
Int J Med Net, 2024 Volume 2 | Issue 11 | 1

Software Language Engineering Text Processing Language Design, Implementation,
Evaluation Methods

Research Article

Joseph WillrichLutalo*
*Corresponding Author
Joseph WillrichLutalo, ICT Research Lab, Nuchwezi, Uganda.

Submitted: 2024, Nov 29; Accepted: 2024, Dec 17; Published: 2024, Dec 27

ICT Research Lab, Nuchwezi, Uganda

Citation: Lutalo, J. W. (2024). Software Language Engineering Text Processing Language Design, Implementation, Evaluation
Methods. Int J Med Net, 2(11), 01-20.

Abstract
Programming languages drive most if not all of modern problemsolving using computational methods and power. Research
into new programming languages and techniques is essential because it makes the design, implementation, and application
of automation to general or particular problem-solving ever easier, more accessible, and more performant. GPLs typically
are designed to be purely domain agnostic—meaning they can be applied in any field, for any problem kind. However, this
normally also makes them hard and difficult to use in problems where nonprogrammers or even experts with little or no GPL
programming skills are required to leverage programmatic problem-solving capabilities, which is why DSLs come into play;
they are generally more fine-tuned toward improving human productivity and performance than that of the machine, while
making solving particular, domain-oriented problems simpler. In this paper, we review the literature concerning how to design
and then fully implement a new DSL, with a special focus on a DSL for generic problem-solving leveraging Text Processing
methods—a Text Processing Language (TPL). We consider leveraging the Design Research paradigm as a systematic
framework for guiding research into the development of new TPLs. We present for the first time, a new unifying theory
concerning general, but also TPL-specific language engineering theory and guiding frameworks—UPLT, PLEF &PLEf.
With a re-introduction of the SOE framework, we consider quantitative and qualitative evaluation of software languages,
with specific focus on programming languages. Finally, we highlight identified pending problems for future theoretical and
pragmatic research into the field of language engineering, especially with a focus on TPLs.

Keywords: Programming Language Engineering, Language Design, Language Implementation, Language Evaluation, Domain Specific
Languages, Text Processing Languages, TEA

1. Introduction
We can deal with complexity by simplifying It [1]. The sole
purpose of all computing is to simplify the complexities of reality,
by creating hierarchies of useful abstractions—what Kain calls
“illusions”, that hide away the intricacies of solving a complex
problem by offering simpler [artificial] interfaces to otherwise
unwieldy, but unavoidable [natural] complexity that must be dealt
with so as to allow humans to manifest some solution or a series
of them [1]. Like how an architect designs and manipulates space
and materials to create useful spatial illusions—in the form of
buildings, boundaries and other physical interfaces such as what
Field refers to when he says Architecture is the one art that we
cannot avoid... constantly before our eyes, indeed we live in its
works, in the sense that all buildings are designed or planned,
so a computer architect, a computer engineer and for the sake of
this paper, a language engineer or architect, designs and creates
an abstraction in the form of a computer software language or

rather an “engineered language”—to distinguish it from a natural
language, with which otherwise complex problems become simple
and more natural or intuitive to solve inside of [2-4].

Just like innovations and breakthroughs in computer hardware and
physical electronics define or determine what we can accomplish
with physical computation and engineering, innovations and
advances in software help give life to that hardware as well as
make some existing hardware obsolete or perhaps extend its use to
solving arbitrary, old and new problems in simpler and better ways
[5]. Just like advances in semi-conductor chips, micro-controllers
and materials power the evolution of computer hardware, advances
in software languages— and for the rest of this paper, specifically,
software programming languages (or just “programming
languages”), libraries and Application Programming Interfaces
(APIs) power progress in computer software.

International Journal of Media and Networks
ISSN: 2995-3286

Int J Med Net, 2024 Volume 2 | Issue 11 | 2

The design and implementation of computer software is central to
the application of computer science and software engineering to
general problem solving using automation, while the design and
implementation of programming languages underlies progress in
computer science as a field, and is the stuff that makes software
engineering possible at all [6,7].

The availability of tools typically determines what problems
man can solve, as well as how those problems can be solved. It
is important to note that much as every able human is endowed
with the ability to speak and listen to natural languages, yet, only
a trained human, equipped with special, formal languages such
as mathematics can begin to reason about, think-through and
solve certain kinds of problems—with ease especially. So, just
like knowledge of mathematics makes it easier for an engineer
to design, implement, validate and apply sophisticated constructs
such as space-ships, inter-continental ballistic missiles or military
code-breakers, likewise, knowledge of special computing
languages such as Assembly, C, LaTex or BNF empower people
to think about and solve certain otherwise difficult problems [in
computing] via simple, straight-forward and systematic ways.

1.1 The Relevance of Language Research
First, we should appreciate that many programming languages—
general or domain-specific, were first inspired by real-world,
practical problems. For example, in Oliveira’s 2009 paper treating
of the advantages and disadvantages of, as well as the development
methods used to create Domain Specific Languages (DSLs)[7]—
sometimes also referred to as ”specific purpose languages”, we
see that typically, a Domain Specific Language (DSL) will help a
domain expert better solve problems in their domain, better than
if they had used a Generalpurpose Programming Language (GPL)
[7,8]. So, it is not that there aren’t already enough languages with
which to solve problems, but, necessity and creativity will many
times drive language engineers and computer scientists to come
up with new or different ways to approach the solution of some
problems, using new programming languages and methods.

Of course, it is easier for most researchers and/or problem solvers
to merely take an existing language and apply it to solving their
problems than it is to design, implement and come up with a new
programming language. We should definitely note that in general,
language development is hard, even for small or specialized
languages, and it typically entails wide and deep knowledge of
one or more special domains, as well as technical and theoretical
knowledge of language engineering or development [9].

Also, merely developing a language is not enough. Many times, a
new language needs to be evaluated and justified both empirically
and conceptually or ideologically. However, concerning this, it is for
example well known that tasks such as the quantitative validation
of DSLs, in general, but also in particular cases is hard and an
important open problem [9]. Concerning qualitative evaluation
of a new language, it would help to give attention to language
properties such as its syntax for example; contemporary work on
language engineering does inform us that it is surely without doubt
that in the task of learning new [programming] languages, the
burden of having to learn and master a language’s syntax/grammar
before it can be well applied is mostly unavoidable and is “a major
major barrier to novices learning programming languages, but
also the first encountered” [4]. Thus, when looking at why it is
important to study, research and evolve programming languages,
such matters as how usable or learnable a language would be once
implemented much necessitate extensive investment in this field.

Concerning why investment in developing a new language,
especially a DSL might be important, note that many task
automation programmers often spend much time and efforts on
GPL programming tasks that are tedious and follow the same
patterns. In such cases, the required code or solution could
be better arrived at using automatic-code generation via such
approaches as application generators a kind of special compiler
in a way, or via the use of an appropriate DSL [9]. In this vain,
interesting contemporary methods for assisting non-experts in
programmatic problem-solving using both GPL and DSL coding
assistants include the use of artificial intelligence assistants in the
form of programming [co-]assistants, such as the Github Copilot
project, Microsoft’s

A
bs

tra
ct

io
n

Le
ve

l

Humanness of Solution

Machine Languages General-Purpose Languages Domain Specific Languages

A

B

C

A B C

Figure 1: Visualizing Abstractness Vs Humanness of Programming Languages

Copilot [11] and the more popular ChatGPT [12]

1.2 MLs vs GPLs vs DSLs

Concerning programming languages for problem solving, we basically have three
major categories of languages;

• A: Machine Languages:

– Operate at a very low abstraction level.

– Express solutions in a style not meant for direct-human comprehen-
sion.

– Typically are written in a numeric/binary or opcode/mnemonic or
assembly-code syntax.

• B: General-purpose [Programming] Languages:

– Employ a sufficient amount of abstraction above the machine/pro-
cessor.

– Express solutions in a style meant for easier human comprehension
and are great at expressing human logic.

– Typically are written in a humane syntax close to mathematics.

• C: Domain Specific [Programming] Languages:

4

Figure 1: Visualizing Abstractness Vs Humanness of Programming Languages Copilot and the more popular ChatGPT [10-12]

Int J Med Net, 2024 Volume 2 | Issue 11 | 3

1.2 MLs vs GPLs vs DSLs
Concerning programming languages for problem solving, we
basically have three major categories of languages;
• A: Machine Languages:
Operate at a very low abstraction level.
Express solutions in a style not meant for direct-human
comprehension.
Typically are written in a numeric/binary or opcode/mnemonic or
assembly-code syntax.
• B: General-purpose [Programming] Languages:
Employ a sufficient amount of abstraction above the machine/
processor.
Express solutions in a style meant for easier human comprehension
and are great at expressing human logic.
Typically are written in a humane syntax close to mathematics.
• C: Domain Specific [Programming] Languages:
Are typically very high in abstraction and very close to the problem
domain in terms of their operation.
Express solutions in a style close to natural human language.
Their syntax is also very close to the problem domain.

We can see from this classification, that classes of programming
languages in general vary depending on their level of abstraction
above the machine/computer or rather physical processors upon
which they operate and their target [problem] domain [1,7,13].
In Figure 1, we visualize this variance in both abstraction and
humanness which helps one to easily appreciate the distance,
even where merely conceptual or symbolic, between low-level
languages meant to assist in say system programming, to high-
level languages meant to simplify the production of solutions in
a particular problem domain. In general, we have (A) Machine
Languages (MLs), (B) General-purpose languages (GPLs) and
then (C) Domain Specific Languages (DSLs). In this paper though,
we shall focus on the relations between GPLs and DSLs, and an
important intermediate class or category of TPLs—Text Processing
Languages, that might sometimes fall in the GPL or DSL category.

It is formally understood that GPLs are designed from the ground-
up without any particular domain, application area or problem in
mind apart from creating a mechanism for humans to translate
arbitrary solutions to any problem into algorithms and sets of
instructions we call computer programs, that can then be presented
to a [physical or abstract] computer, which then knows to parse,
comprehend and execute the instructions in the program so as
to solve some problem. DSLs on the other hand, are typically
designed with a particular domain in mind, or at least with some
systematic constraints imposed on the language so that it makes
solving problems in a particular way and especially for a particular
domain or problem space easier than it would typically be when
using a GPL. In Essence, both DSLs and GPLs are computational
problem solving tools, however, it is easy to see that whatever a
DSL can do, a GPL could also have done, though, as one might
find when exploring the literature about DSLs. DSLs are typically
designed to make simpler, the process or method of solving certain
problems which would otherwise have been very arduous to solve
using a GPL. An example is attempting to produce a polished

modern website using only the C programming language which
is not only a very mature, but also very popular GPL, compared
to using specialized webdevelopment, design and presentation
languages such as CSS, JavaScript and HTML, or at least
leveraging a generic text-processing language such as Python, Perl
or PHP [7,9,14,15].

In this paper, we shall undertake the task of exploring the design,
implementation and then evaluation of any DSL. Also, we shall
give special treatment to a particular, important sub-class of
DSLs meant for text-processing—which we are to refer to as Text
Processing Languages (TPLs). The importance of research into
DSLs can readily be appreciated by the success and wide-spread
use of both ancient and new DSLs such as CSS, Dot or Latex
[16-18]. We for example find that much as the language CSS was
originally designed for styling markup documents such as HTML
pages, it is currently also being used for animations, graphics and
enabling non-visual alterations to web pages [19,20].

1.3 Why TPLs?
The Oxford dictionary of computing defines text processing thus:
All forms of text manipulation including word processing [21].
Text Processing, which happens to be a major sub-category of
most programmatic problem-solving leveraging computation,
deserves and does get its rightful treatment across the programming
language landscape since the earliest generations of computers,
but is also not without special treatment even in the contemporary
computer science and software engineering landscape, and even
in an age where much of data processing is happening inside of/
via AI models such as Large Language Models, Transformers,
GANs and such, yet still, research shows that investment in careful
text-processing— such as a pre-processing phase to advanced
computations, is giving others an edge in performance compared
to those merely using AI or machine learning without it [13,22-
28].

First, note that text processing, tedious and error-prone even
for programmers, remains one of the most important areas of
research in applied computing [29]. We for example find that
AWK, a traditional and popular TPL is thought to be problematic
sometimes, because of being line-oriented, limited to regular
expression patterns, and unable to use external parsers [30]. Other
traditional tools such as Sed likewise come with their subtleties that
could be limiting sometimes; for example, Sed is a non-interactive
stream editor that will typically accept input from an existing file
or perhaps redirected STDIN, and then strictly output to STDOUT
[31]. Also, we find that in some cases, having to explicitly write a
text processing program for solving some problem is considered
wasteful or even infeasible. Thus have we seen the emergence
of alternative approaches to text processing such as the STEPS
project and language [29]—which allows a user to edit an example
text by hand, and then have a machine-learning-powered system
produce a program to perform the same or similar edits on other
[similar] texts [29] automatically. Yessenov et al. argued that such
Programming By Example (PBE) systems are easier to learn and
yet they lack the arcane syntax of using a traditional TPL [29].

Int J Med Net, 2024 Volume 2 | Issue 11 | 4

Also, there are some practical scenarios where use of traditional
text processing tools—such as GREP, Sed or AWK, might be
overly constrained, and we need new approaches or methods. For
example, we find that STEPS is designed to handle hierarchical
text that might not only span multiple lines in the input, but also
need to span multiple lines and preserve hierarchy or structure
in the output [29]. The newly developed TEA1 —Transforming
Executable Alphabet computer programming language, a TPL by
design, allows new approaches to solving critical, fundamental
computing problems such as the generation of random numbers,
alternating between visible and invisible text, random string
generation, statistical analysis and data quantification among
others, merely by leveraging simple transforms on pure text and
no sophisticated mathematics or physics involved [27,32].

