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Abstract
Large Language Models (LLMs) face significant challenges related to context length when generating code, often 
resulting in incoherent or incomplete outputs. This paper aims to explore the context length issue, present technical 
solutions, and suggest future directions for improving context retention in LLMs used for code generation.
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1. Introduction
When it comes to code generation, keeping things in context 
is essential to generating results that are accurate and logical. 
Even while LLMs are strong, they frequently have problems 
with context duration, which makes it hard to maintain long-
term dependencies that are essential for complicated coding 
jobs. The significance of context in code generation is discussed 
in this paper, along with the unique difficulties caused by 
context length restrictions in LLMs. The paper’s structure is 
also presented, covering technical solutions, hybrid approaches, 
evaluation techniques, and potential avenues for future research. 
Through comprehension and resolution of these problems, we 
can improve LLMs’ ability to produce high-caliber code.

2. Understanding Context Length Issues
2.1.  Definition of Context Length
Explanation of Context Length in LLMs
In the context of Large Language Models (LLMs), context 
length is the maximum amount of text or code that the model can 
efficiently process at once while producing an output. Usually, 
its length is expressed in tokens, which are the textual units that 
the model interprets. Tokens can be words or subwords in natural 
language processing, for example, and keywords, operators, and 
identifiers in code creation.

Due to their fixed context windows, LLMs like as GPT-3 are 
limited in how much of the previous text they can utilize to guide 
their responses. For instance, the maximum context window 
for GPT-3 is 2048 tokens. This indicates that the model only 
takes into account the last 2048 tokens and ignores anything that 
comes before this window when producing text or code.

Importance of Maintaining Context for Coherent Code 
Generation Maintaining context is critical in code generation 
for several reasons:

1.	 Variable Scope: Understanding the scope of variables and 
functions is essential for generating code that correctly 
references them. If the context is lost, the model might 
generate code that uses variables incorrectly or out of scope.

2.	 Logical Flow: For complex coding tasks, the logical ow 
and structure of the code are paramount. Losing context can 
lead to disjointed and logically inconsistent code snippets.

3.	 Dependency Management: Many programming tasks 
require understanding dependencies between different parts 
of the code. Losing context can cause the model to overlook 
these dependencies, leading to incomplete or incorrect code.

Example: Consider a function in Python that initializes variables, 
processes data, and then outputs results. If the context window 
is too short, the model might forget the initialization step by the 
time it needs to reference those variables, resulting in errors or 
incorrect outputs.

2.2. Challenges Posed by Context Length
Difficulty in Retaining Long-Term Dependencies
LLMs struggle with retaining long-term dependencies due to 
their fixed context windows. As the complexity and length of 
the input increase, maintaining a coherent understanding of the 
entire context becomes increasingly challenging. This difficulty 
is particularly pronounced in tasks that require understanding 
and generating code over multiple lines, functions, or files.

Example: In a large codebase, understanding how a function 
defined in one le interacts with a function in another le requires 
maintaining context across potentially thousands of lines of 
code. LLMs with limited context windows may lose track of 
these dependencies, leading to errors.

Examples of Context Loss in Generated Code
1.	 Incomplete Function Implementations: When generating 
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code for a complex function, an LLM might lose track of 
the initial parameters or variables, leading to incomplete or 
incorrect function implementations. For instance, an LLM 
might forget to return a value at the end of a function or 
incorrectly reference a variable that was defined earlier.

2.	 Logical Inconsistencies: In longer code sequences, the 
model might produce logically inconsistent code. For 
example, it might generate a loop that references variables 
not defined within the loop’s scope, or it might include 
redundant or contradictory statements due to lost context.

3.	 Misplaced Comments and Documentation: When 
generating code along with comments, the model might 
place comments inappropriately or generate documentation 
that does not align with the code logic, leading to confusion 
and errors during code review.

