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Abstract

In this paper, we present a rigorous proof demonstrating the stabilization of percolation probability in supercritical regimes
for percolation models. We analyze a sequence of expanding compact balls in R”", incorporating correction terms that vanish
asymptotically, and show that the percolation probability within these regions converges to a finite, non-zero value as the
balls expand to cover the entire space. Our approach combines key concepts from percolation theory with measure-theoretic
tools, such as the Monotone Convergence Theorem and Fatou's Lemma, to rigorously establish the existence and uniqueness
of the limiting percolation probability. The result extends classical results on percolation probability in lattice models and
provides a new framework for understanding convergence in infinite systems. The non-triviality of the limit is demonstrated in
the supercritical regime, where percolation occurs with positive probability. The framework introduced here could serve as a
bridge between discrete and continuous models in statistical physics.
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1. Introduction

Percolation theory, which investigates the behavior of connected
clusters in random graphs or lattices, has been a fundamental area
of study in statistical physics, mathematics, and complex systems.
Since its introduction, percolation theory has been applied in a
variety of fields, ranging from material science to epidemiology
and network theory theory [1]. In particular, it is used to model
phenomena such as fluid flow through porous media, the spread
of diseases, and the robustness of networks [2,3]. One of the key
questions in percolation theory is determining the critical threshold,
p,, which separates the subcritical and supercritical regimes of
connectivity in a given system. Below p_, clusters remain small
and localized, while above p , a giant connected cluster emerges,
enabling large-scale connectivity [4].

In the supercritical regime (i.e., when p > p ), it is well-known
that the probability of forming an infinite cluster in infinite lattice
models is non-trivial. The percolation probability, 6(p), quantifies
the likelihood that a given node or site is part of this infinite
cluster. Classical results, such as those have established rigorous
frameworks for understanding the behavior of percolation in finite
and infinite systems, particularly in lattice models like Z¢ [4, 5].
However, the study of measure-theoretic aspects of percolation,

especially how percolation probabilities stabilize as one considers
expanding regions in continuous spaces, remains a less-explored
area [6]. In this paper, we aim to address this gap by developing
a rigorous measure-theoretic approach to the stabilization of
percolation probabilities.

Our focus is on a sequence of compact regions, modeled as balls
B(d +s)inR", where the radii d, — o0 as n — o0, and the correction
terms s — 0 vanish asymptotically. We aim to demonstrate that, in
the supercritical regime, the percolation probability inside these
regions converges to a finite, non-zero value as the balls expand
to cover the entire space. This approach draws upon measure
theory, specifically using tools like the Monotone Convergence
Theorem and Fatou’s Lemma, to rigorously analyze the limiting
behavior of percolation probabilities in large-scale systems. While
percolation on infinite lattices has been studied extensively using
combinatorial and probabilistic methods, our approach introduces
a new perspective by leveraging measure-theoretic results.
The Monotone Convergence Theorem (MCT), as described
in standard texts such as, provides a powerful framework for
analyzing sequences of increasing sets, particularly in relation to
their probability measures. Additionally, a fundamental result in
measure theory, allows us to handle cases where the sequence of
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regions may not be strictly increasing, thereby ensuring that the
limit inferior of the percolation probability is bounded below by
the percolation probability of the limit set [7-9].

The stabilization of percolation probability has important
implications not only for theoretical physics but also for applied
fields such as network theory and statistical mechanics. In
particular, understanding how percolation probabilities behave in
large-scale or infinite systems is crucial for modeling phenomena
that depend on long-range connectivity, such as the resilience of
large networks or the spread of information or diseases [10,11]. In
this paper, we present a step-by-step formal proof that addresses
the stabilization of percolation probability in the supercritical
regime, extending classical results by embedding them within a
measure-theoretic framework. We begin by defining the sequence
of expanding regions, modeling their percolation probabilities
using indicator functions, and applying MCT and Fatou's Lemma
to establish the non-triviality and uniqueness of the limit. We
conclude with a discussion of the implications of our results for
both continuous and discrete percolation models.

