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Abstract
Intelligent and Smart aquaculture is nowadays one of the most important latest development trends in the field of the 
aquaculture industry to overcome the problems of the farmers due to water quality monitoring, food feeding, temperature 
imbalance, and recycling of water. Smart water quality prediction in the real-time environment using intelligent machine 
learning models and IoT sensors establishes the basis for the evaluation, planning, and intelligent regulation of the 
aquaculture environment. The purpose of this study is to propose an intelligent Machine learning and IoT-based Biofloc 
system that enhances the efficiency, production, water recycling system, and automatic food feeding system. This paper 
proposed a system that collects process data from sensors, stores data in the cloud, and analyses it using different latest 
machine learning models such as a Decision tree classification model, and Random Forest Model to predict the water quality 
and provides real-time monitoring through an android app. The article presented a system that collects data using sensors, 
analyzes them using a machine learning model, generates decisions with the help of Artificial Intelligence (AI), and sends 
notifications to the user. The proposed linear regression, Random Forest, and other ML models have been implemented and 
tested to validate and achieve a satisfactory result. A performance comparative analysis of the different ML algorithms has 
been conducted based on a few metrics such as accuracy, recall, precision, and F1-score. Random Forest Classifier has 
surpassed all the other models in terms of accuracy, recall, precision, and F1 score. Random Forest Classifier has exhibited 
an accuracy of 73.76%, recall, precision, and F1-score of 90%, 75%, and 82% respectively.
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1. Introduction
Nowadays the quality of water is one of the major problems in 
the world as it is getting contaminated due to human activities. 
Quality of water and cultivating freshwater under controlled 
conditions are very important for the effective and efficient 
farming of aquatic organisms such as fish in the field of 
Aquaculture [1,2]. With the advanced technological development 
of the Internet of Things (IoT), big data, and artificial intelligence 
(AI), aquaculture is progressively becoming more intensive, 
precise, and intelligent. In the field of high-density intensive 
aquaculture, continuous monitoring and predicting water quality 
trends (that is, forecasting the trends of water quality parameters 
such as dissolved oxygen, pH, temperature, and turbidity) in 
real-time is of great significance for averting the water quality 
from deteriorating and for avoiding the outbreak of disease.

An intelligent IoT based Aquaculture system can help the 
farmers by measuring the water parameters continuously using 

modern IoT sensors in order to monitor and maintain the quality 
of water, Hence, measuring all the water parameters for the bio 
floc aquaculture and also a water quality prediction model for 
the dynamic changes in water parameters are essential [3]. The 
IoT sensors measure and collect water parameters accurately 
and transmit them to the base station host computer. Remote 
monitoring of fish farming is possible based on the sensor data. 
Then collected data sets are used by farm managers for decision-
making purposes.

The article presented a system that collects data using sensors 
and analyzes them using different latest machine learning 
models like Decision trees, Random Forest, Logistic Regression, 
and Support Vector Machines to predict the water quality, and 
generate decisions with the help of Artificial Intelligence (AI), 
and sends notifications to the user when the predicted water 
quality appears to exceed the critical conditions. It also provides 
real-time monitoring through an Android app from remote mode. 
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Thus, it will be easier to monitor the water quality and maintain 
the ecology in biofloc aquaculture.

This article focuses on the importance of the continuous 
collection of water parameters data from the sensors and also 
the prediction of water quality using the latest different Machine 
learning algorithms like Logistic Regression, Random Forest, 
Support Vector Machine, Decision Tree, K-nearest Neighbour, 
XGBoost, Gradient Boosting, and Naive Bayes.
 
These Machine learning models are implemented and tested 
to validate and achieve a satisfactory result of water quality 
prediction in terms of different attributes like pH, hardness, 
Solids, Chloramines, Sulfate, Conductivity, organic carbon, 
trihalomethanes, Turbidity, and portability.

This paper also focuses on the importance of water quality 
suitable for aquaculture. It helps aqua farmers to produce brilliant 
fish, which in turn helps the economy of the agricultural sector. 
Machine learning model helps to enhance better, more accurate, 
and faster forecasts of water quality based on accumulated data.

2. Related Work
A lot of research work has been done in the field of Artificial 
Intelligence (AI), Machine Learning (ML), and IoT-based Smart 
Water Quality Prediction in the field of Aquaculture.