Impact on Code Quality and Accuracy
Context length constraints have a substantial effect on the 
precision and calibre of the code that is produced:
1.	 Decreased Code Reliability: When code is created without 

the necessary context, it frequently has faults and errors, 
which lowers its reliability and decreases its usefulness in 
practical applications.

2.	 Increased Debugging Effort: The productivity gains 
promised by automated code creation are diminished 
because developers have to spend more time troubleshooting 
and fixing the code produced by LLMs.

3.	 Inconsistent Code Style: When context is lost, disparate 
sections of the generated code may adhere to disparate 
standards or patterns, which makes the codebase more 
difficult to comprehend and maintain.

Example: In a collaborative coding environment, one developer 
might use an LLM to generate a new feature. If the LLM loses 
context and generates code with a different style or logic than 
the rest of the codebase, it can create integration challenges and 
increase the workload for the team.

Conclusion
Understanding the context length issue is crucial for improving 
LLMs in code generation. Addressing these challenges requires 
both technical innovations and practical strategies to enhance 
the models’ ability to maintain and utilize context effectively, 
ensuring higher quality and more reliable code outputs.

3. Technical Solutions to Context Length Issues
3.1.  Memory-Augmented Networks
Overview of Memory-Augmented Neural Networks
A class of models known as memory-augmented neural 
networks (MANNs) was created to increase the capabilities of 
conventional neural networks by adding an external memory 
component. Compared to the typical context window of LLMs, 
this external memory enables the network to store and retrieve 
data across longer sequences. By doing this, MANNs hope to 
improve LLMs’ capacity to handle long-term dependencies and 
preserve important context information, hence mitigating the 
drawbacks caused by fixed context lengths.
Generally, MANNs are made up of two primary parts:
1.	 Neural Network Controller: A component of the model that 

communicates with the external memory. It has the ability 
to write to and read from memory, and it will eventually 
learn how to use these functions most effectively to increase 
performance on tasks requiring long-term context.

2.	 External Memory Module: Information that is not 
immediately related to the neural network controller can 
be stored in this differentiable memory bank. This module 
enables the network to retain pertinent data across longer 
sequences; it can be compared to an extension of its short-
term memory.

Benefits of External Memory Components
1.	 Extended Context Retention: By utilizing an external 

memory, MANNs can maintain relevant information over 
extended sequences, reducing the likelihood of context loss 
and improving the coherence and accuracy of generated 
outputs.

2.	 Enhanced Problem Solving: The ability to store and retrieve 
information from an external memory allows MANNs to 
handle more complex tasks that require understanding 
and integrating information over longer periods, such as 
generating cohesive code that spans multiple functions or 
files.

3.	 Improved Learning Efficiency: With the external memory 
component, MANNs can learn to use their memory more 
efficiently, focusing on storing critical information and 
discarding irrelevant details, which can lead to better 
performance on tasks requiring long-term dependencies.

Examples and Case Studies
1.	 Differentiable Neural Computers (DNCs): Developed 

by DeepMind, DNCs are a kind of MANN intended to 
handle jobs requiring long-term knowledge retrieval and 
complicated thinking. It has been demonstrated that DNCs 
function well on a range of activities where preserving long-
term context is essential, including as pathfinding in mazes 
and answering questions.

2.	 Neural Turing Machines (NTMs): They provide a further 
instance of MANNs. By integrating a memory matrix that 
the neural network controller can access and manipulate, 
NTMs merge the advantages of neural networks and Turing 
machines. NTMs have proven their ability to manage 
extensive context dependencies by succeeding in tasks like 
sorting, associative recall, and copying lengthy sequences.

Case Study: When it comes to code generation, a business that a 
complex software system used a DNC to maintain context across 
multiple modules and functions. By leveraging the external 
memory component, the DNC was able to generate code that 
correctly referenced variables and functions defined earlier in 
the sequence, significantly reducing the error rate and improving 
the coherence of the generated code. This approach not only 
enhanced the overall quality of the code but also reduced the 
time developers spent on debugging and integration.