Also, we find that, unlike many other families of computing
utilities, textprocessing finds use in many, if not most of general
high-level programming— arguably the domain of GPLs, so that,
it is almost impossible to come across a serious GPL that does not
come with some in-built library, module or set of instructions for
performing some fundamental text-processing—these are usually
the routines found in a language’s standard string manipulation
library, such as string.h for C, string for Python, Strings for Java,
String::Utilfor Perl, etc [33-37]. This means, for cases where one
might not immediately have access to a [traditional] GPL, or where
they wish to not use one, having access to a mature and/or robust
TPL can make general problem solving much easier, and that is
where languages like TEA are destined to shine [27].

2. Concerning the Design of DSLs
The decision to develop a DSL is often postponed indefinitely if
considered at all, and most DSLs never get beyond the application
library stage [9]. It is helpful and natural to think of a DSL in
terms of a gradual scale, with very specialized DSLs such as
BNF (itself used to design or implement both GPLs and DSLs)
on the left, and GPLs such as C++ on the right [9]. We have also
seen, in Figure 1—which somewhat generalizes this observation
first made by Mernik, how the abstraction level and humanness
of the solutions expressed using a language determine or hint at
the class of language it belongs to. Clearly, this is mostly to do
with a language’s syntax, but also has a bearing on its semantics.
Definitely, that classification should also help to guide DSL
designers at a highlevel, to ensure that the language they set out to
design or implement, doesn’t defeat these meaningful and helpful
principles.

In the rest of this section, let us look at some of the quirks, ideas
and principles underlying the design of most DSLs, TPL or not.

a. A Preamble to All Language Design
In this section, which in a way could be considered independent
of much of the rest of this paper—not because the ideas here were
developed last in the present work, but also because, it has been
established by the author, they would help clarify much of the rest
of this paper, plus also offer it the most meaningful theoretical basis
for critical discussions. For the sake of generality, we shall refer
to the ideas developed in the rest of this section as the Unifying
Programming Language Theory (UPLT).

i. A Unifying Programming Language Theory
First, before we consider anything, let us start by revisiting the
modern foundations of all computer science. Basically, let us recall
that the generally agreed theoretical basis of all modern computing
is the notion of the Turing Machine, which the Oxford dictionary
of computing helpfully defines as such [21]:

Definition 1 (Turing Machine(TM)). An imaginary computing
machine defined as a mathematical abstraction by Alan Turing
to make precise the notion of an effective procedure (i.e. an
algorithm). There are many equivalent ways of dealing with this
problem; among the first was Turing’s abstract machine, published
in 1936.

A Turing machine is an automaton that includes a linear tape that is
potentially infinite (in both directions), divided into boxes or cells,
and read by a read-head that scans one cell at a time. Symbols
written on the tape are drawn from a finite alphabet: s0,...,sp

The control or processing unit of the machine can assume one of a
finite number of distinct internal states: q0,...,qm

The “program” for a given machine is assumed to be made up
from a finite set of instructions that are quintuples of the form
qisjskXqj where X is R,L, or N.

The first symbol indicates that the machine is in state q0, while the
second indicates that the head is reading sjon the tape. In this state
the machine will replace sjby skand if X = R the head will move to
the right; if X = L it will move to the left and if X = N it will remain
where it is. To complete the sequence initiated by this triple the
machine will go into state qj.

The machine calculates functions...

With that essential introduction then, let us take a moment to
consider and reflect upon the following results the author puts
forward:

Int J Med Net, 2024 Volume 2 | Issue 11 | 5

2.1.1 A Unifying Programming Language Theory

First, before we consider anything, let us start by revisiting the modern foun-
dations of all computer science. Basically, let us recall that the generally agreed
theoretical basis of all modern computing is the notion of the Turing Machine,
which the Oxford dictionary of computing helpfully defines as such [21]:

Definition 1 (Turing Machine(TM)). An imaginary computing ma-
chine defined as a mathematical abstraction by Alan Turing to make pre-
cise the notion of an effective procedure (i.e. an algorithm). There are
many equivalent ways of dealing with this problem; among the first was
Turing’s abstract machine, published in 1936.

A Turing machine is an automaton that includes a linear tape that
is potentially infinite (in both directions), divided into boxes or cells, and
read by a read-head that scans one cell at a time. Symbols written on the
tape are drawn from a finite alphabet: s0, ..., sp

The control or processing unit of the machine can assume one of a
finite number of distinct internal states: q0, ..., qm

The “program” for a given machine is assumed to be made up from a
finite set of instructions that are quintuples of the form qisjskXqj where
X is R,L, or N .

The first symbol indicates that the machine is in state q0, while the
second indicates that the head is reading sj on the tape. In this state the
machine will replace sj by sk and if X = R the head will move to the
right; if X = L it will move to the left and if X = N it will remain where
it is. To complete the sequence initiated by this triple the machine will go
into state qj .

The machine calculates functions...

With that essential introduction then, let us take a moment to consider and
reflect upon the following results the author puts forward:

Theorem 1 (Text is Everything). All programming is text processing.

Proof. Programming is the expressing of a solution for some task T, by an
expressible algorithm P(T) in finite time. Assuming T* is some programmable
task—a problem, then there exists some text expression S(P(T*)) with which
P(T*) can be expressed. Then processing S(P(T*)) always produces the solution
to T*.

Lemma 1. All programs are text.

Proof. Follows from Theorem 1, and the fact that for any Turing Machine or
computer for which a program P(T) solving task T can be expressed by some
text S(P(T)) = A(T), A(T) is essentially equivalent to P(T).

Figure 2: First Law of UPLT

Concerning the matter of programming Turing Machines, or rather, comput-
ers, let us not forget that a DSL, just like a GPL or any programming language

8

Figure 2: First Law of UPLT

Concerning the matter of programming Turing Machines, or
rather, computers, let us not forget that a DSL, just like a GPL or
any programming language for that matter, is meant to be used
to express/write computer programs, and that these programs
are generally nothing but mere code or rather source-code, and
that all source-code is nothing but mere text! More precisely, a
program in any language, DSL or not, is a kind of well-structured
or rather regularly structured piece of text—whether or not it is a
combination of data and instructions doesn’t matter, because, at
the most abstract level, a computer only does anything useful,
upon reading some input—fundamentally and generally so (refer
to Definition 1), as text, and whether or not a piece of input text is
instruction or data only depends on context and the nature of the
computer processing the text. Much of this shall readily following
from a basic understanding of some fundamental computer
science concepts as Abstract Machines, Finite-State Machines and
especially the Turing Machine, upon which most, if not all of the
currently meaningful and practical computers and their languages
are founded. Before we proceed, let us also take a moment to
consider the post-Turing ideas of abstract machines and computers
as shall help in the general appreciation of the theory and ideas
we have embarked on introducing as well as developing. Kain, in
their definitive book on Advanced Computer Architecture has this
to say [1]:

A machine with a separate program memory is often called a
Harvard Machine, because the first computers built at Harvard in
the 1940s used a separate paper tape for their programs; this tape

was logically similar to a separate read-tape for their programs; this
tape was logically similar to a separate read-only program memory.
Machines that intermix programs and data in the same memory are
called von Neumann Machines, or Princeton Machines, because
the first machine built by von Neumman at Princeton placed the
program and the data in the same memory unit. Sharing the same
memory has an allocation advantage...

Thus, irrespective of what language, level or domain one sets
out to conceptualize, design or implement a formal computer
programming language for, keeping in mind that the language
itself is defined using text, is implemented using text and while
being executed or run, is processed as text processing text,
shall help clear-up many illusions and confusion, as well as help
establish the essential fundamentals for everyone, once and for all.

Next, considering that all programming occurs via the use of a
programming language, we arrive at the following important result
too:
In general, we find that a computer is an abstraction for any construct
capable of operating on some input following a set of instructions
specified in a program, and then producing some output or effect.
So, to sum this up, we also have the results depicted in Figure 4.

As this is a work on language engineering, we should avoid
the temptation to dive deep into philosophy or [computational]
metaphysics, though, it doesn’t hurt to digress a bit here—and
usefully so, before we proceed with our main subject.

Theorem 2 (The TPL Law). All programming languages are
text processing languages.

Proof. First, a program can be a combination of both the data
(including types) to be processed as well as the instructions to
process them. Then, assuming a programming language op-
erates on some type other than text, yet, whatever type that
is, should likewise be expressible using text for it to be pro-
grammable or rather computable—follows from Lemma 1 and
the first argument.

Figure 3: Second Law of UPLT

Theorem 3 (General Computation). All computation is text
processing.

Proof. Follows from fact that all computable operations and
tasks can be expressed by or are reducible to mere text and
some processing on it.

Lemma 2. All computable things are text.

Proof. Since Theorem 3 is true, directly follows.

Figure 4: Third Law of UPLT

First, note that one might wonder... Concerning the matter of Human Com-
puter Interaction (HCI), human computers and the rather strange but ancient
[occult] metaphysics such as the Kaballistic idea that all reality is reducible
to and controllable via numbers [38][39]. By extension, especially given num-
bers could be transformed to “text” so to say—and vice versa [38], interesting
applications and problems of this current exploration in a new philosophy for
computing could crop up, and justifiably so! However, just to motivate further
interest in this topic and UPLT in general, let me request the interested reader
to consider or ponder some of the mostly philosophical problems concerning
text, text processing and reality in Figure 5

For now, consider that all sciences at the most general level, can be catego-
rized under either natural sciences, formal sciences or social sciences[41].
Next, consider that in the present era, many such sciences either directly or in-
directly leverage computing in their theories and applications—so-called Com-
putational Sciences [42], we can then come to appreciate the true and funda-
mental importance of research on text processing, by considering how much
this idea powers much of the computational sciences, and in particular, let us
call out a few examples from the biological sciences, or more specifically from
computational biology [43]; we shall call out one interesting example of how text

10

Figure 3: Second Law of UPLT

Int J Med Net, 2024 Volume 2 | Issue 11 | 6

Theorem 2 (The TPL Law). All programming languages are
text processing languages.

Proof. First, a program can be a combination of both the data
(including types) to be processed as well as the instructions to
process them. Then, assuming a programming language op-
erates on some type other than text, yet, whatever type that
is, should likewise be expressible using text for it to be pro-
grammable or rather computable—follows from Lemma 1 and
the first argument.

Figure 3: Second Law of UPLT

Theorem 3 (General Computation). All computation is text
processing.

Proof. Follows from fact that all computable operations and
tasks can be expressed by or are reducible to mere text and
some processing on it.

Lemma 2. All computable things are text.

Proof. Since Theorem 3 is true, directly follows.

Figure 4: Third Law of UPLT

First, note that one might wonder... Concerning the matter of Human Com-
puter Interaction (HCI), human computers and the rather strange but ancient
[occult] metaphysics such as the Kaballistic idea that all reality is reducible
to and controllable via numbers [38][39]. By extension, especially given num-
bers could be transformed to “text” so to say—and vice versa [38], interesting
applications and problems of this current exploration in a new philosophy for
computing could crop up, and justifiably so! However, just to motivate further
interest in this topic and UPLT in general, let me request the interested reader
to consider or ponder some of the mostly philosophical problems concerning
text, text processing and reality in Figure 5

For now, consider that all sciences at the most general level, can be catego-
rized under either natural sciences, formal sciences or social sciences[41].
Next, consider that in the present era, many such sciences either directly or in-
directly leverage computing in their theories and applications—so-called Com-
putational Sciences [42], we can then come to appreciate the true and funda-
mental importance of research on text processing, by considering how much
this idea powers much of the computational sciences, and in particular, let us
call out a few examples from the biological sciences, or more specifically from
computational biology [43]; we shall call out one interesting example of how text

10

Figure 4: Third Law of UPLT

First, note that one might wonder... Concerning the matter of
Human Computer Interaction (HCI), human computers and
the rather strange but ancient [occult] metaphysics such as the
Kaballistic idea that all reality is reducible to and controllable
via numbers [38][39]. By extension, especially given numbers
could be transformed to “text” so to say—and vice versa [38],
interesting applications and problems of this current exploration in
a new philosophy for computing could crop up, and justifiably so!
However, just to motivate further interest in this topic and UPLT in
general, let me request the interested reader to consider or ponder
some of the mostly philosophical problems concerning text, text
processing and reality in Figure 5.

For now, consider that all sciences at the most general level, can
be categorized under either natural sciences, formal sciences or
social sciences[41]. Next, consider that in the present era, many
such sciences either directly or indirectly leverage computing
in their theories and applications—so-called Computational
Sciences, we can then come to appreciate the true and fundamental
importance of research on text processing, by considering how
much this idea powers much of the computational sciences, and
in particular, let us call out a few examples from the biological
sciences, or more specifically from computational biology[42,43];
we shall call out one interesting example of how text

1. Assume humans are a kind of computer in the TM sense—
even remotely so, could it be accurate to conclude that all
their [mental] processing is a kind of text processing?

2. By extension, since everything such a computer can pro-
cess is text or reducible to text, can it be correctly claimed
that any knowable or rather, computable reality is a kind
of [latent] text?

3. How might mere text be transformed into palpable con-
crete reality readilya?

4. Does there exist some text that if read by a human, would
always cause them to die? go mad? freeze or loose con-
sciousness even if momentarily?

5. Do human computers react systematically and predictably
to any actionable text?

aEither during sleep or during waking states—so-called “Affectant
Metaphysics”[40]

Figure 5: Some Philosophical Problems relating to UPLT

processing is applied in this field, by looking at the relevance of this idea in
the domain of genetic engineering and DNA-sequencing [44][45]. We see, in one
authoritative teaching manual on Bioinformatics and Computational Biology
[46]:

Sequence Analysis:
The application of sequence analysis determines those genes which en-

code regulatory sequences or peptides by using the information of sequenc-
ing. For sequence analysis, there are many powerful tools and computers
which perform the duty of analyzing the genome of various organisms.
These computers and tools also see the DNA mutations in an organism
and also detect and identify those sequences which are related. Shotgun
sequence techniques are also used for sequence analysis of numerous frag-
ments of DNA. Special software is used to see the overlapping of fragments
and their assembly.