A. A. Nayan et al. have worked on River water quality for 
agriculture and fishing applications and identified fish diseases 
due to the changes in water quality using Machine learning 
[4,5]. He measured the water quality in terms of pH, DO, BOD, 
COD, TSS, TDS, EC, PO43-, NO3-N, and NH3-N and predicted 
the output using a boosting technique. However, he has not 
suggested any intelligent solutions for small water resources. 
Juntao Liu et al worked on an accurate and automated system for 
water quality prediction using the Simple Recurrent Unit (SRU) 
[6]. It mainly concentrates on predicting water quality in terms 
of pH and temperature. Finally, the SRU model is presented and 
it is compared with the RNN model which proves that SRU has 
high accuracy.

A smooth Support Vector Machine (SSVM) based prediction 
model was proposed by Wijayanti Nurul Khotimah to predict the 
quality of water [7]. SSVM is proved to be an effective model 
for the prediction of water quality with a 0.0275 RMSE value.

J. Wang et al. investigate the characteristics of strong interactions 
with the correction of water quality parameter information 
and the disappearance of gradient and gradient Kiranbabu T 
S, ManojChalla 323 explosions caused by data training of the 
traditional RNN network model, etc [8]. The structure is shown 
on this page. Dong Yao, Lei Cheng, QiuXuan Wu, Gong Zhang, 
Bei Wu, and YuQing He investigate how to analyze and predict 
the quality of fishing using an electrochemical sensor array such 
as melted oxygen, pH ammonia, and nitrogen carried by an 
unauthorized air vehicle [9].

Encinas et al. worked on a ZigBee-based wireless sensor network 
for a water quality prediction system in the field of Aquaculture 

using a temperature sensor, pH sensor, and Dissolved Oxygen 
sensor [10]. However, the performance of water parameter 
management was not satisfactory. 

Liu et al. worked on the Recirculating Aquaculture System 
(RAS) to conduct an experiment on "RasCarpio" [11]. In 2011, 
RAS was a better solution for aquaculture in a pond. The water 
parameters were checked continuously, and if any parameter 
crossed the specific value, then the water automatically 
recirculated. WATT TriOMatic, WATT Sensolyt, and WATT Tri 
oxyTherm type sensors were used to sense dissolved oxygen, 
pH, and temperature.

3. Dataset
The dataset has been sourced from Kaggle. It is comprised of 
3276 entries stretched across 10 columns. A brief description of 
all the columns is listed below:

3.1. pH value
• pH is an important parameter that is responsible for indicating 
the acidic or basic nature of the water. A pH value greater than 
7 indicates it is basic in nature, a value less than 7 indicates it 
is acidic in nature and a value equal to 7 means it is neutral in 
nature. Distilled water has a pH value of 7.

3.2. Hardness
• The hardness of water is mainly caused due to the presence of 
calcium, magnesium, and iron salts.
• Solids (Total dissolved solids - TDS)
• The presence of minerals in the water, such as potassium, 
calcium, sodium, bicarbonates, chlorides, magnesium, sulfates, 
etc. leads to a high TDS value. The permissible TDS value for 
drinking water is 500 mg/L to 1000mg/L.

3.3. Chloramines
• For the disinfection of water, the widely used chemicals are 
chlorine and chloramines. The permissible range of chloramines 
that can be dissolved in water is up to 4 mg/L.
• Sulfate
• Sulfates are found in minerals, soil, and rocks. However, its 
application is mainly in the chemical industry. The sulfates are 
either found naturally or are discharged by the chemical industry 
in our waterbodies. Sulfate levels are almost 2.8 g/L in seawater 
and 3 to 30 mg/L in freshwater bodies.
• Conductivity
• The presence of ions leads to electrical conductivity (EC) in 
water. Pure water or distilled water does not conduct electricity. 
World Health Organization (WHO) has set standards that for 
drinking water, the EC value should not exceed 400 μS/cm.

3.4. Organic_Carbon (Total Organic Compund - TOC)
• TOC is a measure of the total amount of carbon from organic 
compounds found in water. Carbon is found in water because of 
decaying natural organic matter (NOM). It should be less than 
2mg/L for drinking water.
• Trihalomethanes - THM
• The concentration of THM varies according to the level 
of organic compounds present. THM level up to 80 ppm is 
considered safe for drinking purposes.
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3.5. Turbidity
• It is a measure of solid particles suspended in the liquid. The 
permissible value if 5 NTU, recommended by WHO.
• Portability
• This indicates whether the water is safe for drinking or not. 
Potability value 1 indicates it is Potable (safe for consumption) 
and 0 indicates Not Potable (not safe for consumption).