3.2. Hierarchical Models
Explanation of Hierarchical Model Structures
Because they can process data at many levels of abstraction, 
hierarchical models are better able to handle lengthy sequences 

J Electr Comput Innov, 2024



       Volume 1 | Issue 1 | 3

by segmenting them into smaller, easier-to-manage pieces. This 
structure is especially helpful for operations involving long 
sequences, like code creation, when it’s important to maintain 
context over longer periods of time.

In hierarchical models, the data is processed in a layered manner:
1.	 Lower-Level Processing: At this level, the model handles 

smaller, localized segments of data. For code generation, 
this might involve understanding and generating individual 
lines or small blocks of code.

2.	 Higher-Level Processing: This level processes larger 
chunks of data by aggregating information from the lower 
level. In code generation, this could involve understanding 
the structure of entire functions or classes.

3.	 Top-Level Processing: At the highest level, the model 
integrates and understands the overall context, such as 
the entire codebase or a complete project. This enables 
the model to maintain coherence and context over long 
sequences.

Advantages for Managing Long Sequences of Code
1.	 Better Context Retention: The model’s ability to keep 

context across longer sequences is enhanced by its 
hierarchical data processing. Higher-level components 
make sure that the larger context is preserved, while lower 
level components deal with the current context.

2.	 Scalability: Because each level of the hierarchy only needs 
to manage a fraction of the data, hierarchical models may 
handle big datasets or lengthy sequences more effectively.

3.	 Improved Understanding: The multi-level strategy enables 
the model to comprehend both abstract and particular facets 
of the input, producing outputs that are more logical and 
correct in relation to the context.

4.	 Modular Processing: This method allows for modularity, 
which allows for the independent ne-tuning of various 
levels of the hierarchy, resulting in more effective updates 
and enhancements.

Implementation Examples
1.	 Transformer-Based Hierarchical Models: Hierarchical 

transformers enhance the standard transformer design by 
including hierarchical processing. A transformer model, for 
instance, might process distinct functions or methods using 
a local transformer and combine them into a coherent whole 
using a global transformer. With the help of this structure, 
the model can produce cohesive code that maintains 
dependencies and context across several functions or files. 
An illustration of a hierarchical transformer model would be 
the local transformer, which would concentrate on producing 
a particular function inside a class and comprehending the 
variables and logic unique to that function. In contrast, the 
global transformer would make sure that the code created is 
in line with the project’s overall structure by integrating this 
function into the class’s and the codebase’s bigger context.

2.	 Hierarchies of Recurrent Neural Networks (RNNs): 
Layers of RNNs are used in hierarchical RNNs, with each 
layer processing data at a distinct abstraction level. Higher 
layers collect these facts to preserve a wider context, while 
lower layers manage more specific details.  Example: The 

lower layer of a hierarchical RNN for code creation may 
handle individual lines of code, guaranteeing instantaneous 
context and proper syntax. After that, the top layer would 
combine these lines to create cohesive functions or methods, 
preserving dependencies and logical ow throughout the 
whole codebase.

3.	 Hierarchical Attention Networks (HANs): The model 
can concentrate on various tiers of the data hierarchy thanks 
to HANs, which expand attention methods to hierarchical 
processing. HANs are especially useful for operations like 
code creation when long-term dependencies need to be 
maintained. An illustration of this would be in a HAN for 
code creation, where the higher-level attention mechanism 
takes into account the function’s overall structure and 
function inside the class or module, while the lower-level 
attention mechanism would concentrate on particular tokens 
or statements within a function. This method guarantees 
that the resulting code is cohesive at the macro level and 
contextually correct at the micro level.

Conclusion
Hierarchical models offer a robust solution to the context 
length issues in LLMs by breaking down long sequences into 
manageable chunks and processing them at multiple levels 
of abstraction. This approach enhances context retention, 
scalability, and understanding, leading to more coherent and 
accurate code generation. As research and development in 
hierarchical models continue, they hold significant potential 
for improving the capabilities of LLMs in various applications, 
particularly in handling long sequences of data.