That’s on page 13 of that interesting manual, and then in a section on
Proteins—page 46, we see that:

Protein:
Protein database maintains the text record for individual protein se-

quences, derived from many different resources such as NCBI Reference
Sequence (RefSeq) project, GenbBank, PDB and UniProtKB/SWISS-
Prot. Protein records are present in different formats including FASTA
and XML and are linked to other NCBI resources. Protein provides the

11

Figure 5: Some Philosophical Problems Relating to UPLT

processing is applied in this field, by looking at the relevance
of this idea in the domain of genetic engineering and DNA-
sequencing [44,45]. We see, in one authoritative teaching manual
on Bioinformatics and Computational Biology
[46]:

Sequence Analysis:
The application of sequence analysis determines those genes
which encode regulatory sequences or peptides by using the
information of sequencing. For sequence analysis, there are many
powerful tools and computers which perform the duty of analyzing
the genome of various organisms. These computers and tools also
see the DNA mutations in an organism and also detect and identify
those sequences which are related. Shotgun sequence techniques

are also used for sequence analysis of numerous fragments of
DNA. Special software is used to see the overlapping of fragments
and their assembly.

That’s on page 13 of that interesting manual, and then in a section
on Proteins—page 46, we see that:

a. Protein:
Protein database maintains the text record for individual protein
sequences, derived from many different resources such as NCBI
Reference Sequence (RefSeq) project, GenbBank, PDB and
UniProtKB/SWISSProt. Protein records are present in different
formats including FASTA and XML and are linked to other NCBI
resources. Protein provides the relevant data to the users such as

Int J Med Net, 2024 Volume 2 | Issue 11 | 7

genes, DNA/RNA sequences, biological pathways, expression and
variation data and literature. It also provides the pre-determined
sets of similar and identical proteins for each sequence as computed
by the BLAST. The Structure database of NCBI contains 3D
coordinate sets for experimentally-determined structures in PDB
that are imported by NCBI. The Conserved Domain database
(CDD) of protein contains sequence profiles that characterize
highly conserved domains within protein sequences. It also has
records from external resources like SMART and Pfam. There is
another database in protein known as Protein Clusters database
which contains sets of proteins sequences that are clustered
according to the maximum alignments between the individual
sequences as calculated by BLAST.

With that in mind, and back to our original discourse concerning
language engineering, since the motivations for the above
theoretical explorations stemmed from our interests on the
analysis, design and implementation of programming languages,
let us complete this section on the UPLT by studying and keeping
in mind the important schematic depicted in Figure 6, that sums
up all sorts of language engineering work, with a single model or
framework depicted in a single picture, and which we shall call
“The Programming Language Evolution Framework”—PLEF.

b. Designing any DSL
Concerning methods of bringing a DSL to life, it is important to
note that in combination with a relevant application library, any

GPL can implement or act as a DSL [9]. For example, the TMIL
(Text Manipulation Imaging Language) by Hamburger et al. is said
to essentially simplify what could have been achieved merely by
using the Java Paint2D or C++ GD2 libraries[8]. Of course, this
doesn’t mean that every DSL out there is merely some off-shoot of
a GPL, or that any DSL can simply be reduced to or obsoleted by a
GPL even if such might be possible or conceivable with sufficient
effort and general programming dexterity. Also, unlike GPLs,
DSLs need not be executable [9]. We for example find that one of
the more popular DSLs used in the domain of systems analysis and
design, the Unified Modelling Language (UML)[47], is generally
not readily executable, and is not really meant to be executable,
much as it is meant to be used to design or describe executable
systems!

Otherwise, many DSLs come to life via traditional language
development methods and principles, most of which merely help
one to either specify, design or implement the language’s formal/
regular structure. This regular structure shall usually be expressed
via a formal/regular language, and this expression is what
determines the grammar and syntax of the language, and from this
the semantics of the programs expressed in the language are then
derived. Programs written using the language then, shall merely
be formal contracts, declarations, specifications or definitions of
some sort, that conform to the language’s grammatical, syntactic
and semantic rules so as to solve some problem2. This is

LANGUAGE
CONCEPT

<text>

DOMAIN
DEFINITION

<text>

LANGUAGE
SPECIFICATION

<text>

LANGUAGE
GRAMMAR

(SPECIFICATION)
<text>

LANGUAGE
SEMANTICS

(SPECIFICATION)
<text>

LANGUAGE
DESIGN

(DEFINITION)
<text>

LANGUAGE
IMPLEMENTATION

(INSTANCE)
<text, processor>

LANGUAGE LEXER
<text, processor>

LANGUAGE
PARSER

<text, processor>

LANGUAGE
INTERPRETER

<text, processor>

LANGUAGE
COMPILER

<text, processor>

LANGUAGE
OPERATING

ENVIRONMENT
<texts, processors>

LANGUAGE
SUPPORT TOOLS
<texts, processors>

LANGUAGE
INVOCATION

<text>

LANGUAGE
RUNTIME

(INSTANCE)
<text, processor>

DATA INPUT
<text>

LANGUAGE
OUTPUT

<text>

LANGUAGE
ANALYSIS

<text, processing>

LANGUAGE
EVALUATION

<text>LANGUAGE
PROGRAM
(INSTANCE)

<text, processor>

Programming Language Evolution Framework
All language engineering unified.

Figure 6: The PLEF as a State Diagram
13

Figure 6: The PLEF as a State Diagram Essentially the Core, Gist of it All Refer to the PLEF in Figure 6 for a General Overview of
this Process

Int J Med Net, 2024 Volume 2 | Issue 11 | 8

Concerning traditional methods for such language development,
and especially considering some of the popular methods used,
tools and technologies such as Lex and Yacc [48,49]; the former
for building lexers, the later for implementing parsers are quite
well-known and well-documented with regards to helping verify
or process regular language expressions [14]. This shouldn’t
come as a big surprise, because, since the early generations of
modern computing, it became clear that instead of leaving every
new language design and development project to its own methods
and toolset, the design and implementation of some generic, re-
usable language engineering tools—Make, Yacc, Lex, ANTLR,
BNF and UML being great examples that would help solve a
very fundamental problem in the field of language research and
implementation [47,50,51]. In their famous “Dragon Book” on
general programming language development, and particularly
traditional compiler design, Aho et al. tell us that [52]:

Students work... create and implement a little language of their
own design... student-created languages have covered diverse
application domains including quantum computation, music
synthesis, computer graphics, gaming, matrix operations and
many other areas. Students use compilercomponent generators
such as ANTLR, Lex, and Yacc and the syntax directed translation
techniques... to build their compilers.

In general though, with or without helper tools, we find that the
systematic approach to implementing a new DSL involves the
following key steps [14]:
1. Defining the Domain.
2. Designing a DSL that accurately captures the domain semantics.
3. Building Software Tools or Software Components to support or
realize the DSL.
4. Developing applications (domain instances) using the newly
developed DSL infrastructure so as to verify and evolve the DSL.

In terms of implementation approach, we find that a DSL is better
implemented as an interpretable language than as a compilable
one [14]. Concerning this, it should be interesting to note that
DSLs exist that are capable of being interpreted, but also which
can be compiled—many times, not into an ML as would be the
case of a GPL, but into some other DSL or some Intermediate
Language(IL)—examples in this special category include SQL[53]
and YAML[54]—the language F#[55] would also fall into this
queer category, but is a GPL not a DSL.

Arguably, whether or not a language is best designed/implemented
as compilable or interpretable might depend on several critical
factors such as:
1. Whether the language is to be used in a stand-alone context.
2. Whether the language is to be embedable in other programs of
other languages.
3. Whether the language is meant to operate in user-space–such
as for GUI systems, or is for low-level/system-level programming
tasks—such as bootloaders, system configuration or part of
complex automation tasks such as are implemented with tools like
Gradle[56] (which uses languages Groovy[57] or Kotlin[58]) or

Ansible [59] (which uses YAML).
4. However, especially while still prototyping or evaluating
a language, it might make most sense to first approach it as an
interpretable language, and this has its compelling advantages even
for mature languages—interactivity, such as we see for languages
like Python[35] via its shell or for LISPS via a REPL(Read Eval
Print Loop) interface being some of the great exampleswhen such
is feasible[60].

c. The Case of Designing TPLs
Still concerning the design of DSLs, let us take a moment to give
special thought to the class of DSLs meant for text-processing.
We for example find that, because a typical TPL is created for the
sake of operating on data, in particular, text or rather, the string
data type, the methods and principles behind the design of such
languages have much to do with the data they are meant to operate
on and/or how they are meant to operate on it.

TEA for example, is a generic DSL for text manipulation and/or
transformationbut the more correct classification given the existing
literature is to consider it a Text Processing Language (TPL) since
text processing encompasses operations on the appearance of text,
but also on the structure of text [27,61,62].

We find that many modern languages and tools for performing
automated text processing employ methods and concepts such as
regular expressions, string manipulation primitives, parsers and/
or generators [29]. These approaches are to be found in most of
the traditional text processing utilities/languages such as R, AWK,
Sed, Perl and Python and could thus be considered fundamental, if
not essential primitives in any serious TPL[23,31,63,64,65].

It should be interesting to note that Text Processing on its own is
such an important problem that some traditional GPLs such as Perl
(Practical Extraction and Report Language) originally started out
as a mere text processing utility [65]. This should defintley hint at
the interesting fact that, a well-designed TPL could many times
end up becoming all one needs to perform tasks which would
otherwise be generally relegated to a GPL. For this matter, and
for completeness’s sake, we could summarize the key attributes
any robust TPL should possess with the following list of key TPL
attributes:
1. A mechanism to read text into the program—if not during
runtime, at least at program initiation or invocation.
2. A mechanism to output or write text from the program—this
could be merely writing to standard output (such as onto the
screen, printer or over the network—e.g. to a networked projector),
but also to more generic data-sinks such as files on the local or a
remote/network file system.
3. A mechanism to search for patterns in a text or generally, a
string.
4. A mechanism to replace or overwrite sections of or the entirety
of a string.
5. A mechanism to produce new text from other text—such as by
the combination of multiple strings into one.
6. A mechanism to fragment or split up strings—with or without

Int J Med Net, 2024 Volume 2 | Issue 11 | 9

explicit patterns.
7. A mechanism to quantify strings—essentially, mapping a string
to some numerical quantity, a number, such as by computing its
length, or some other identifying metric such as a string’s unique
hashcode.
8. A mechanism to compare or contrast two or more strings—such
as the ability to test strings for equivalence based on exact contents
or by some regular pattern as is possible with regular expressions.
9. A mechanism to reduce a large string to a smaller one—for
example, by eliminating trailing white-space (typically known
as stripping or trimming), eliminating certain sub-strings such as
punctuation, redundancies, or perhaps automatically summarizing
a long text etc.
10. Performing some standard transform on a string, such as
toggling an entire string to uppercase or title-case, etc.

The above list of TPL attributes, though probably not exhaustive,
can be backed-up by the design and implementation characteristics
of several mature and/or main-stream TPLs such as Perl, Sed or
Awk, but also by the textprocessing facilities in many GPLs such
as C, Python, JavaScript, C#, etc. (refer to Section 1.3). Interesting
to note, the newly developed TEA language fully and exhaustively
implements that list of TPL attributes, and for the sake of
evaluating pure TPLs, could be among the best living examples
at the moment.

3. Implementation of a DSL
In the introduction of this paper, we’ve already seen that generally,
language development is hard. We have also seen that it is easier
for most researchers and language-users to merely take an existing
language and apply it to solving their problems than it is to design,
implement and come up with a whole new language. In all cases
where the design or development of a language is involved—DSL
or not, we might consider it to be a case of language-engineering,
to distinguish it from the more general software engineeringfor
which it is a sub-domain, albeit a more fundamental one since
all software-engineering in some way relies on the results of
language-engineering[7].

In the next section, let us dive a bit deeper than general language
development, and instead focus more on what is known concerning
the implementation of DSLs.

a. Theory on DSL Implementation
i. It is Generally Complex
First, concerning the complexity of implementing a DSL; it can’t
readily be said if the same challenges face the implementation
of a particular DSL for a particular domain, then it might be for
another. However, as Mernik has stressed with regards to DSL
implementation in general, it is hard, however, though he doesn’t
offer explicit arguments why this is so—though his work gives that
claim some authority, yet, in a 1997 review paper on DSLs, Paul
Hudak tells us that it can be fairly difficult to design and implement
a programming language from scratch, and not only that, but that it
is not uncommon for such undertakings to span anywhere between
2 to 5 years—which perhaps many can’t afford[9,14].

However, away from what those researchers say concerning
this challenge, we also find that, upon closer inspection of what
actually goes on in real-world problem-solving using programming
languages—such as the experience the author has acquired while
operating and leading a research lab exploring and implementing
several small and large academic and industry projects relating
to or driven by computingseveral of which involved some sort of
language engineering—at Nuchwezi3, the general failure to see
many DSLs come up and/or mature past concept phase, is because,
if for no other reason at least, merely by virtue of thereexisting
many capable GPLs with which one might approach the solution
of a problem for which a DSL was first envisioned, might steer one
away from actually diving in and implementing a new language,
instead choosing to adapt or adopt some existing GPL or a DSL, so
as to manifest the solution (without innovation) [66,67]. And also,
even where one might go ahead and attempt to implement a DSL,
such attempts might only need go as far as the implementation of
the DSL in the form of a library or some API over another DSL or
GPL and nothing further than that—such DSLs being technically
referred to as “embedded languages” to differentiate them from
external languagesor we might refer to them as Domain Specific
Embedded Languages (DSELs)[7,9].