3.6.  State-of-The-Art Machine Learning Algorithms 
In this section, some of the modern ML algorithms that can be 
used for the prediction of water quality in Aquaculture have 
been discussed. Support Vector Machine (SVM) is a supervised 
Machine learning used for classification and regression. The 
primary objective of the SVM is to search for a hyperplane that 
distinctly classifies the data points [12].

Logistic Regression is a supervised Machine Learning algorithm 
mainly used for classification problems. The important intention 
of logistic regression is to discover the best-fitting model to 
describe the relationship between the consequence and a set of 
predictor variables [13]. K-Nearest Neighbors (KNN) is a very 
simple supervised ML algorithm that can be used for the solution 
of classification and regression problems. It predicts whether a 
particular data point belongs to a particular class or the other 
based on the calculated distance between the particular data point 
and the other points [14]. The particular data point pertains to 
that class whose data points are nearest to it. Naïve Bayes (NB) 
classification algorithm is a probabilistic classifier. It is based 
on probability models that incorporate strong independence 
assumptions [15]. A Decision Tree (DT) is a supervised learning 
algorithm. The primary objective of using DT is to create a 
training model that can predict the class or value of the target 
variable by learning simple decision rules based on prior data 
[16]. Random Forest is a supervised ML algorithm used for 
classification and regression problems [17]. It builds decision 
trees on different samples and takes their vote for classification 
and average in case of regression. Over-fitting of data can be 
escaped by this model. Stochastic Gradient Descent (SGD) is 
an iterative method for optimizing an objective function with 

suitable smoothness properties [18]. It is also regarded as a 
stochastic approximation of gradient descent optimization. 
Extreme Gradient Boosting, XGBoost is a member of the family 
of boosting algorithms. It is a scalable distributed gradient-
boosted decision tree machine learning library. It provides 
parallel tree boosting. It is an ensemble ML approach and uses 
a gradient-boosting framework for prediction [19]. It combines 
predictors with low accuracy and converts them into a model 
with an elevated accuracy [20,21].

4. Methodology
The methodology has been described in this section and the 
proposed workflow has been illustrated in Figure1

In this section, the details of the methodology are presented that 
has been used to forecast water quality, regulate the situation, 
and process-wise decisions.

The dataset which is measured and collected from IoT sensors, 
has been used for Machine learning model training and validation 
comprised of the following attributes [22]:

pH, hardness, Solids, Chloramines, Sulfate, Conductivity, 
organic carbon, trihalomethanes, Turbidity, and potability. 
The dataset is stored in a CSV file. Out of the 10 attributes, 
potability is considered the target variable while the remaining 
nine attributes are considered the predictor variables. The size 
of the dataset is (3276 x 10). The dataset that has been used has 
undergone thorough pre-processing prior to the implementation 
of the ML models. At first, the dataset was checked for null values 
and when found discarded. Then the dataset has been inspected 
to detect the presence of any outliers. The Interquartile Range 
(IQR) method has been used for the detection and subsequent 
dropping of outliers. After dropping the null values and outliers 
from the original dataset, the remaining dataset in hand has been 
split into training data and testing data. A test size of 15% has 
been considered. Then Standard Scaling was used to transform 
all the attributes within the same range.
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Fig. 1. Flowchart of Methodology proposed 

 
Fig. 2. Flowchart of Data Preprocessing proposed 
 
In Fig. 2, the Data Preprocessing steps are shown for 
visualization purposes.  
In Fig. 3, the distribution plot of the 9 attributes is shown before 
any sort of data processing steps. This will help in 
understanding how the distribution changes after data 
preprocessing.  
In Fig. 4, the distribution plot of the 9 attributes after data 
preprocessing is performed. On close inspection, one can notice 
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In Figure 2, the Data Preprocessing steps are shown for visualization purposes.
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Fig. 3. Distribution plot of 9 attributes before data preprocessing 
 

 
Fig. 4. Distribution plot of 9 attributes after data preprocessing 
 

 
Fig. 5. Flowchart of ML Model implementation 
 
In Fig. 5, the proposed ML Model implementation is shown 
after the data preprocessing stage. 
 