3.3. Sliding Window Mechanisms
Concept of Sliding Window Techniques
The sliding window technique is a method used to manage 
large sequences of data by processing them in overlapping 
pieces, or "windows," of a given size. To preserve some context 
from earlier portions, each new window that glides across the 
series incorporates a piece of the preceding window. With this 
method, context is preserved over lengthy sequences without 
overburdening the model with all of the input at once.

A sliding window can be used in the context of LLMs for 
code generation to divide lengthy code sequences into more 
manageable, smaller pieces that the model can handle one after 
the other. A predetermined amount of tokens or lines of code 
are included in each window, and when the window glides, it 
overlaps with the preceding window to guarantee continuity of 
context.

Balancing Context Length and Computational Efficiency
Sliding window technique’s main benefit is its ability to strike a 
balance between computing efficiency and context length. This 
is how it operates:
1.	 Context Preservation: The model can save some of 

the prior context by overlapping windows, which aids in 
preserving coherence and continuity in the code that is 
created. For jobs requiring comprehension of relationships 
and dependencies between various code segments, this is 
essential.
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2.	 Manageable Processing: By limiting the amount of data 
the model processes at once, the fixed window size helps to 
lower memory and computational strain. Long sequences 
can now be handled without taxing the model’s capabilities.

3.	 Flexibility: The size of sliding windows can be changed 
to suit the particular needs of the job. Greater window size 
provide more context at the cost of higher computational 
demand, while smaller windows are more efficient but 
might capture less context.

Practical Applications:
1.	 Code Review and Refactoring: Sliding window techniques 

can be used in automated code review tools to analyze 
large codebases incrementally. By processing the code 
in overlapping windows, the tool can maintain context 
and continuity, ensuring that changes are coherent and 
dependencies are respected.   Example: An automated code 
review tool might use a sliding window of 50 lines to scan 
through a large code le. As it reviews each window, it can 
ag issues, suggest improvements, and ensure that changes 
do not introduce errors or inconsistencies.

2.	 Documentation Generation: For generating documentation 
for extensive codebases, sliding windows can help the model 
understand and describe sections of code incrementally. 
This ensures that the generated documentation is coherent 
and contextually accurate. Example: A documentation 
tool might process 100-line windows of code to generate 
descriptions and summaries. By overlapping windows, 
it can maintain context and produce detailed, accurate 
documentation that covers the entire codebase.

3.	 Bug Detection and Fixing: Sliding windows can be applied 
in tools designed to detect and x bugs in large codebases. 
By examining code in overlapping segments, the tool can 
identify issues that span multiple sections of the code and 
suggest comprehensive fixes. Example: A bug detection 
tool might use sliding windows of 20 lines to scan for errors. 
If a bug affects multiple functions, the overlapping windows 
ensure that the tool captures the full context and provides an 
effective solution.

Limitations:
1.	 Context Loss: Although sliding windows contribute to 

the preservation of context, context may still be lost at 
the window’s borders. The model may ignore important 
information that falls outside of the current window, which 
could result in mistakes or inconsistent results. Example: 
If a variable is defined at the beginning of a long function 
and used at the conclusion, a sliding window may not fully 
capture its usage, which could result in misinterpretations or 
improper code generation.

2.	 Computational Overhead: Although sliding windows 
reduce the overall computational load compared to 
processing the entire sequence, overlapping windows can 
still introduce some redundancy and overhead. Each window 
requires separate processing, which can increase the total 
computation time. Example: Overlapping windows of 50 
lines each with a 10-line overlap might lead to redundant 
processing of certain lines, slightly increasing the overall 
computation time and resource usage.