Further, we should note that such an alternative to actually
implementing an Independent DSL (IDSL), might make sense
especially if merely implementing a Dependent DSL (DDSL)
offers the solution to the original problem, or allows for the most
economical solution given real-life constraints on time, resources
and the freedom to conduct fundamental scientific research
necessary to really manifest a robust and wholly independent
computer programming language such as a GPL or an IDSL.

Finally, it is interesting to note that typically, the value or worth
of developing a new DSL might not be clear or obvious, until
substantial investment in its development (using a GPL) has
been made [9]. Mernik’s paper further tells us that in such cases,
the development of the DSL becomes a key aspect, or plays a
fundamental role in the evolution or re-engineering of (existing)
software [9]. Overall, it is worth noting that just like general
software, computer programming languages do (and need) to
evolve, in someways, just like human natural languages might.
However, for these engineered languages, this evolution might for
example be driven by progress [or lack thereof] in other [existing]
programming languages—such as when a new/newer language
offers shorthands for expressing common idioms that were
originally more verbose in some other language[4].

ii. The DSL Implementation Method
Concerning the actual implementation of a DSL, it should be noted
that the language research and engineering community does offer
some useful hints as to the general underlying principles and theory
in several works [7,9,14], and we shall here attempt to distill the
most important general aspects of these methods.

First, building upon what we have already seen in Section 2.2, the
systematic development, or rather, evolution of a new DSL will

Int J Med Net, 2024 Volume 2 | Issue 11 | 10

typically consist of the following general steps:
1. Defining the domain
2. Specifying the Requirements of the DSL
3. Designing the DSL
4. Constructing the DSL
5. Supporting the DSL—basically, constructing tools to support
the DSL
6. Applying the DSL—which is about constructing applications or
rather solutions in the domain, leveraging the DSL and the DSL’s
support tools— the DSL infrastructure, platform or ecosystem—
such as the so-called Software Operating Environment (SOE) for
the language[68].
7. Evaluating the DSL

Defining the Domain: First, we note that before a DSL can be
implemented, a domain needs to be defined for it—it is actually
helpful to do so, as we shall soon see. This process of defining
the domain isn’t just haphazard, nor is it merely a matter of
imagination, but is actually better driven by some kind of
systematic analysis. “Domain Analysis”, which is the name Mernik
gives to this process, entails conducting some sort of Knowledge
Engineering—a field he notes to be relatively new and largely
unexplored, during which process, focus is given to the systematic
capturing of knowledge about or in the domain of interest, then
to its systematic representation, and finally to the development of
some ontology representative of that domain [9].

DSL Specification: Once we have the domain defined, next we
must specify the DSL we intend to implement for it. This makes
sense, since, the implementation of a DSL—for programming in
particular, likewise relates to the implementation of software, and
as per rigors of software engineering in general, starting with a
specification is better than not[13]. For language engineering in
relation to a DSL though, we also get the recommendation to
utilize the result of the previous step, in the form of a “Feature
Model” for the domain, from which one or more DSLs can then be
developed. Such a feature model for example might be captured or
represented in the form of a concept-map or mind-map diagram,
but in Mernik’s paperwe see this depicted using a feature diagram
instead [9].

DSL Design: Once a specification for the DSL is in place, then we
can approach the design. This process of designing a DSL can be
classified using the following DSL Design Patterns;
1. Language Exploitation: In which the DSL is implemented
(partially or wholly) using an existing GPL or another DSL.
This pattern is further broken down into; Piggyback: in which an
existing language is only partially used, Specialization: in which an
existing language is merely restricted or constrained, and finally,
Extension: in which an existing language is merely extended.
2. Language Invention: This involves the design of the DSL
entirely from scratch, with no commonality between the new DSL
and any existing languages.
3. Informal Design: Which refers to cases where the DSL to
be implemented is only described or specified informally, such
as with natural languages or domain terms, but with no strict or

formal/regular structures or properties being explicitly defined.
4. Formal Design: In which case, the new DSL is explicitly, and
wholly, rigorously specified, typically using an existing syntax and
semantics definition method such as attribute grammars, re-write
rules or an abstract state machine.

In all cases, one wants to ensure that they give special treatment
to the design phase of a DSL, because this greatly enhances the
quality and effectiveness of the DSL implementation, and just
like with the design of GPLs, such an approach could also give
special attention to known GPL-design criteria such as readability,
simplicity and orthogonality among others[9][14]. Oliveira’s paper
also delves into some technologies that one might use in the DSL
design proces, and these include use of Backus-Naur Form (BNF)
or its extended variant, EBNF [7].

Constructing the DSL: The actual implementation of the DSL
then follows, and for the case of executable DSLs[9], we note that,
typically, their implementation, like the implementation of software
in general, likewise leverages or utilizes existing software tools.
For the case of DSLs, these might include use of generic, re-usable
code-generators such as traditional Lex—for building lexers/code-
syntax-readers/verifiers and Yacc—for the construction of code
parsers[14]. Interestingly, both Lex and Yacc are themselves kinds
of DSLs! However, typically, or more commonly, most DSLs are
implemented using a kind of interpreter rather than a compiler,
and so, might not need use the same language-engineering tools
as GPL implementation would call for—thus, for a DSL, one
might fore-go the need for leveraging an existing lexer generator
or parser generator such as Lex and Yacc respectively. However,
for DSLs in particular, we see several tools called out for their
implementation, based on the DSL implementation strategy,
and these we can summarize as such [7]: Translation Grammar
Tools—such as JavaCC or SableCC; Attribute Grammar Tools—
such as LISA, ANTLR and JastAdd; and for the case of DSLs
via compilers or specialized intepreters—DRACO, ASF+SDF,
Kephera, Kodiyak and InfoWiz—with the DSLs constructed using
these last methods being considered “external languages” because
they don’t depend on any pre-existing language directly. Finally, it
should be noted that any DSL can be implemented using a suitable
GPL, in which case the GPL thus used is referred to as the “base
language” for the DSL[7], and among popular base languages for
the construction of DSLs are Ruby, Python, Haskell, Java, C++ and
Boo among others. For the case of leveraging a GPL to construct
a DSL, two methods are called out—Embedding: in which case
the DSL is created without having to first create a new/custom
compiler or interpreter, since that of the base-language is used,
and then Extension: in which case the DSL is created by taking
an existing GPL’s compiler or interpreter and merely extending or
adapting it to process the DSL [7].

DSL Support Tools: After a DSL is implemented, it definitely is
supposed to be used. This for example means, someone should
be able to write new programs leveraging the DSL’s syntax, and
then be able to have this written code somehow translated into an
executable or be processed somehow to solve a practical problem.

Int J Med Net, 2024 Volume 2 | Issue 11 | 11

In this regard, merely having the DSL’s compiler or interpreter is
sometimes not enough, and so, helper tools such as an Integrated
Development Environment (IDE) for the DSL[29], similar to the
case for traditional programming, Specialized Editors, (syntax-
aware) Pretty Printers, Consistency Checkers, (code) Analyzers
and (code) Visualizers are also important[9].

Applying the DSL: Even for non-exectutable DSLs, the only
natural and straigh-forward way to evaluate and evolve the
language is via its practical application. Since we are talking about
languages for solving computational problems especially, the
meaningful way to apply them is to use them to write programs—
computer programs to be precise. However, the special case of
nonexecutable DSLs has been treated of by Mernik’s paper[9],
and we see emphasis being placed on the nature of their programs,

which, unlike the programs of executable DSLs, are classified under
the categories of “Specifications”, “Definitions” or “Descriptions”,
to differentiate them from typical executable computer programs
such as are the result of GPL and executable DSL programming.

Evaluating the DSL: Through applying the DSL, it then becomes
easy and straight-forward to evaluate the language based on
some quantitative or qualitative criteria. One might for example
start to look at things like the language’s runtime performance
(measured in speed or space/memory consumption for example),
its usability, generality, completeness, consistency, expressiveness,
abstractness, concreteness and finally its computational power
[7,29]. Mernik though, stresses that quantitative evaluation or
validation of a DSL in both general and particular cases is hard
and an open problem[9].

tions” or “Descriptions”, to differentiate them from typical executable computer
programs such as are the result of GPL and executable DSL programming.

Evaluating the DSL: Through applying the DSL, it then becomes easy
and straight-forward to evaluate the language based on some quantitative or
qualitative criteria. One might for example start to look at things like the lan-
guage’s runtime performance (measured in speed or space/memory consumption
for example), its usability, generality, completeness, consistency, expressiveness,
abstractness, concreteness and finally its computational power [7][29]. Mernik
though, stresses that quantitative evaluation or validation of a DSL in both
general and particular cases is hard and an open problem[9].

Note that by the above introduced classifications, the new TEA
TPL[27] is a formally designed executable DSL whose current
reference implementation[32] makes it a DDSL or rather a DSEL
exploiting the Python 3[69] GPL as its base language via the
specialization and extension patterns.

Figure 7: A Formal Description of the TEA TPL DSL

Finally, before leaving the matter of implementing DSLs, let us take a brief
moment to appreciate the intricacies behind manifesting an effective and prac-
tical DSL, by considering the case of the TMIL language[8].

3.1.3 Lessons about DSL Implementation from the TMIL Project

TMIL is the “Text Manipulation Imaging Language”, and was first formal-
ized/introduced in a 2007 paper by Hamburger et al [8]. This language is a
high-level DSL meant for the manipulation of text on an image as well as the
drawing of text onto images. The language is meant to simplify what one could
have done using GPL capabilities in Java or C++, concerning graphics pro-
gramming, however, it simplifies such tasks by developing a more specialized,
simpler programming interface for the task while still retaining much of the
syntactical characteristics of those GPLs.

The TMIL language is syntactically similar to Java and C++, and like them,
supports such common GPL characteristics such as support for special lexical
conventions; for example, having strict rules for the naming of identifiers, sup-
port for single-line and multi-line comments, reserved words, special characters,
support for constants and in-built operators among others[8]. Like most GPLs,
TMIL supports lexical and semantic scoping, and its scoping style is very similar
to that found in C or C++. TMIL was designed to be cross-platform, and has
been implemented for Linux, Windows and MacOS for example.

In terms of how TMIL works under-the-hood, it is worth noting that TMIL
was mostly implemented using ANTLR (Another Tool for Language Recog-
nition) [70], and that basically, TMIL source-code compiles to C++, so that
TMIL code should compile and run anywhere C++ code would [8]. Specifically,

21

Figure 7: A Formal Description of the TEA TPL DSL

Finally, before leaving the matter of implementing DSLs, let us take
a brief moment to appreciate the intricacies behind manifesting an
effective and practical DSL, by considering the case of the TMIL
language[8].

iii. Lessons about DSL Implementation from the TMIL Project
TMIL is the “Text Manipulation Imaging Language”, and was first
formalized/introduced in a 2007 paper by Hamburger et al [8].
This language is a high-level DSL meant for the manipulation of
text on an image as well as the drawing of text onto images. The
language is meant to simplify what one could have done using GPL
capabilities in Java or C++, concerning graphics programming,
however, it simplifies such tasks by developing a more specialized,
simpler programming interface for the task while still retaining
much of the syntactical characteristics of those GPLs.

The TMIL language is syntactically similar to Java and C++,
and like them, supports such common GPL characteristics such
as support for special lexical conventions; for example, having
strict rules for the naming of identifiers, support for single-line
and multi-line comments, reserved words, special characters,
support for constants and in-built operators among others[8]. Like
most GPLs, TMIL supports lexical and semantic scoping, and
its scoping style is very similar to that found in C or C++. TMIL
was designed to be cross-platform, and has been implemented for
Linux, Windows and MacOS for example.