2. Methodology and Problem Statement

Let B(d, + s) represent a sequence of compact balls in R”, where
d —ooasn— oo, and s — 0 is a correction term. We aim to prove
that the percolation probability inside these balls stabilizes to a
finite, non-zero value as n — .

Define the percolation probability for the ball B(d + s) as P(B(d,
+ 5)). Our goal is to show:

1lli_r)1goP(B(dn +s))=1L

where 0 <L < 1, assuming the system is in the supercritical regime
of percolation [4,5].

2.1. Assumptions

* The system has a well-defined critical probability p_, which
separates  subcritical (nonpercolating) from  supercritical
(percolating) regimes [4,5].

= P(B(d + s)) represents the probability of a percolating cluster
forming inside the ball B(d_ + s).

= The probability space (2, &, P) is properly defined for the
percolation model, and all relevant events are measurable.

= The system is supercritical, meaning p > p_, where 8(p) is the
probability of the infinite cluster in the infinite lattice [4].

3. Preliminary Lemmas

3.1. Lemma 1 (Monotonicity in Percolation Models)

In standard percolation models on lattices, the sequence of balls
B(d_+ s) is inherently increasing as n — oo.

Proof: Consider two consecutive balls B(d_+ s ) and B(d ,, +
s.,,)- Since d — oo, we have

d_ ., >d_for all sufficiently large n. Given that s , s ,, — 0, there
exists an N such that for all n> N:

B(d, + sp) € B(dp41 + Spt1)

Thus, the sequence of balls is increasing.

3.2. Main Proof
Step 1: Definition of Indicator Functions

Let f (x) be the indicator function corresponding to percolation
inside the ball B(d_ + s), defined as:

falx) = 1B(dn+s) (x)

where:

1 if percolation occurs inside B(d,, + s)
0 otherwise

fu) = {

The percolation probability is then given by the expectation of

f(%):

P(By+9) = B @] = | 0dP()
Q
Step 2: Monotone Convergence Theorem (MCT) Application

By Lemma 1 , we know that the sequence of balls B(d + s) is
increasing for sufficiently large

n. Consequently, the sequence of indicator functions f (x) is
monotonically increasing:

fi) = () < -

By the Monotone Convergence Theorem (MCT) [7-9], we have:
lim f frn(x)dP(x) = f lim £, (x)dP(x)

Since lim

n—o

f, () =1p,, (x) for some limiting set B_, this implies:

lim P(B(d, +s)) = P(Bw)

n—oo

where B_ represents the limiting set as n — oo,

Step 3: Fatou's Lemma Application for Non-Monotonic Sequences
While we have established monotonicity, for completeness,

we consider the case where the sequence might not be strictly
increasing. Applying Fatou's Lemma [7-9]:

f liminff,,(x)dP(x) < lim inff fn(x)dP(x)
Q " n=eJa

In the context of percolation, this implies:

P <lim infB(d,, + s)) <liminfP(B(d, +5))
n—-oo n—->oo
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This guarantees that even if the sequence is not increasing, the
limit inferior of the percolation probability is bounded below by
the probability of the limiting set.

Step 4: Asymptotic Behavior of Corrections Lemma 2 (Vanishing
Corrections)

For any s > 0, there exists an N such that for all n > N:

|P(B(d, +5))—P(B(dy))| <e

Proof: Define the symmetric difference A = (B(d_+ s)AB(d )). As
s — 0, the volume of A relative to B(d ) tends to 0 as n — o . By
the continuity of measure, P(A ) — 0 as n — oo . Therefore:

|P(B(dn+5))_P(B(dn))| <P(A,) >0 asn— o

Hence, the effect of s becomes negligible in the limit, justifying
our treatment of s = 0 for large n

Step S: Final Proof

Combining the Monotone Convergence Theorem (for increasing
sequences) and Fatou’s Lemma (for non-monotonic sequences),
we conclude that:

AEEOP(B(dn +5)) = P(Bs)

where B_ is the limiting set as n — oo.