VI. EXPERIMENTAL  RESULTS AND DISCUSSION 
The A comparative analysis of the nine algorithms has been 
done based on the following Performance metrics:  

• Accuracy 
• Recall  
• Precision 
• F1 score 
• Area Under Curve – Receiver Operating 

Characteristics (AUC-ROC) Curve 
For the evaluation of the accuracy, recall, precision and F1 

score, the following 4 attributes have been used in the 
measurement: 

• True Positive (TP) 
• True Negative (TN) 
• False Positive (FP) 
• False Negative (FN) 

The above-mentioned attributes for each of the eight 
machine-learning models have been enlisted in Table 1. 
 
 

TABLE I 
ATTRIBUTES FOR THE CALCULATION OF PERFORMANCE 

METRICS AMONG THE PROPOSED ML ALGORITHMS 
 

Model TP FP FN TN 
RFC 121 13 40 28 
SVM 107 25 33 37 

XGBC 94 36 42 30 
DTC 117 7 54 24 
KNN 121 13 40 28 
GBC 94 36 28 44 
NBC 109 21 59 13 
LR 132 0 70 0 

 

The performance comparison among the proposed Machine 
Learning algorithms has been demonstrated in Table 2. 

 
TABLE II 

COMPARISON OF THE PERFORMANCE METRICS USING 
DIFFERENT ML ALGORITHMS 

Model Accuracy Recall Precision F1-
score 

RFC 0.7376 0.90 0.75 0.82 
SVM 0.7129 0.81 0.76 0.79 

XGBC 0.7029 0.80 0.75 0.77 
DTC 0.698 0.94 0.68 0.79 
KNN 0.698 0.73 0.78 0.76 
GBC 0.6831 0.72 0.77 0.75 
NBC 0.6732 0.89 0.70 0.78 
LR 0.6534 0.9967 0.65 0.79 
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In Figure 5, the proposed ML Model implementation is shown 
after the data preprocessing stage.

5. Experimental Results and Discussion
 A comparative analysis of the nine algorithms has been done 
based on the following Performance metrics:
•	 Accuracy
•	 Recall
•	 Precision
•	 F1 score
•	 Area Under Curve – Receiver Operating Characteristics 

(AUC-ROC) Curve

For the evaluation of the accuracy, recall, precision, and F1 score, 
the following 4 attributes have been used in the measurement:
•	 True Positive (TP)
•	 True Negative (TN)
•	 False Positive (FP)
•	 False Negative (FN)
The above-mentioned attributes for each of the eight machine-
learning models have been enlisted in Table 1.

Model TP FP FN TN
RFC 121 13 40 28
SVM 107 25 33 37
XGBC 94 36 42 30
DTC 117 7 54 24
KNN 121 13 40 28
GBC 94 36 28 44
NBC 109 21 59 13
LR 132 0 70 0

Table 1: Attributes for The Calculation of Performance Metrics among the Proposed Ml Algorithms

The performance comparison among the proposed Machine Learning algorithms has been demonstrated in Table 2.

Model Accuracy Recall Precision F1-score
RFC 0.7376 0.90 0.75 0.82
SVM 0.7129 0.81 0.76 0.79
XGBC 0.7029 0.80 0.75 0.77
DTC 0.698 0.94 0.68 0.79
KNN 0.698 0.73 0.78 0.76
GBC 0.6832 0.72 0.77 0.75
NBC 0.6732 0.89 0.70 0.78
LR 0.6534 0.9967 0.65 0.79

Table 2: Comparison of The Performance Metrics Using Different Ml Algorithms
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A comparison of the prediction time for the proposed Machine Learning algorithms has been demonstrated in Table 3.

Model Prediction Time
RFC 0.054 s
SVM 0.016 s
XGBC 1.206 s
DTC 0.032 s
KNN 0.054 s
GBC 0.008 s
NBC 0.087 s
LR 0.029 s

Table 3: Comparison of The Performance Metrics Using Different Ml Algorithms

The AUC-ROC curves of all the implemented Machine Learning Models are shown in Figures 6, 7, 8, 9, 10, 11, 12, and 13 
respectively [23].
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Fig. 12. AUC-ROC Curve of Naïve Bayes Classifier (NBC) 
 

 
Fig. 13. AUC-ROC Curve of Logistic Regression (LR) 
 
In Table 4, the AUC-ROC values of the proposed Machine 
Learning Algorithms are portrayed for a single glance.  
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Classifier AUC-ROC Value
RFC 0.493
SVM 0.670
XGBC 0.515
DTC 0.512
KNN 0.430
GBC 0.672
NBC 0.509
LR 0.500