In terms of how TMIL works under-the-hood, it is worth noting
that TMIL was mostly implemented using ANTLR (Another Tool
for Language Recognition) [70], and that basically, TMIL source-
code compiles to C++, so that TMIL code should compile and run

anywhere C++ code would [8]. Specifically, ANTLR was used to
help build the compiler components for the TMIL compiler (TMIL
Lexer, TMIL Parser and TMIL tree-walker) thus;
• TMIL Lexer: breaks TMIL source-code down into a series of
tokens for the TMIL Parser.
• TMIL Parser: checks those TMIL tokens to ensure the TMIL
syntax is obeyed and correct, then generates a TMIL AST (Abstract
Syntax Tree) based on these, for the TMIL source-code that was
provided.
• TMIL Tree-Walker: operates on the generated TMIL AST, checks
for semantic errors, then generates target C++ code.
In summary, we see that the process for processing TMIL source-
code is:
Valid TMIL Code → TMIL Compiler → C++ Code Generated →
C++
Compiler → Target Platform Executable

b. What to Consider When Implementing a TPL
In Section 2.2 we have introduced much of the essential theory
in designing a DSL, and have also given special treatment to the
design of TPLs in Section 2.3. The laws and general principles
laid out in Section 2.1 shouldn’t be taken for granted either, and
shall help guide any implementation of any kind of TPL for that
matter. It shall be found that much of what one needs to consider
before actually implementing a TPL follows directly from what
we have laid out in those earlier sections. Specifically concerning
implementation, Section 3.1.2 covers most of the ground we need
for TPL implementation, and much need not be repeated here.
However, it should be noted that for the case of TPLs, at least
based on the author’s own experience while implementing the
TPL TEA[32], the following observations could simplify a TPL

Int J Med Net, 2024 Volume 2 | Issue 11 | 12

implementor’s life further:
1. Spend more time working on, studying and understanding the
TPL’s design and specification before actually implementing the
TPL. Essentially, avoid directly jumping into the coding. Building
extensive documentation about the specification and design of
the language ahead of its implementation shall help streamline
much of the actual implementation/coding phases to follow.
Definitely, as with any software, it is wise to not fall into the trap
of over-engineering, however, as language engineering isn’t just
any kind of software engineering, clear, and careful attention to
a CleanRoom Process shall greatly contribute to the robustness,
correctness and efficiency of the language implementation.
2. Ensure to give some considerable time to trying out the TPL
conceptually— say, using pseudo-code or thought-experiments,
before actually waiting to implement the language and then test
or try it out. This, especially with some realistic problems in the
domain the language is expected to solve, so as to identify and
fix any conceptual, semantic or syntactic flaws with the planned
language or its design before much effort is poured into its actual
implementation. This phase can also readily help catch critical
omissions in the language design, as well as eliminate unnecessary
redundancies early-on. This then gives us a clean and robust
language specification and design.
3. Once the TPL is well designed—and this need not be done
all at once or in one-sitting, then look around for any existing
languages—especially those related to the planned language—
by domain, grammar or syntax, and spend some time studying
them or gleaning useful cues about how they were designed and
implemented, and what makes them successful. Then adopt some
of this knowledge for the implementation of your own TPL.
4. Decide on whether the TPL is to be an interpreted or compiled
language, as this will greatly determine how to proceed from its
design to the implementation. Initial focus should be on realizing
or manifesting a proofof-concept, a prototype of the TPL and
nothing more. For example, if the TPL is to be interpreted,
then, merely deciding on which target environment, platform or
operating system to build a proof-of-concept for, shall greatly
narrow down much of the intimidating aspects of the language
implementation—for example, it shall then be clear, what choice
of technologies to leverage to implement the language, because,
not every available language development tool might lend itself
readily for any potential target operating environment.
5. Start coding. Construct. Implement the damn language, and all
the while, occasionally return to and consult the specification and
design documents for the language, and if necessary, either evolve
them or evolve the language implementation itself.
6. Test! Don’t wait to fully implement the language before
beginning to test it. Also, where the language development tools
allow you to—important to consider this early on, ensure to
have enough insights into what is actually going on inside your
language’s run-time—the interpreter or compiler you are building
should help with this, so that it is simple to catch implementation
problems and tell where they originate from—let’s call it
language-debugging—for example, a run-time test might fail, not
because the language design or semantics are wrong, but because
the implementation has a flaw. But also, it could be that the test

itself is the problem and that time shouldn’t be wasted trying to fix
the language implementation or design without knowing clearly,
unambiguously, what each written test should produce as its result
or output with or without the actual language implementation! So,
do lots of things in the head! It also helps.
7. Iterate!

c. Leveraging Design Research in Language Engineering
When it comes to how to actually go about exploring, albeit
practically, and systematically, matters concerning the
implementation of a new programming language—GPL, DSL or
TPL doesn’t matter, there is not much in terms of a one-size-fits-
all methodology to be precise. However, basing on the field and
laboratory experience and success of the author while working
on three projects touching on programming language engineering
since 2019; first, with DNAP[68]—in which, an approach was
sought to allow non-programmers to be able to design, publish
and apply web and mobile apps leveraging a Low-orNo-Code
(LNC) paradigm, via a kind of visual programming in the Persona
IDE that under-the-hood defines “mini-programs” leveraging a
dialect based on JSON Schema, and which mini-language was
named “Cwa Script”; then while working on the Voice Operated
Support Assistant (VOSA) platforma kind of generic, re-usable
and re-configurable voice-controlled artificial personal assistant
that allows users to command/control it using voice-commands
or rather a not-so-well-defined, but practical voice-based/speech-
to-text command-andcontrol language with an interesting natural-
language-based instruction set; then while working on TEA,
the Transforming Executable Alphabet, the new programming
language meant to standardize text-processing as a first-class
paradigm in solving arbitrary problems programmatically; in each
of these language engineering projects, it has been established
that the Design Science Research (DSR) paradigm, or to be
more general, the Design Research paradigmalso brought up in
Lutalo’s VOSA thesis technical report5 serves well to systematize
research on the design, implementation and evaluation of a new
programming language [27,68,71-73].

DSR has the advantage that it doesn’t really matter what kind of
computer system is under consideration, as long as the research
project involves some sort of need to systematize a kind of
innovative endeavor involving conceptualizing, designing and
implementing some kind of information processing system, or
rather a software systemfor which, considering our interests
here, all, if not most practical computer programming languages
are [74]. The paradigm supports well, practical research of an
experimental kind in ICT and computer science generally, and
is to be considered very plausible for guiding research into the
implementation of a TPL for that matter.

i. Example Results from TEA DSR Work
Because the DSR paradigm calls for the production of useful
artefacts resulting from the undertaken research—for example,
applied to a language engineering project, this might be the tools,
example source-code, new knowledge, documentation, literature
and other kinds of technical and creative outputs resulting from

Int J Med Net, 2024 Volume 2 | Issue 11 | 13

the research work. For the case of the TEA project as an example
of how successful this paradigm can be, we can call out a few
interesting results that are noteworthy:
Thus far, some compelling results working on the TEA language
has given us include:
1. A useful programming language specification and design
example depicted in the TEA “TAZ” manuscript[27]
2. A fully functional reference implementation of a pure TPL in the
form of a working and ready to install TEA language Unix/Linux
package named tttt—currently at version 1.0.56 [32]
3. Useful documentation concerning getting started with how to
program in the TEA language—comes with the above mentioned
ttttpackage, as well as more in the language’s official living
manual[27]
4. New knowledge and ideas such as we’ve come across in this
very paper.
5. A collection of example source-code and TEA programs
included in the project’s official repository[32]

Concerning the last item on that list of results, we shall briefly look
at some interesting example programs of applying the implemented
TEA language to some basic, but important problems applying text
processing.

The first is an example for how a TEA program can be used to
transform raw text into more presentable formats such as by
presenting it drawn inside of a neat textbox, and this, on the
command-line/inside a typical Linux terminal, without using any
special graphics processing but just mere text manipulation. We
see the example source-code for this case in Listing 1, and an
example of this TEA program being applied in Figure 8.

The second example merely highlights an interactive “Hello
World” program in TEA—which, instead of merely displaying
“Hello World”, first prompts for a name from the user, then uses
it to greet them. We see the example source-code for this case in
Listing 2, and an example of this TEA program being applied in
Figure 9.

Listing 1: Basic Text Processing with Graphics in TEA

1 # Given some text , shall return a text box drawn around it

2 f!:^$:lPROCESS # don’t prompt if there ’s already some input

3 i!:Enter some text: |i:

4 l:lPROCESS

5 v:vIN

6 r*!:vIN:.:-

7 x:--|x!:--

8 v:vBTOP

9 v:vSTART:

10 v:vBLR :{|}

11 g*:{ }:vBLR:vIN:vBLR

12 v:vIN

13 g*:{_ }: vSTART:vBTOP:vIN:vBTOP

14 h!:_

15 r!:_:|

Listing 3: TEA program Implementing an ART Generator

1 i:123456789 0

2 a!:

3 r:[2357]:0 987654321

4 a!:

5 d:[].*$
6 d:^0+

7 r!:[0]:* * * * * * * * * *

8 r!:[19]:=========

9 r!:[28]:<><><><><><><><>

10 r!:[37]: ======

11 #r!:[46]:<><>*<><>

12 r!:[4]:<><>*<><>

13 r!:5:#*

14 r!:6:+ >

15 t!:

16 a!:

26

Listing 1: Basic Text Processing with Graphics in TEA

1 # Given some text , shall return a text box drawn around it

2 f!:^$:lPROCESS # don’t prompt if there ’s already some input

3 i!:Enter some text: |i:

4 l:lPROCESS

5 v:vIN

6 r*!:vIN:.:-

7 x:--|x!:--

8 v:vBTOP

9 v:vSTART:

10 v:vBLR :{|}

11 g*:{ }:vBLR:vIN:vBLR

12 v:vIN

13 g*:{_ }: vSTART:vBTOP:vIN:vBTOP

14 h!:_

15 r!:_:|

Listing 3: TEA program Implementing an ART Generator

1 i:123456789 0

2 a!:

3 r:[2357]:0 987654321

4 a!:

5 d:[].*$
6 d:^0+

7 r!:[0]:* * * * * * * * * *

8 r!:[19]:=========

9 r!:[28]:<><><><><><><><>

10 r!:[37]: ======

11 #r!:[46]:<><>*<><>

12 r!:[4]:<><>*<><>

13 r!:5:#*

14 r!:6:+ >

15 t!:

16 a!:

26

Listing 1: Basic Text Processing with Graphics in TEA

Listing 3: TEA program Implementing an ART Generator

Int J Med Net, 2024 Volume 2 | Issue 11 | 14

Figure 8: Drawing Text-Boxes on the Linux Commandline using TEA

Listing 2: An Interactive Hello World program in TEA

i :{What i s your name p l e a s e ? } | i : | x :{ Hel lo }

Figure 10: Example Random Art using TEA

27

Figure 8: Drawing Text-Boxes on the Linux Commandline using TEA

Listing 2: An Interactive Hello World program in TEA

Figure 10: Example Random Art using TEA

Figure 9: Running the Interactive TEA Hello World

Figure 8: Drawing Text-Boxes on the Linux Commandline using TEA

Listing 2: An Interactive Hello World program in TEA

i :{What i s your name p l e a s e ? } | i : | x :{ Hel lo }

Figure 10: Example Random Art using TEA

27

Figure 8: Drawing Text-Boxes on the Linux Commandline using TEA

Listing 2: An Interactive Hello World program in TEA

i :{What i s your name p l e a s e ? } | i : | x :{ Hel lo }

Figure 10: Example Random Art using TEA

27

Figure 9: Running the Interactive TEA Hello World

Figure 11: Architectural ASCII Art from the modified “rCHURCHY City SKY-
LINE Example”

The third example demonstrates how, starting with a basic Random Number
Generator (RNG) implementation in TEA—lines #1-6 in Listing 3, a simple,
but compelling dynamic art generator (in the form of ASCII art) is realized,
and which can then be used to create interesting artworks that might inspire
more complex work or which can directly be used as is. The source for this
program, taken from the official collection of examples in the command-line
TEA implementation—TTTT, the “TEA Text Transformer Terminal”[32] is
shown in Listing 3, and two examples of the kind of artworks this simple TEA
program can generate are shown in Figure 10 and Figure 11.

Finally, we also look at one example that demonstrates how systematic statis-
tical analysis might be attempted via TEA; basically, with the “WordGraph.tea”
TEA program shown in Listing Listing 4. Two example invocations of this
program via the command-line are shown in Figure 12—one visualizing mere
numbers via direct user-input, the other an alphanumeric command-line param-
eter. This basic example, simplified to merely map numbers and/or words to
their visual projections based on relative positioning in the Base-36 Symbol Set
[38], can help one appreciate how complex scientific problems might be solved,
and how such solutions could be designed using a text-processing language such
as TEA.

28

Figure 9: Running the Interactive TEA Hello World

Figure 11: Architectural ASCII Art from the modified “rCHURCHY City SKY-
LINE Example”

The third example demonstrates how, starting with a basic Random Number
Generator (RNG) implementation in TEA—lines #1-6 in Listing 3, a simple,
but compelling dynamic art generator (in the form of ASCII art) is realized,
and which can then be used to create interesting artworks that might inspire
more complex work or which can directly be used as is. The source for this
program, taken from the official collection of examples in the command-line
TEA implementation—TTTT, the “TEA Text Transformer Terminal”[32] is
shown in Listing 3, and two examples of the kind of artworks this simple TEA
program can generate are shown in Figure 10 and Figure 11.

Finally, we also look at one example that demonstrates how systematic statis-
tical analysis might be attempted via TEA; basically, with the “WordGraph.tea”
TEA program shown in Listing Listing 4. Two example invocations of this
program via the command-line are shown in Figure 12—one visualizing mere
numbers via direct user-input, the other an alphanumeric command-line param-
eter. This basic example, simplified to merely map numbers and/or words to
their visual projections based on relative positioning in the Base-36 Symbol Set
[38], can help one appreciate how complex scientific problems might be solved,
and how such solutions could be designed using a text-processing language such
as TEA.

28

Figure 11: Architectural ASCII Art from the Modified “rCHURCHY City SKYLINE Example”
The third example demonstrates how, starting with a basic Random
Number Generator (RNG) implementation in TEA—lines #1-6 in
Listing 3, a simple, but compelling dynamic art generator (in the
form of ASCII art) is realized, and which can then be used to create
interesting artworks that might inspire more complex work or
which can directly be used as is. The source for this program, taken
from the official collection of examples in the command-line TEA
implementation—TTTT, the “TEA Text Transformer Terminal” is
shown in Listing 3, and two examples of the kind of artworks this
simple TEA program can generate are shown in Figure 10 and

Figure 11 [32].

Finally, we also look at one example that demonstrates how
systematic statistical analysis might be attempted via TEA;
basically, with the “WordGraph.tea” TEA program shown in
Listing Listing 4. Two example invocations of this program
via the command-line are shown in Figure 12—one visualizing
mere numbers via direct user-input, the other an alphanumeric
command-line parameter. This basic example, simplified to merely
map numbers and/or words to their visual projections based on

Int J Med Net, 2024 Volume 2 | Issue 11 | 15

relative positioning in the Base-36 Symbol Set [38], can help one
appreciate how complex scientific problems might be solved, and

how such solutions could be designed using a text-processing
language such as TEA.