3.	 Optimal Window Size: Determining the optimal window 
size is a challenge. Too small a window might lead to 
insufficient context, while too large a window could negate 
the computational efficiency benefits. Example: Finding the 
balance between capturing enough context and maintaining 
computational efficiency requires experimentation and 
tuning based on the specific use case and model capabilities.

Conclusion
Sliding window mechanisms offer a practical solution to the 
context length issues in LLMs for code generation by processing 
long sequences in manageable, overlapping segments. While 
this approach helps maintain context and reduces computational 
load, it also comes with challenges such as potential context loss 
and computational overhead. By carefully balancing window 
size and overlap, and applying this technique to appropriate 
tasks, developers can leverage sliding windows to enhance the 
effectiveness of LLMs in various applications.

4. Enhancing Context Retention with Hybrid Approaches
4.1.  Combining Symbolic AI and Neural Networks
Overview of Hybrid Approaches
Neural networks (machine learning models) and symbolic AI 
(rule-based systems) are combined in hybrid techniques. Neural 
networks are good at managing unstructured tasks and learning 
from data, while symbolic AI is best at handling organized, 
logical tasks with explicit rules and representations. Through the 
combination of these two methods, the advantages of each can 
be utilized to boost context retention and optimize code creation 
as a whole.
Benefits of Integrating Symbolic AI for Context Retention
1.	 Structured Reasoning: Symbolic AI can help maintain 

long-term dependencies and logical structures within the 
code. By representing rules and constraints explicitly, 
it ensures that the generated code adheres to specific 
guidelines and standards.

2.	 Enhanced Context Management: Neural networks 
can struggle with retaining context over long sequences. 
Symbolic AI can bridge this gap by providing a structured 
way to manage and recall important information across 
different segments of code.

3.	 Error Reduction: Symbolic AI can validate and correct the 
output of neural networks, reducing errors and improving 
the accuracy of the generated code. This hybrid approach 
ensures that the generated code is both contextually relevant 
and logically correct.

Case Studies Demonstrating Effectiveness
•	 Case Study 1: Automated Code Refactoring
In an automated code refactoring tool, symbolic AI can be used to 
identify patterns and rules for refactoring, while neural networks 
handle the generation of new code segments. For instance, the 
symbolic AI can ensure that variable names are consistent and 
follow naming conventions, while the neural network generates 
the actual refactored code. This combination improves the 
quality and coherence of the refactored code.
•	 Case Study 2: Intelligent Code Completion
Neural networks predict and recommend code snippets 
depending on the present context, whereas symbolic AI can 

J Electr Comput Innov, 2024



       Volume 1 | Issue 1 | 5

give guidelines for syntactic and semantic accuracy in an 
integrated development environment (IDE) with intelligent code 
completion. By using a hybrid method, it is ensured that the 
code recommendations follow standards and best practices for 
programming in addition to being contextually relevant.

4.2. Multi-Stage Generation Processes
Explanation of Multi-Stage Generation
Multi-stage generation involves breaking down the code 
generation process into multiple stages, each handling a specific 
aspect of the task. This approach helps manage long sequences 
by focusing on smaller, manageable segments and progressively 
building up the nal output. Each stage adds context and detail, 
ensuring that the overall coherence and quality of the code are 
maintained.

Breaking Down Code Generation into Manageable Segments
Stage 1: High-Level Planning: The first stage involves generating 
a high-level plan or outline of the code. This includes defining 
the main functions, classes, and modules, and their interactions. 
This stage sets the foundation for the subsequent stages.
Stage 2: Detailed Code Generation: In the second stage, the 
high-level plan is expanded into detailed code. This involves 
generating the actual code for each function, class, and module, 
ensuring that the logic and structure are correctly implemented.
Stage 3: Context Integration: The third stage focuses on 
integrating context and ensuring coherence across the generated 
code. This involves linking different segments, resolving 
dependencies, and maintaining consistency.
Stage 4: Streamlining and Enhancement: The resulting code 
must be improved and optimized in the last step. This entails 
making the code more readable, performing better, and adhering 
to standards and best practices.