Table 4: Comparison of The Ml Models Using Auc-Roc Value

The AUC-PR curves of all the implemented Machine Learning Models are shown in Figures 14, 15, 16, 17,18,19, 20, and 21 
respectively [24].
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Classifier AUC-PR Value
RFC 0.428
SVC 0.479
fXGBC 0.438
DTC 0.437
KNN 0.403
GBC 0.561
NBC 0.435
LR 0.431

Table 5: Comparison of The Ml Models Using Auc-Pr Value

From the results shown in Table 2, the performance of both the 
Random Forest Classifier and Support Vector Machine has been 
praiseworthy. The values of the evaluation metrics of both these 
classifiers have been too close to conclude which of the two 
classifiers is the best. Random Forest Classifier has surpassed 
all the other models in terms of accuracy, recall, precision, and 
F1 score. Random Forest Classifier has exhibited an accuracy of 
73.76%, recall, precision, and F1-score of 90%, 75%, and 82% 
respectively whereas Support Vector Machine has exhibited an 
accuracy of 71.29%, recall, precision, and F1- score of 81%, 
76%, and 79% respectively.

The prediction time of each of the eight ML algorithms has 
been tabulated in Table 3. Random Forest Classifier which has 
exhibited the highest accuracy has a prediction time of 0.054 
sec. Hence, it can be deciphered that not only does the Random 
Forest Classifier have higher accuracy in comparison to other 
algorithms, but it also predicts the water quality (potability) 
from the dataset under consideration in a time that is less than a 
second. Not only, Random Forest, but all the other classifiers are 
also exceptionally fast in predicting the outcome like the Gradient 
Boosting Classifier having the least prediction time of 0.008 sec. 
The fact that these algorithms are so fast in predicting the results 
makes them extremely suitable for real-time application and 
producing results instantaneously.

6. Conclusion
Water quality monitoring is an important factor for aquaculture. 
In this paper different latest Machine Learning models like 
Logistic Regression, Random Forest, Support Vector Machine, 
Decision Tree, K-nearest Neighbors, XGBoost, Gradient 
Boosting and Naive Bayes are developed to predict the value 
of pH, hardness, Solids, Chloramines, Sulfate, Conductivity, 
organic carbon, trihalomethanes, Turbidity, and portability which 
are the main parameters for water quality. Based on the predicted 
value of water quality, it generates decisions with the help of 
Artificial Intelligence (AI) and sends notifications to the user 
when the predicted water quality appears to exceed the critical 
conditions. The IoT-based water quality monitoring system 
monitors the water quality in real-time and reduces the cost of 
production, increases efficiency, reduces human dependency, 
and thus ensures sustainable development economically and 
socially. The proposed system monitors the water quality in 
real-time and sends a notification to the user instantly, which 
reduces the risk. The dataset that has been fed into the proposed 
machine learning models is the collected information on water 

quality parameters which are obtained from the Kaggle website. 
The dataset that has been used for training and validation has 
undergone pre-processing prior to the implementation of the 
machine learning models. The dataset has been checked for null 
values first and when found has been discarded. Then the dataset 
has been inspected to detect the presence of any outliers and 
subsequent dropping of it by using the Interquartile Range (IQR) 
method. The remaining dataset has been split into training data 
and testing data after dropping the null values and outliers from 
the original dataset. A test size of 15% and a training size of 
85% have been considered. Then Standard Scaling was used to 
transform all the attributes within the same range.

Here different latest ML models Support Vector Machine, 
Logistic Regression, KNN, Random Forest Classifier, Decision 
Tree Classifier, Naive Bayes Classifier, XGBoost, and Gradient 
Boosting Classifier have been implemented and tested to validate 
and achieve a satisfactory result. The performance comparative 
analysis of the different ML algorithms has been conducted 
based on a few metrics such as accuracy, recall, precision, F1-
score, and Prediction time. Then the evaluation metrics were 
computed in order to perform the comparative analysis of all 
the ML models Random Forest Classifier surpassed all the 
other models in terms of accuracy, recall, precision, and F1 
score. Random Forest Classifier has exhibited an accuracy of 
73.76%, recall, precision, and F1-score of 90%, 75%, and 82% 
respectively [24-32].

7. Scope of Future Work
In the future, we wish to improve the model to achieve higher 
accuracy and evaluate the performance in terms of the fish 
population. Also, the proposed IOT system hardware architecture 
along with sensor data will be implemented in real-time and will 
be integrated with Machine Learning models in the future for 
the automatic data collection from the sensors and the prediction 
and monitoring of water quality based on the sensor data in the 
future.
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