Step 6: Supercritical Regime and Non-triviality of the Limit In the
supercritical regime (p > p ), we know that:

3.2.1. There exists an infinite cluster with positive probability 8(p)
>0[4,5].

3.2.2. The probability of an infinite cluster is less than 1 for p < 1.
Step 6: Supercritical Regime and Non-triviality of the Limit

In the supercritical regime (p > p ), we know that:

3.2.3. There exists an infinite cluster with positive probability 6(p)
>0[4,5].

3.2.4. The probability of an infinite cluster is less than 1 for p < 1.
Therefore, for any sequence of increasing balls B(d_+s) :

3.2.5. P(B(d, +s)) 2 8(p) > 0 for all n, as each ball has at least the
probability of containing a point from the infinite cluster.

3.2.6. P(B(d +s)) <1 for all finite n, as there is always a positive
probability of no percolation in a finite region.

Thus, 0 < 8(p) <L <1, where L is our limit, ensuring 0 < L < 1.

3.3. Main Theorems

Theorem 1 (Stabilization of Percolation Probability)

If the system is supercritical, then the percolation probability
within the sequence of compact balls B(d_ + s) converges to a
finite, non-zero value asn — oo :

lim P(B(dy, +5)) =L

where 0 <L <.

Theorem 2 (Uniqueness of the Limit)

The limit L = limn—oo P(B(d_+ s)) is unique and independent of
the specific sequence {d_}

chosen, as long as d_— oo.

Proof sketch:

* Consider two sequences {d } and {d' } withd , d' — oo.

* For any s > 0, there exists N such that for all n > N, B(d ) and
B(d' ), both contain any fixed finite subset of the lattice with
probability > 1 —s.

* This implies that |P(B(d, )) — P(B(d'))| <2s foralln> N.

* As s is arbitrary, the limits must coincide.

This completes the formal proof that the percolation probability
stabilizes to a finite, non-zero value in the limit. Our approach
provides a measure-theoretic foundation for the existence and
nontriviality of the percolation probability 8(p) in the supercritical
regime. This result extends classical theorems such as Kesten's
theorem for bond percolation on Z¢ and bridges discrete percolation
models with continuous measure spaces.

4. Discussion

In this paper, we have established the stabilization of percolation
probability in the supercritical regime using a rigorous measure-
theoretic framework. By considering a sequence of expanding
compact balls B(d_+ s) in R", we demonstrated that the percolation
probability within these regions converges to a finite, non-zero
value as the sequence grows, provided the system is supercritical (
p >p, ). Our approach, which relied on the Monotone Convergence
Theorem and Fatou'’s Lemma, ensures that the percolation
probability not only stabilizes but also remains bounded between
the probability of an infinite cluster forming and one, confirming
the non-triviality of the limit.

The application of measure-theoretic tools to percolation models
extends classical results in percolation theory, such as those by
and , by providing a bridge between discrete models on lattices
and continuous expansions in R" [4,5]. In particular, our result
strengthens the understanding of how percolation behaves in
large-scale systems, a critical component for modeling real-world
phenomena such as the spread of information in networks, the
robustness of large infrastructures, or fluid flow in porous media.
Additionally, the uniqueness of the limiting percolation probability,
independent of the specific sequence of balls chosen, reinforces
the robustness of our approach, suggesting potential applications
in more complex or generalized percolation models.

5. Conclusions

Our results highlight the importance of combining probabilistic
and measure-theoretic techniques to rigorously study stochastic
processes in infinite or expanding domains. Future work may
explore similar frameworks in higher-dimensional percolation
models or other stochastic processes where connectivity and large-
scale behavior are of interest. Moreover, our methodology can
serve as a foundation for further investigations into the interaction
between discrete percolation models and continuous systems,
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potentially enriching both the theoretical and applied fields of
statistical physics and probability theory.
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