41.9 103.7 15.6 31.5 14.6

(l) (l) (l) (l)

30.0 53.0 30.5 69.6 77.0 73.8 47.1 22.0 57.9 110.9

(l) (m,l) (m) (l) (l) (l) (m,l)

59.9 10.7 149.9 32.7 19.5 37.1 41.5 29.9 29.9 28.7

(m,l) (s,m) (l) (m,l) (l) (m) (m)

Type I censoring – observations > 50 are censored in 50+

All observations above (without censoring)but considering

observations > 50 as censored in 50.
(s) - small proportion of 8 censored observations;

(m) - moderate proportion of 27 censored observations;

(l) - large proportion of 43 censored observations

Table 6: Posterior summaries (simulated data)

β θ r Bayes Factor

Data without censoring

Model 1 -0.8204(0.2184) 0.4507(0.0970) —– V1 = −482.3

Model 2 -0.8082(0.2096) 0.4555(0.0959) 0.6137(0.4194) V2 = −508.4

Model 3 -0.8011(0.2191) 0.4596(0.0999) —– V3 = −523.9

Small Prop censoring

Model 1 -0.7963(0.2235) 0.4622(0.1011) —– V1 = −422.6

Model 2 -0.8052(0.2281) 0.4586(0.1034) 0.5804(0.4057) V2 = −465.6

Model 3 -0.7893(0.2150) 0.4647(0.0997) —– V3 = −481.1

Moderate Prop censoring

Model 1 -0.7990(0.2121) 0.4599(0.0973) —– V1 = −349.6

Model 2 -0.7874(0.2261) 0.4666(0.1049) 0.6025(0.4776) V2 = −367.6

Model 3 -0.7970(0.2227) 0.4618(0.1015) —– V3 = −379.7

Large Prop censoring

Model 1 -0.8036(0.2157) 0.4582(0.0990) —– V1 = −279.7

Model 2 -0.7887(0.2243) 0.4666(0.1020) 0.6230(0.4693) V2 = −294.3

Model 3 -0.8055(0.2196) 0.4575(0.0982) —– V3 = −303.5

Censoring in 50+

Model 1 -0.8039(0.2202) 0.4583(0.0983) —– V1 = −342.2

Model 2 -0.7978(0.2126) 0.4603(0.0945) 0.5520(0.4285) V2 = −360.1
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Table 5: Simulated Data (n = 100; a = 1.5, b1 = 30, b2 = 50, β = −0.766238)

Model 3 -0.8000(0.2099) 0.4592(0.0954) —– V3 = −373.7

10 Concluding remarks

From the results obtained in this study, we observed that the use of a Bayesian ap-
proach for the semiparametric models in presence of covariates and censored data consid-
ering the complete likelihood function obtained from semiparametric or transformation
models, where the unknown hazards are assumed as non-observed latent variables, could
be a good alternative to get the inferences of interest in medical applications. In the
special case of the usual PH (proportional hazards) model proposed by [1], possibly the
most used statistical methodology in lifetime data analysis in medical applications, the
use of the proposed methodology can be a good alternative for the use of the standard
partial likelihood function proposed by [1].

The proposed generalized semiparametric class of models includes the most common
models as the proportional hazards model, the logarithmic transformation model and the
proportional odds ratio model (r = 1) in the logarithmic transformation model.

The elicitation of the prior distributions for the regression parameters in this study
was based on prior information assuming initially the PH model in the data analysis where
the inference results were obtained from the maximum likelihood estimates obtained using
the partial likelihood function (use of empirical Bayesian methods). Other informative
prior distributions also could be used assuming prior information of medical experts.

It is important to point out that in many applications, researchers, especially in medi-
cal area, decide on a subjective way, by the proportional hazards model or the proportional
odds model as special cases, usually based on [45]) nonparametric estimates for the sur-
vival functions or using residual methods as the residuals proposed by [48] and modified
by [49] to check if the assumed PH model was appropriate. In many applications we could
be not confortable that the choosed model is appropriate in the statistical analysis of the
lifetime data usually in presence of covariates and censored data. In our approach we
used a Bayesian discrimination criterion based on the posterior Bayes factor introduced
by [42] that could be a very useful and simple tool to be used to verify if the assumed
class of semiparametric model is appropriate in the lifetime data analysis.

It is important to point out that the classical inference results (MLE, confidence inter-
vals, standard errors of the estimators) are obtained from the partial likelihood function
assuming the PH model (1), using asymptotic normality results, which in general depend
on large sample sizes to obtain good accuracy.

The obtained results of this study could be of interest to medical researchers since the
family of proportional hazards models used extensively in medical studies, and general-
izations given by the semiparametric family or transformation models, could have many
advantages when compared to many existing parametric lifetime regression models usu-
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complete likelihood function obtained from semiparametric or 
transformation models, where the unknown hazards are assumed 
as non-observed latent variables, could be a good alternative 
to get the inferences of interest in medical applications. In 
the special case of the usual PH (proportional hazards) model 

proposed, possibly the most used statistical methodology in 
lifetime data analysis in medical applications, the use of the 
proposed methodology can be a good alternative for the use of 
the standard partial likelihood function proposed by [1].

The proposed generalized semiparametric class of models 
includes the most common models as the proportional hazards 
model, the logarithmic transformation model and the proportional 
odds ratio model (r = 1) in the logarithmic transformation model.
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The elicitation of the prior distributions for the regression 
parameters in this study was based on prior information assuming 
initially the PH model in the data analysis where the inference 
results were obtained from the maximum likelihood estimates 
obtained using the partial likelihood function (use of empirical 
Bayesian methods). Other informative prior distributions also 
could be used assuming prior information of medical experts.

It is important to point out that in many applications, researchers, 
especially in medical area, decide on a subjective way, by the 
proportional hazards model or the proportional odds model as 
special cases, usually based on [45]) nonparametric estimates 
for the survival functions or using residual methods as the 
residuals proposed and modified to check if the assumed PH 
model was appropriate [47, 48]. In many applications we could 
be not comfortable that the choose model is appropriate in 
the statistical analysis of the lifetime data usually in presence 
of covariates and censored data. In our approach we used a 
Bayesian discrimination criterion based on the posterior Bayes 
factor introduced that could be a very useful and simple tool to 
be used to verify if the assumed class of semiparametric model 
is appropriate in the lifetime data analysis [42].

It is important to point out that the classical inference results 
(MLE, confidence intervals, standard errors of the estimators) 
are obtained from the partial likelihood function assuming the 
PH model (1), using asymptotic normality results, which in 
general depend on large sample sizes to obtain good accuracy.

The obtained results of this study could be of interest to medical 
researchers since the family of proportional hazards models used 
extensively in medical studies, and generalizations given by the 
semiparametric family or transformation models, could have 
many advantages when compared to many existing parametric 
lifetime regression models usually considering generalizations 
of the Weibull distribution with three or more parameters [49].
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