Listing 4: Interactive Word-to-Graph TEA program

#!/ usr / bin / t t t t −f c
#−−−−−−−−−−−−−−−−+
WordGraph . tea
#−−−−−−−−−−−−−−−−+
The f o l l ow i n g program
when given a number , word
or text , s h a l l p r i n t
i t s v i s u a l p r o j e c t i o n .
f ! : ˆ $: lPREPROCESS
i :{ Enter a va lue : } | i :
l : lPREPROCESS
v :vTEXT
r ! : [] ∗ : { } |#reduce spa r s ene s s
g ! : |#e l im ina t e punctuat ion
h ! : |#place each char on a l i n e
z : |#lowercase everyth ing
l : lMAP
r ! : [0] : | r ! : 1 := | r ! :2 :== | r !:3:=== | r !:4:==== | r !:5:=====
r!:6:====== | r!:7:======= | r!:8:======== | r!:9:=========
r ! : a:−−−−−−−−−+ | r ! : b:−−−−−−−−−−+ | r ! : c:−−−−−−−−−−−+
r ! : d:−−−−−−−−−−−−+ | r ! : e:−−−−−−−−−−−−−+ | r ! : f:−−−−−−−−−−−−−−+
r ! : g:−−−−−−−−−−−−−−−+ | r ! : h:−−−−−−−−−−−−−−−−+ | r ! : i:−−−−−−−−−−−−−−−−−+
r ! : j:−−−−−−−−−−−−−−−−−−+ | r ! : k:−−−−−−−−−−−−−−−−−−−+ | r ! : l:−−−−−−−−−−−−−−−−−−−−+
r ! :m:−−−−−−−−−−−−−−−−−−−−−+|r ! : n:−−−−−−−−−−−−−−−−−−−−−−+
r ! : o:−−−−−−−−−−−−−−−−−−−−−−−+|r ! : p:−−−−−−−−−−−−−−−−−−−−−−−−+
r ! : q:−−−−−−−−−−−−−−−−−−−−−−−−−+|r ! : r:−−−−−−−−−−−−−−−−−−−−−−−−−−+
r ! : s:−−−−−−−−−−−−−−−−−−−−−−−−−−−+|r ! : t:−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
r ! : u:−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+|r ! : v:−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
r ! :w:−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+|r ! : x:−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
r ! : y:−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+|r ! : z:−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
pr i n t s the t ex t as a graph

29

Figure 12: Word and Number Graphs drawn using TEA

4 Systematic Evaluation of Programming Lan-
guages

In Section 3.1.2 we have briefly looked at some concepts useful in the sys-
tematic evaluation of a TPL. That basis could serve well to bring into context
the matter of how to systematically evaluate any programming language, and
we are to build upon it in this section. Essentially, we wish to arrive at some
guiding framework for the proper, perhaps exhaustive evaluation of any pro-
gramming language, and this then can readily be used to evaluate any language
category—GPL, DSL or TPL.

For starters, consider the attempt presented in Figure 13, which we are
going to refer to as the Programming Language Evaluation (PLEf7) framework.
It is an attempt at creating an ontology with which both qualitative and quan-
titative evaluation of any programming language can be approached. It also
helps to put the already mentioned SOE evaluation framework into a general
context for language evaluation.

7The special acronym PLEf chosen so as to differentiate it from PLEF—the Programming
Language Evolution Framework first defined in Figure 6

30

Figure 12: Word and Number Graphs Drawn Using TEA

Listing 4: Interactive Word-to-Graph TEA program

Int J Med Net, 2024 Volume 2 | Issue 11 | 16

4. Systematic Evaluation of Programming Languages
In Section 3.1.2 we have briefly looked at some concepts useful
in the systematic evaluation of a TPL. That basis could serve well
to bring into context the matter of how to systematically evaluate
any programming language, and we are to build upon it in this
section. Essentially, we wish to arrive at some guiding framework
for the proper, perhaps exhaustive evaluation of any programming
language, and this then can readily be used to evaluate any
language category—GPL, DSL or TPL.

For starters, consider the attempt presented in Figure 13, which
we are going to refer to as the Programming Language Evaluation
(PLEf7) framework. It is an attempt at creating an ontology
with which both qualitative and quantitative evaluation of any
programming language can be approached. It also helps to put
the already mentioned SOE evaluation framework into a general
context for language evaluation.

Programming
Language Evaluation

Quantitative Evaluation

Performance Oriented

Space Efficiency

Run-time Memory Usage

Instruction Representation in Memory

Language Data Structure Efficiency

Minimal Language Run-time Footprint

At-Rest Memory Usage

e.g SOE Source-Code based Metrics

Time Efficiency

Performance of the Language Processor itself

Interpreter Performance

Compiler Performance

Performance of Programs written in the
Language

Computational Power

Measure of Ratio between a Language
Instruction to many Lower-Level Instructions

Usability Oriented

Responsiveness

Instruction Turn-Around-Time

Expressiveness

Measures of Language Instructions
Abstractness

Measures of Redundancy in the Language

Measures of Variability in the Language
Instruction Set

Completeness

Measures of Semantic Coverage/Generality of
Language Instructions

Qualitative Evaluation

Usability Oriented

Language vs User Domain

Feature Completeness

Generality

Abstractness

Expressiveness

Language Inter-Operability with Other
Languages/Tools

Design Oriented

Language Design Concerns

Clarity of Language Grammar Itself

Comprehensibility of Programs in the Language

Generality of Language

Consistency

Expressiveness

Language Implementation Concerns

Correctness of Language Grammar

Programs in Language Vs the Language
Grammar

Ease of Building Language Support Tools

Editors

Debuggers

Documentation Generators

Figure 13: The PLEf framework as a Concept Map

31

Figure 13: The PLEf framework as a Concept Map Much could be said about language evaluation methods using this framework
alone, however, for the sake of keeping this present paper brief, we suggest to treat of the full PLEf in a future work. The following
three sections though, touching on language evaluation ideas already existing in the literature, shall help sum-up our present discussion
concerning language evaluation.

a. DSLs vs GPLs, Humanness Vs Abstractness of Computer
Languages
For a moment, we return to the ideas introduced in Section 1.2,
and which are illustrated in Figure 1. First, notice that, because
the typical digital computer basically speaks or understands only
binary (1s & 0s), humans generally employ abstractions to express
instructions to such a computer in a human-friendly language, but
which can then be readily translated to binary for the computer to
understand and execute [7]. On the spectrum of abstraction, DSLs
are typically more abstract than GPLs for this basic reason.

Also, GPLs are tailored to be used to solve any kind of problem,
irrespective of domain thus them being “general-purpose”, while

a good DSL operates at a high abstraction level that is closer
to the human’s way of thinking about or solving problems in a
particular and/or target domain; essentially, by increasing the
distance between a human’s problem domain and a machine’s way
of solving problems [in any domain] [7].

We also know that DSLs offer substantial gains in expressiveness
and ease of use compared to GPLs in their domain [9]. Further, we
know that programs written in a DSL are generally more concise,
allow for faster development or iteration, are easier to maintain,
easier to reason about, and can typically be written well by non-
programmers (who typically are experts in the domain for which
the DSL was designed than in general programming)[14].

Int J Med Net, 2024 Volume 2 | Issue 11 | 17

However, it should be noted that where run-time performance
or efficiency is a problem or a critical matter, and a low-level
language (such as many GPLs are), isn’t able to solve it, then,
creating a DSL to improve the solution might not be the best route
to solving the performance problem [14]. Thus, we can note that
where performance is key or critical, prefer a low-level general-
purpose language to a higher-level language—especially where
several layers already exist between the underlying machine
language (which in reality is the actual problem solver) and the
programming language of choice.

b. The SOE framework & Evaluating Any Set of Programming
Languages by their Syntax Properties
Because a programming language is meant to be written so as to be
applied or executed (refer to UPLT in Section 2.1, especially the
First Law of UPLT) it should make sense to consider programming
language evaluation both from the perspective of writing programs
in it, and then exeucting programs with it— the former deals with
applying the language “at rest” (relates to the “At-Rest Memory
Usage” concept presented in the PLEf framework in Figure 13),
while the later deals with the language while in active use such as
during the running of a real program written in the language, while
it is being processed by the language’s runtime.

The idea of evaluating a language “at rest” mostly deals with the
characteristics of the language’s structure and style/syntax while
being applied to express some solution in the form of a computer
program for example. It deals with the expressions of the language
itself, and thus is a factor of the language’s syntax and grammar to
be precise. Nothing about the actual language’s implementation or
processing at this level or in this context, because such evaluations
have more to do with the actual run-time environment or platform
upon which the language’s programs are executed—makes sense,
because, even for the same language standard, for example, for the
HTMLor CSS standard, the same exact source-code when looked
at from the context of a run-time, such as when such web source-
code is rendered in different web browsers—some of which
might not fully or accurately implement the standard, it might be
found that differences exist in how fast a page is fully rendered—
something that has little to do with the syntax or properties of the
code itself, and more to do with the rendering or code-processing
engine [75,76].

This should help clarify the importance of this evaluation approach.
The SOE framework is helpful in this context because it only
focuses on metrics that measure or compare programming
languages at source/syntax level [68]. For example, it looks at
how basic/fundamental programs such as the popular “Hello
World” program would be expressed across the set of languages
under consideration, thus helps to bring out such subtleties
as unnecessary verbosity and/or overhead in expressing basic
programming idioms such as merely printing to standard output
the string “Hello World”.

The SOE also looks at other interesting aspects such as the
minimum amount of code required to prompt for and then output

a string in a given programming language—something not to be
taken lightly, because much of useful programming is underpinned
by this basic functionality.

c. The Case of Evaluating TPLs
The evaluation of TPLs should of course base upon the same
principles and ideas of language evaluation as have already been
introduced and discussed in the earlier sections of this paper (the
PLEf framework in Figure 13 should come in handy), however,
especially because TPLs are a kind of DSL focused on text
processing, special metrics and evaluation methods focused on
just text processing capabilities and approaches might help here.

From a program development context—meaning, expressing
a particular solution leveraging a particular language, we might
want to consider how much a TPL simplifies the most typical text
processing tasks—in the same vein as how the SOE treats of a
GPL’s evaluation via the analysis of general program categories
such as the Most Basic Output Program (MBOP), Minimum
Basic Input Program (MBIP), Hello World program (HW), and
more[68]. For a TPL then, we might similarly want to think of such
generic text processing program cases as:
• Most Basic String Concatenation Program (MBSCP)—a
case in which, for example, two small strings such as “Hello” and
“World” are combined into one larger string, to form “HelloWorld”.
• Most Basic String Filtering Program (MBSFP)—in which,
for example, one string, such as “Hello World” has every instance
of another string such as “o”—typically referred to as the search
pattern, used to eliminate contents from the first string—producing
“HellWrld” in this example.
• Most Basic String Quantification Program (MBSQP)—for
example, given “Hello World”, to compute and return its length,
11.

Especially by measuring the LOC metric—one of Lines of
Code(meaningful for evaluating multi-line programs) or Length
of Code(better for short, singleline or one-liner programs such
as can be easily expressed on the command-line) for each of the
above cases of special TPL programs, we might then readily arrive
at a meaningful, non-ambiguous and very telling quantitative
comparison of two or more TPLs. Definitely, and rather
interestingly, these same metrics could lend themselves readily
to the evaluation and comparison of any programming language,
GPLs especially, merely by focusing on evaluation of their text
processing capabilities, and thus, should not be dismissed when
considering arbitrary language evaluation (should make sense,
given the implications of UPLT).

Also, this fits well into the overall language evaluation ontology
already introduced in the PLEf framework. The DNAP paper [68]
should help with how to go about building a concrete language
evaluation case for any TPLs leveraging the above suggested
general text processing scenarios. For example, building on this
idea, we can attempt to compare TPLs such as TEA, Sed, Awk and
Python on the MBSQP case, and several such evaluations would
help form an example of Text Processing Language Evaluation

Int J Med Net, 2024 Volume 2 | Issue 11 | 18

Framework (another TPLEF!) applications, stuff we aren’t going to
delve into here, but which we shall want to give detailed treatment
of in a future work.

5. Epilogue
Having come to the conclusion that all programming is text
processing—see Section 2.1, it also implies that all programming
languages, GPL, DSL or not, are basically TPLs—refer to
Theorem 2. For example, for a GPL, it might be argued that their
ability to process numbers, boolean logic or boolean expressions,
simple and complex data structures, objects and arbitrary types,
is all merely a result of processing mere text with but higher-
than-mere-string abstractions imposed on it. These ideas are well
illustrated in the PLEF— refer to Figure 6, which is underpinned
by the fundamental research we have conducted while reviewing
the literature on language engineering as well as ground-breaking
work on the TEA computer programming language. The most
important results, summed up in three laws which together
form the basis of a unified theory we have called the “Unifying
Programming Language Theory”, UPLT, is expected to guide
much of all future work in this field of language engineering.
Further, these observations and results should further deepen the
argument that research into text processing and TPLs in general,
lies at the core of all useful research and development into problem
solving using computation and essentially computer programming
languages.