Examples and Impact on Context Retention 
•	 Example 1: Web Application Development
The multi-stage generation technique can be used to create the 
general architecture (Stage 1) and the detailed code for each 
component (Stage 2) of a web application. Refinement increases 
performance and maintainability, while context integration 
guarantees that the front-end and back-end components 
are correctly integrated (Stage 4). This method guarantees 
maintainability, efficiency, and coherence in the code generated.
•	 Example 2: Data Processing Pipeline
For a data processing pipeline, the high-level plan denes the 
main stages of data ingestion, processing, and output (Stage 
1). Detailed code is generated for each stage, including data 
transformation and analysis (Stage 2). Context integration 
ensures that data flows correctly between stages (Stage 3), and 
refinement optimizes performance and resource usage (Stage 4). 
This multi-stage approach ensures that the pipeline is robust, 
efficient, and scalable.

Conclusion
Hybrid approaches, including the integration of symbolic AI 
with neural networks and multi-stage generation processes, 
offer effective solutions to the context length issues in LLMs 
for code generation. By leveraging structured reasoning and 
breaking down code generation into manageable segments, these 

approaches enhance context retention, improve code quality, 
and ensure coherence. As these techniques continue to evolve, 
they hold the potential to significantly advance the capabilities 
of LLMs in generating high-quality, contextually accurate code.

5. Future Directions and Research Opportunities
5.1. Emerging Technologies and Innovations
The field of artificial intelligence and machine learning is always 
changing, and new technologies are coming out that claim to 
solve the context length problems in LLMs. These include 
developments in innovative architectures such as transformers 
with improved context-handling capabilities, memory-
augmented neural networks, and hierarchical models. Extended 
sequences of generated code are being investigated to preserve 
long-term dependencies and enhance coherence through the use 
of techniques like recurrent memory networks and sophisticated 
attention mechanisms.

These new technologies have the potential to greatly improve 
LLMs’ code generating capabilities. They can result in the 
creation of more precise, logical, and contextually relevant 
code by enhancing context retention. As a result, LLMs will 
be able to execute increasingly difficult coding jobs with less 
need for human involvement, increasing overall efficiency and 
productivity of software development processes.

5.2. Collaborative Approaches
A coordinated strategy combining domain-specific knowledge, 
computer science, linguistics, and cognitive science expertise 
is needed to address the context length concerns in LLMs. 
Multidisciplinary research can help us comprehend problems 
more thoroughly and come up with better solutions. For the 
purpose of promoting innovation and raising the bar for LLMs 
for code production, cooperation between academic institutions, 
businesses, and research centres is essential.

Numerous cooperative efforts and projects are currently in 
progress with the goal of improving LLM capabilities and 
addressing their shortcomings. For instance, the OpenAI Codex 
effort and partnerships between top tech rms and universities are 
aimed at enhancing LLMs’ context-handling capabilities. These 
programs are crucial for combining resources, exchanging 
information, and quickening the development of advanced AI 
technologies.

6. Conclusion
This paper has explored the challenges posed by context length 
issues in LLMs for code generation, highlighting the impact 
on accuracy, coherence, and overall performance. We have 
discussed various technical solutions, including memory-
augmented networks, hierarchical models, sliding window 
mechanisms, and hybrid approaches, all aimed at enhancing 
context retention.

Resolving context length concerns is essential to maximizing 
LLMs’ potential in code creation. Enhancing context preservation 
will guarantee more correct, consistent, and dependable code 
that is generated, which will ultimately increase software 
development processes’ productivity and efficiency.
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To overcome the shortcomings of the current LLMs and advance 
the sector, more research and development are needed. To 
overcome context length difficulties and improve the capabilities 
of LLMs in code creation, we encourage academics, developers, 
and companies to make investments in innovation, teamwork, 
and interdisciplinary research.
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