This paper has brought together many important ideas concerning
the design, implementation and evaluation of programming
languages, with special focus on DSLs and TPLs. Also, we
have looked at the important characteristics that distinguish any
programming language from another, based on its abstraction
level and proximity to the human problem domain it is meant to
provide solutions for—refer to Sections 1.2 and 4.1. We have
seen that, at the lowest level, machine languages operate closest
to the physical and logical processors that operationalize the
[physical] machines that make computation possible, while, on
the highest-end, domain specific languages serve to abstract away
most of the [low and higher-level] complexity and intricacies of a
computing machine—abstract or not, and instead focus more on
simplifying problem solving in a language and at a level closest
to the human domain for which practical solutions are required.
DSLs in particular, fill an important category of programming
languages, and more importantly, we saw that TPLs, which might
sometimes be realized using just a GPL, are a class of DSLs that
warrant special treatment and attention given their relevance
even in the case of realizing any useful GPL8. As most of the
problem solving possible with computers starts with some sort
of reading and writing of data—which, for all practical cases, is
typically merely some kind of text, we argue that research into,
and development of better TPLs can help support and drive
better innovations across the entire landscape of computing and
software engineering—thus the PLEF. We looked at the theory
behind the design, implementation and evaluation of DSLs, but
also of TPLs as a special case. The Transforming Executable
Alphabet (TEA) programming language, which is still new, and

which especially was designed by the author as a text processing
language meant to aid in general problem solving, does warrant
some special attention, and working on this language has helped
arrive at many of the interesting results presented in this paper,
including the useful ideas concerning the design of any TPL (see
Section 3.2), and a framework for the systematic evaluation of
any programming language—see Section 4. More work remains
to be done in relation to many of these newly introduced ideas—
especially concerning the frameworks that should guide much
of future language engineering. However, with regards to TEA,
which first inspired this work, future research could dive deeper
into the distinction between TPLs and GPLs given TPLs like TEA
have been found to readily solve some problems traditionally only
best left for a typical GPL, but also, research into how to design
and implement better TPLs or how to implement a GPL based
on a pure TPL could make much sense for the language research
community and industry at large.

Acknowledgements
I would like to thank my children, Karungi S. Marlyn, Theo R.
Willrich and Arora J.J. Muntu, who, despite their tender age, have
psychologically supported me so much, so I could stay focused and
push-on with active research at Nuchwezi ICT Research Lab—
from where much of this work has been conducted since 2014.
I can’t take for granted those many moments they would share
with me a smile, call me “daddy” and not bother me concerning
why I chose to turn their home into a research facility. I trust, and
promise, they shall get back their home!

Data Availability Statements
The data that support the findings of this study are available from the
corresponding author, Joseph W. Lutalo, upon reasonable request.
Otherwise, the primary data and materials used in this research
are openly available in theGitHub repository at https://github.com/
mcnemesis/cli_tttt, as well as specifics about work on the TEA
language in the TAZ Manual [27]. The repository contains much of
the essential data related to the authors present research, including
source code, documentation, and supplementary materials.

Code Availability
The source code—especially relating to the author’s work on
the TEA programming language, the earlier DNAP [68] data-
engineering technical platform as well as the VOSAartificial
assistant platform is available from the corresponding author by
request [27,32,73].

Conflict of Interest
The author declares that they have no conflict of interest.

References
1. Kain, R. (1996, January). Advanced computer architecture: a

system design approach. In Proceedings of the 1996 workshop
on Computer architecture education (pp. 12-es).

2. Field, D. M. (2007). The world's greatest architecture: Past
and present. Chartwell.

3. Nawangwe, B. (2010). The evolution of the Kibuga into

https://dl.acm.org/doi/abs/10.1145/1275152.1275164
https://dl.acm.org/doi/abs/10.1145/1275152.1275164
https://dl.acm.org/doi/abs/10.1145/1275152.1275164
https://www.researchgate.net/profile/Barnabas-Nawangwe/publication/238798307_The_Evolution_of_the_Kibuga_into_Kampala%27s_City_Centre_-_Analysis_of_the_transformation_of_an_African_city/links/53e336940cf2b9d0d83308dd/The-Evolution-of-the-Kibuga-into-Kampalas-City-Centre-Analysis-of-the-transformation-of-an-African-city.pdf

Int J Med Net, 2024 Volume 2 | Issue 11 | 19

Kampala's city centre-analysis of the transformation of an
African city.

4. Gordon, C. S. (2024, October). The Linguistics of
Programming. In Proceedings of the 2024 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (pp. 162-182).

5. Landauer, R. (1987). Computation: A fundamental physical
view. PhysicaScripta, 35(1), 88.

6. Erwig, M., &Walkingshaw, E. (2011, July). Semantics first!
Rethinking the language design process. In International
Conference on Software Language Engineering (pp. 243-
262). Berlin, Heidelberg: Springer Berlin Heidelberg.

7. Oliveira, N., Pereira, M. J., Henriques, P. R., & Cruz, D.
(2009). Domain specific languages: A theoretical survey.
INForum'09-Simpósio de Informática.

8. Hamburger, E., Merler, M., Wei, J., & Yang, L. (2007). Text
Manipulation Imaging Language.

9. Mernik, M. (2017, January). Domain-specific languages: A
systematic mapping study. In International Conference on
Current Trends in Theory and Practice of Informatics (pp.
464-472). Cham: Springer International Publishing.

10. Howard, G. D. (2021). Github copilot: Copyright, fair use,
creativity, transformativity, and algorithms.

11. Stratton, J. (2024). An Introduction to Microsoft Copilot. In
Copilot for Microsoft 365: Harness the Power of Generative
AI in the Microsoft Apps You Use Every Day (pp. 19-35).
Berkeley, CA: Apress.

12. Idrisov, B., &Schlippe, T. (2024). Program Code Generation
with Generative AIs. Algorithms, 17(2), 62.

13. Ian Sommerville. 1.2 The software process, page 77. Addison-
Wesley, 5 edition, 1995.

14. Hudak, P. (1997). Domain-specific languages. Handbook of
programming languages, 3(39-60), 21.

15. Van Rossum, G., Warsaw, B., & Coghlan, N. (2001). PEP 8–
style guide for python code. Python. org, 1565, 28.

16. World Wide Web Consortium (W3C). Css: Cascading style
sheets, 2024. Accessed: September 21, 2024.

17. Graphviz Development Team. Dot language - graphviz, 2024.
Accessed: September 21, 2024.

18. Urban, M. (1986). An introduction to LATEX. TEX users
group.

19. Lovrencic, A., &Konecki, M. 1957-2007: 50 Years of Higher
Order Programming Languages.

20. Weyl, E. (2016). Transitions and animations in CSS: adding
motion with CSS. " O'Reilly Media, Inc.".

21. Dictionary of computing. Oxford University Press, 4 edition,
1996.

22. Wienold, G. (1981). Some basic aspects of text processing.
Poetics Today, 2(4), 97-109.

23. Mertz, D. (2003). Text processing in Python. Addison-Wesley
Professional.

24. Levine, J. (2009). Flex & Bison: Text Processing Tools. "
O'Reilly Media, Inc."

25. Navarro, G., & Mariano, C. (2005). String Processing and
Information Retrieval.

26. Tucker, A. B. (1979). Text processing: algorithms, languages,

and applications.
27. Joseph WillrichLutalo. TEA TAZ -Transforming Executable

Alphabet A: to Z: COMMAND SPACE SPECIFICATION. 8
2024.

28. Siino, M., Tinnirello, I., & La Cascia, M. (2024). Is text
preprocessing still worth the time? A comparative survey
on the influence of popular preprocessing methods on
Transformers and traditional classifiers. Information Systems,
121, 102342.

29. Yessenov, K., Tulsiani, S., Menon, A., Miller, R. C., Gulwani,
S., Lampson, B., &Kalai, A. (2013, October). A colorful
approach to text processing by example. In Proceedings of the
26th annual ACM symposium on User interface software and
technology (pp. 495-504).

30. Miller, R. C., & Myers, B. A. (1999, June). Lightweight
Structured Text Processing. In USENIX Annual Technical
Conference, General Track (pp. 131-144).

31. Ellen Siever, Aaron Weber, Stephen Figgins, Robert Love,
and Arnold Robbins. Linux in a Nutshell. “O’Reilly Media,
Inc.”, 2005.

32. mcnemesis. cli tttt: Command line interface for tttt, 2024.
Accessed: 202409-21.

33. TutorialsPoint. C standard library - <string.h>, 2024.
Accessed: September 21, 2024.

34. Python Software Foundation. Python standard library - string,
2024. Accessed: September 21, 2024.

35. John M. Zelle. Python Programming: An Introduction to
Computer Science. Franklin, Beedle & Associates Inc., 2nd
edition, 2010.

36. Oracle Corporation. Java platform se 8 - string class, 2024.
Accessed: September 21, 2024.

37. Scott Baker. String::util - string processing utility functions,
2024. Accessed: September 21, 2024.

38. Joseph WillrichLutalo. Numbers from arbitrary text: Mapping
human readable text to numbers in base-36. 2024.

39. Joseph Dan. Kabbalah: A Very Short Introduction. Oxford
University Press, 2007.

40. Lutalo, J. W. (2023). Explorations in Probabilistic Metaphysics.
41. Wikipedia contributors. Branches of science, 2024. Accessed:

2024-09-25.
42. Wikipedia contributors. Computational science, 2024.

Accessed: 2024-0925.
43. Tiwary, B. K. (2022). Bioinformatics and Computational

Biology. Springer Singapore.
44. MacBeath, J. R., Harvey, S. S., &Oldroyd, N. J. (2001).

Automated fluorescent DNA sequencing on the ABI PRISM
377. DNA sequencing protocols, 119-152.

45. Kugonza, D. R., Kiwuwa, G. H., Mpairwe, D., Jianlin, H.,
Nabasirye, M., Okeyo, A. M., &Hanotte, O. (2012). Accuracy
of pastoralists’ memory‐based kinship assignment of Ankole
cattle: a microsatellite DNA analysis. Journal of Animal
Breeding and Genetics, 129(1), 30-40.

46. Sathyabama Institute of Science and Technology. Course
material: Sbb1609, 2024. Accessed: 2024-09-25.

47. Object Management Group (OMG). Unified modeling
language (uml) specification version 2.5.1, 2024. Accessed:

https://www.researchgate.net/profile/Barnabas-Nawangwe/publication/238798307_The_Evolution_of_the_Kibuga_into_Kampala%27s_City_Centre_-_Analysis_of_the_transformation_of_an_African_city/links/53e336940cf2b9d0d83308dd/The-Evolution-of-the-Kibuga-into-Kampalas-City-Centre-Analysis-of-the-transformation-of-an-African-city.pdf
https://www.researchgate.net/profile/Barnabas-Nawangwe/publication/238798307_The_Evolution_of_the_Kibuga_into_Kampala%27s_City_Centre_-_Analysis_of_the_transformation_of_an_African_city/links/53e336940cf2b9d0d83308dd/The-Evolution-of-the-Kibuga-into-Kampalas-City-Centre-Analysis-of-the-transformation-of-an-African-city.pdf
https://dl.acm.org/doi/abs/10.1145/3689492.3689806
https://dl.acm.org/doi/abs/10.1145/3689492.3689806
https://dl.acm.org/doi/abs/10.1145/3689492.3689806
https://dl.acm.org/doi/abs/10.1145/3689492.3689806
https://iopscience.iop.org/article/10.1088/0031-8949/35/1/021/meta
https://iopscience.iop.org/article/10.1088/0031-8949/35/1/021/meta
https://link.springer.com/chapter/10.1007/978-3-642-28830-2_14
https://link.springer.com/chapter/10.1007/978-3-642-28830-2_14
https://link.springer.com/chapter/10.1007/978-3-642-28830-2_14
https://link.springer.com/chapter/10.1007/978-3-642-28830-2_14
https://bibliotecadigital.ipb.pt/handle/10198/1192
https://bibliotecadigital.ipb.pt/handle/10198/1192
https://bibliotecadigital.ipb.pt/handle/10198/1192
http://web4.cs.columbia.edu/~sedwards/classes/2007/w4115-fall/reports/TMIL.pdf
http://web4.cs.columbia.edu/~sedwards/classes/2007/w4115-fall/reports/TMIL.pdf
https://link.springer.com/chapter/10.1007/978-3-319-51963-0_36
https://link.springer.com/chapter/10.1007/978-3-319-51963-0_36
https://link.springer.com/chapter/10.1007/978-3-319-51963-0_36
https://link.springer.com/chapter/10.1007/978-3-319-51963-0_36
https://gavinhoward.com/uploads/copilot.pdf
https://gavinhoward.com/uploads/copilot.pdf
https://link.springer.com/chapter/10.1007/979-8-8688-0447-2_2
https://link.springer.com/chapter/10.1007/979-8-8688-0447-2_2
https://link.springer.com/chapter/10.1007/979-8-8688-0447-2_2
https://link.springer.com/chapter/10.1007/979-8-8688-0447-2_2
https://www.mdpi.com/1999-4893/17/2/62
https://www.mdpi.com/1999-4893/17/2/62
https://ncatlab.org/nlab/files/Hudak-DSLs.pdf
https://ncatlab.org/nlab/files/Hudak-DSLs.pdf
https://ncatlab.org/nlab/files/Hudak-DSLs.pdf
https://ncatlab.org/nlab/files/Hudak-DSLs.pdf
http://cnl.sogang.ac.kr/cnlab/lectures/programming/python/PEP8_Style_Guide.pdf
http://cnl.sogang.ac.kr/cnlab/lectures/programming/python/PEP8_Style_Guide.pdf
https://www.tug.org/texniques/tn09/intro.pdf
https://www.tug.org/texniques/tn09/intro.pdf
https://www.ceeol.com/search/article-detail?id=639037
https://www.ceeol.com/search/article-detail?id=639037
https://books.google.com/books?hl=en&lr=&id=r5T4CwAAQBAJ&oi=fnd&pg=PR2&dq=20.%09Estelle+Weyl.+Transitions+and+animations+in+CSS:+adding+motion+with+CSS.+%E2%80%9CO%E2%80%99Reilly+Media,+Inc.%E2%80%9D,+2016.&ots=C-9UPp1zWM&sig=nyesiXOc33I0Yyhma88dvucubwo
https://books.google.com/books?hl=en&lr=&id=r5T4CwAAQBAJ&oi=fnd&pg=PR2&dq=20.%09Estelle+Weyl.+Transitions+and+animations+in+CSS:+adding+motion+with+CSS.+%E2%80%9CO%E2%80%99Reilly+Media,+Inc.%E2%80%9D,+2016.&ots=C-9UPp1zWM&sig=nyesiXOc33I0Yyhma88dvucubwo
https://www.jstor.org/stable/1772489
https://www.jstor.org/stable/1772489
https://books.google.com/books?hl=en&lr=&id=GxKWdn7u4w8C&oi=fnd&pg=PA1&dq=23.%09David+Mertz.+Text+processing+in+Python.+Addison-Wesley+Professional,+2003.&ots=Mbu93RyxqX&sig=iLZ8LcnBE90dTL6FT3w9NEf6uWw
https://books.google.com/books?hl=en&lr=&id=GxKWdn7u4w8C&oi=fnd&pg=PA1&dq=23.%09David+Mertz.+Text+processing+in+Python.+Addison-Wesley+Professional,+2003.&ots=Mbu93RyxqX&sig=iLZ8LcnBE90dTL6FT3w9NEf6uWw
https://books.google.com/books?hl=en&lr=&id=nYUkAAAAQBAJ&oi=fnd&pg=PR3&dq=24.%09John+Levine.+Flex+%26+Bison:+Text+Processing+Tools.+%E2%80%9CO%E2%80%99Reilly+Media,+Inc.%E2%80%9D,+2009.&ots=VY5Bjb1Caq&sig=6rDZdao1zsCrYr2u901pmaFQWqI
https://books.google.com/books?hl=en&lr=&id=nYUkAAAAQBAJ&oi=fnd&pg=PR3&dq=24.%09John+Levine.+Flex+%26+Bison:+Text+Processing+Tools.+%E2%80%9CO%E2%80%99Reilly+Media,+Inc.%E2%80%9D,+2009.&ots=VY5Bjb1Caq&sig=6rDZdao1zsCrYr2u901pmaFQWqI
https://link.springer.com/content/pdf/10.1007/11575832.pdf
https://link.springer.com/content/pdf/10.1007/11575832.pdf
https://cir.nii.ac.jp/crid/1130000794652660480
https://cir.nii.ac.jp/crid/1130000794652660480
https://www.sciencedirect.com/science/article/pii/S0306437923001783
https://www.sciencedirect.com/science/article/pii/S0306437923001783
https://www.sciencedirect.com/science/article/pii/S0306437923001783
https://www.sciencedirect.com/science/article/pii/S0306437923001783
https://www.sciencedirect.com/science/article/pii/S0306437923001783
https://www.sciencedirect.com/science/article/pii/S0306437923001783
https://www.sciencedirect.com/science/article/pii/S0306437923001783
https://www.sciencedirect.com/science/article/pii/S0306437923001783
https://dl.acm.org/doi/abs/10.1145/2501988.2502040
https://dl.acm.org/doi/abs/10.1145/2501988.2502040
https://dl.acm.org/doi/abs/10.1145/2501988.2502040
https://dl.acm.org/doi/abs/10.1145/2501988.2502040
https://dl.acm.org/doi/abs/10.1145/2501988.2502040
https://www.usenix.org/event/usenix01/cfp/miller/miller.pdf
https://www.usenix.org/event/usenix01/cfp/miller/miller.pdf
https://www.usenix.org/event/usenix01/cfp/miller/miller.pdf
https://www.academia.edu/download/101096894/Probabilistic_Metaphysics_2023.pdf
https://link.springer.com/content/pdf/10.1007/978-981-16-4241-8.pdf
https://link.springer.com/content/pdf/10.1007/978-981-16-4241-8.pdf
https://link.springer.com/protocol/10.1385/1-59259-113-2:119
https://link.springer.com/protocol/10.1385/1-59259-113-2:119
https://link.springer.com/protocol/10.1385/1-59259-113-2:119
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0388.2011.00937.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0388.2011.00937.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0388.2011.00937.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0388.2011.00937.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0388.2011.00937.x

Int J Med Net, 2024 Volume 2 | Issue 11 | 20

Copyright: ©2024 Joseph WillrichLutalo, et al. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original author and source are credited.

https://opastpublishers.com/

September 21, 2024.
48. Eric Schmidt and Mike Lesk. Lex - a lexical analyzer

generator, 2024. Accessed: September 21, 2024.
49. Stephen C. Johnson. Yacc - yet another compiler compiler,

2024. Accessed: September 21, 2024.
50. Richard M. Stallman, Roland McGrath, and Paul D. Smith.

GNU Make: A Program for Directing Recompilation. Free
Software Foundation, 4.3 edition, 2021. Accessed: 2024-09-
25.

51. John Backus, Peter Naur, et al. Report on the Algorithmic
Language ALGOL 60. Springer, 1960. Introduced the BNF
notation.

52. Alfred, V., & Monica, S. (1986). Aho, Ravi Sethi, Jeffrey
D. Ullman, Compilers: principles, techniques, and tools,
Addison-Wesley Longman Publishing Co., Inc.

53. ISO/IEC. Sql: Structured query language, 2024. Accessed:
September 21, 2024.

54. Oren Ben-Kiki, Clark Evans, and Ingy dt Net. Yamlain’t
markup language (yaml) version 1.2, 2024. Accessed:
September 21, 2024.

55. Microsoft. F# language reference, 2024. Accessed: September
21, 2024.

56. Benjamin Muschko. Gradle in Action. Manning Publications,
2014.

57. Champeau, C., Koenig, D., D'Arcy, H., & King, P. (2015).
Groovy in Action.

58. Akhin, M., &Belyaev, M. (2021). Kotlin language
specification. Kotlin Language Specification.

59. Sahoo, P., Pujar, S., Nalawade, G., Genhardt, R., Mandel, L.,
& Buratti, L. (2024, October). Ansible Lightspeed: A Code
Generation Service for IT Automation. In Proceedings of
the 39th IEEE/ACM International Conference on Automated
Software Engineering (pp. 2148-2158).

60. Reddit contributors. Learnpython: Discussion on python
programming, 2024. Accessed: 2024-09-25.

61. Salton, G. (1989). Automatic text processing: The
transformation, analysis, and retrieval of. Reading: Addison-
Wesley, 169.

62. Sundaram, S., & Narayanan, S. S. (2003, September). An
empirical text transformation method for spontaneous speech
synthesizers. In INTERSPEECH (pp. 1221-1224).

63. Kathuria, A., Gupta, A., & Singla, R. K. (2021). A review
of tools and techniques for preprocessing of textual data.
Computational Methods and Data Engineering: Proceedings
of ICMDE 2020, Volume 1, 407-422.

64. Robbins, A. (2002). Sed and awk Pocket Reference: Text
Processing with Regular Expressions. " O'Reilly Media, Inc.".

65. Christiansen, T., Wall, L., &Orwant, J. (2012). Programming
Perl: Unmatched power for text processing and scripting. "
O'Reilly Media, Inc.".

66. Joseph WillrichLutalo. Combined Latest Resume — JWL. 9
2024.

67. Nuchwezi. Nuchwezi: Exploring the intersection of
technology and society, 2024.

68. Joseph WillrichLutalo, Odongo Steven Eyobu, and Benjamin
Kanagwa. Dnap: Dynamic nuchwezi architecture platform-a
new software extension and construction technology. 2020.

69. Team, P. C. (2019). Python: A dynamic, open source
programming language, version 2.7. 17. Python Software
Foundation.

70. Parr, T. (2013). The definitive ANTLR 4 reference.
71. Lutalo, J. W., &Oyana, T. (2024). VOSA: A Reusable and

Reconfigurable Voice Operated Support Assistant Chatbot
Platform. Available at SSRN 4810799.

72. Johannesson, P., &Perjons, E. (2014). An introduction to
design science (Vol. 10, pp. 978-3). Cham: Springer.

73. Lutalo, J. W., &Oyana, T. (2024). VOSA: A Reusable and
Reconfigurable Voice Operated Support Assistant Chatbot
Platform. Available at SSRN 4810799.

74. Hevner, A., & Chatterjee, S. (2010). Design research in
information systems: theory and practice (Vol. 22). Springer
Science & Business Media.

75. Html: Hypertext markup language - the official standard,
2024. Accessed: 2024-09-25.

76. Cascading style sheets (css) - the official standard, 2024.
Accessed: 202409-25.

https://www.pressreader.com/books/b/groovy-in-action-23585
https://www.pressreader.com/books/b/groovy-in-action-23585
https://kotlinlang.org/spec/pdf/kotlin-spec.pdf
https://kotlinlang.org/spec/pdf/kotlin-spec.pdf
https://dl.acm.org/doi/abs/10.1145/3691620.3695277
https://dl.acm.org/doi/abs/10.1145/3691620.3695277
https://dl.acm.org/doi/abs/10.1145/3691620.3695277
https://dl.acm.org/doi/abs/10.1145/3691620.3695277
https://dl.acm.org/doi/abs/10.1145/3691620.3695277
http://www.iro.umontreal.ca/~nie/IFT6255/Introduction.pdf
http://www.iro.umontreal.ca/~nie/IFT6255/Introduction.pdf
http://www.iro.umontreal.ca/~nie/IFT6255/Introduction.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=48c8c0709308721696900e8b92fc740f4c324f2b
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=48c8c0709308721696900e8b92fc740f4c324f2b
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=48c8c0709308721696900e8b92fc740f4c324f2b
https://link.springer.com/chapter/10.1007/978-981-15-6876-3_31
https://link.springer.com/chapter/10.1007/978-981-15-6876-3_31
https://link.springer.com/chapter/10.1007/978-981-15-6876-3_31
https://link.springer.com/chapter/10.1007/978-981-15-6876-3_31
https://books.google.com/books?hl=en&lr=&id=1Jq1jhZxaHMC&oi=fnd&pg=PR5&dq=64.%09Arnold+Robbins.+Sed+and+awk+Pocket+Reference:+Text+Processing+with+Regular+Expressions.+%E2%80%9CO%E2%80%99Reilly+Media,+Inc.%E2%80%9D,+2002.&ots=hZkGIAhqCX&sig=1cNWh9cm4lkezpdLQFaDpW4yspk
https://books.google.com/books?hl=en&lr=&id=1Jq1jhZxaHMC&oi=fnd&pg=PR5&dq=64.%09Arnold+Robbins.+Sed+and+awk+Pocket+Reference:+Text+Processing+with+Regular+Expressions.+%E2%80%9CO%E2%80%99Reilly+Media,+Inc.%E2%80%9D,+2002.&ots=hZkGIAhqCX&sig=1cNWh9cm4lkezpdLQFaDpW4yspk
https://books.google.com/books?hl=en&lr=&id=gXrwAAAAQBAJ&oi=fnd&pg=PR3&dq=65.%09Tom+Christiansen,+Larry+Wall,+Jon+Orwant,+et+al.+Programming+Perl:+Unmatched+power+for+text+processing+and+scripting.+%E2%80%9CO%E2%80%99Reilly+Media,+Inc.%E2%80%9D,+2012.&ots=Bj-jYHzb9s&sig=1FJTtmWAqkJ3msj-1tM57Z_knhg
https://books.google.com/books?hl=en&lr=&id=gXrwAAAAQBAJ&oi=fnd&pg=PR3&dq=65.%09Tom+Christiansen,+Larry+Wall,+Jon+Orwant,+et+al.+Programming+Perl:+Unmatched+power+for+text+processing+and+scripting.+%E2%80%9CO%E2%80%99Reilly+Media,+Inc.%E2%80%9D,+2012.&ots=Bj-jYHzb9s&sig=1FJTtmWAqkJ3msj-1tM57Z_knhg
https://books.google.com/books?hl=en&lr=&id=gXrwAAAAQBAJ&oi=fnd&pg=PR3&dq=65.%09Tom+Christiansen,+Larry+Wall,+Jon+Orwant,+et+al.+Programming+Perl:+Unmatched+power+for+text+processing+and+scripting.+%E2%80%9CO%E2%80%99Reilly+Media,+Inc.%E2%80%9D,+2012.&ots=Bj-jYHzb9s&sig=1FJTtmWAqkJ3msj-1tM57Z_knhg
https://www.torrossa.com/gs/resourceProxy?an=5241753&publisher=FZP531
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4810799
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4810799
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4810799
https://link.springer.com/book/10.1007/978-3-319-10632-8
https://link.springer.com/book/10.1007/978-3-319-10632-8
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4810799
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4810799
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4810799
https://books.google.com/books?hl=en&lr=&id=89w-scN7_8MC&oi=fnd&pg=PR6&dq=74.%09Alan+Hevner,+Samir+Chatterjee,+and+Juhani+Iivari.+Twelve+theses+on+design+science+research+in+information+systems.+Design+research+in+information+systems:+Theory+and+practice,+pages+43%E2%80%9362,+2010.&ots=-v0PlmGwu4&sig=_EM4TSaeWtXQ8zxS0IX50F06H3s
https://books.google.com/books?hl=en&lr=&id=89w-scN7_8MC&oi=fnd&pg=PR6&dq=74.%09Alan+Hevner,+Samir+Chatterjee,+and+Juhani+Iivari.+Twelve+theses+on+design+science+research+in+information+systems.+Design+research+in+information+systems:+Theory+and+practice,+pages+43%E2%80%9362,+2010.&ots=-v0PlmGwu4&sig=_EM4TSaeWtXQ8zxS0IX50F06H3s
https://books.google.com/books?hl=en&lr=&id=89w-scN7_8MC&oi=fnd&pg=PR6&dq=74.%09Alan+Hevner,+Samir+Chatterjee,+and+Juhani+Iivari.+Twelve+theses+on+design+science+research+in+information+systems.+Design+research+in+information+systems:+Theory+and+practice,+pages+43%E2%80%9362,+2010.&ots=-v0PlmGwu4&sig=_EM4TSaeWtXQ8zxS0IX50F06H3s

